Übungen zu Höhere Mathematik für Physiker II ${\bf Blatt} \ 3$

- 1 Man zeige, daß die Reihe $((x^n e^{-n|x|}))$ auf \mathbb{R} gleichmäßig konvergiert. $\boxed{2}$
- **2** Sei $E \neq \emptyset$, F ein Banachraum und $f_n, g_n : E \to F$ gleichmäßig konvergente Folgen mit Limites f bzw. g, dann konvergiert die Folge $f_n + g_n$ gleichmäßig nach f + g.

Ist F ein Hilbertraum und sind die Grenzfunktionen f,g gleichmäßig beschränkt auf E, d.h. ist $\sup_{x\in E} \lVert f(x)\rVert < \infty$, entsprechend für g, dann folgt

$$\langle f_n, g_n \rangle \Longrightarrow \langle f, g \rangle.$$

2

3 Sei $f_n: E \to \mathbb{R}$ gleichmäßig konvergent mit Limes f und existiert eine Konstante c>0, so daß

$$|f_n(x)| \ge c \quad \forall x \in E, \forall n \in \mathbb{N},$$

dann konvergiert f_n^{-1} gleichmäßig nach f^{-1} .

2

- 4 Sei $0 < \epsilon_n$ eine Nullfolge. Man beweise, daß die Funktionenfolge $f_n(x) = \sqrt{\epsilon_n^2 + |x|^2}$ gleichmäßig auf $\mathbb R$ nach f(x) = |x| konvergiert.
- **5** Man beweise, daß die Reihe $((x^n(1-x)))$ auf (-1,1] zwar punktweise konvergiert, aber nicht gleichmäßig.