Solovay Functions and the No-gap Phenomena

Nan Fang

Heidelberg, Germany
CCR 2015
For plain Kolomogrov complexity function C, we have the following properties.

- $\forall x C(x) \leq^+ |x|$.
- $\exists^\infty x C(x) \geq^+ |x|$.
For plain Kolomogrov complexity function C, we have the following properties.

- $\forall x C(x) \leq^{+} |x|$.
- $\exists^{\infty} x C(x) \geq^{+} |x|$.

We say that function $|x|$ is an *infinitely often tight upper bound* of C, up to a constant. How about prefix-free Kolomogrov complexity function K?
For plain Kolomogrov complexity function C, we have the following properties.

- $\forall x C(x) \leq^+ |x|$.
- $\exists^\infty x C(x) \geq^+ |x|$.

We say that function $|x|$ is an *infinitely often tight upper bound* of C, up to a constant. How about prefix-free Kolomogrov complexity function K?

Definition

A function g is a *Solovay function* if g is computable and it holds that

1. $\forall x [K(x) \leq^+ g(x)]$
2. $\exists^\infty x [K(x) \geq^+ g(x)]$

A function g is a *weak Solovay function* if g is right-c.e. and satisfies both 1 and 2.
An equivalent characterization for Solovay functions

Theorem

Let \(f : \mathbb{N} \to \mathbb{N} \) be a right-c.e. function. Then \(f \) is an upper bound of \(K \) iff \(\sum_n 2^{-f(n)} \) is finite.
Theorem

Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a right-c.e. function. Then f is an upper bound of K iff $\sum_n 2^{-f(n)}$ is finite.

Theorem (Bienvenu and Downey, 2009)

Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a right-c.e. function. Then f is a weak Solovay function $\iff \sum_n 2^{-f(n)}$ is finite and is a Martin-Löf random real.
Definition

A sequence A is **K-trivial** if $\forall n \ K(A \upharpoonright n) \leq^+ K(n)$.
K-triviality and Solovay functions

Definition

A sequence A is **K-trivial** if $\forall n \ K(A \upharpoonright n) \leq^+ K(n)$.

Actually, we can replace $K(n)$ in the definition by any weak Solovay function.

Theorem (Bienvenu, Merkle and Nies, 2011)

If g is a (weak) Solovay function, then

(1) a sequence A is K-trivial iff $\forall n \ K(A \upharpoonright n) \leq^+ g(n)$.

And

(2) turns out to be a characterization of Solovay function among all right-c.e. functions.

Theorem (Bienvenu, Downey, Nies and Merkle, 2015)

If g is a computable (right-c.e.) function such that for any sequence A,

(3) A is K-trivial iff $\forall n \ K(A \upharpoonright n) \leq^+ g(n)$,

then g is a (weak) Solovay function.
K-triviality and Solovay functions

Definition

A sequence A is **K-trivial** if $\forall n \ K(A \upharpoonright n) \leq^+ K(n)$.

Actually, we can replace $K(n)$ in the definition by any weak Solovay function.

Theorem (Bienvenu, Merkle and Nies, 2011)

If g is a (weak) Solovay function, then () a sequence A is K-trivial iff $\forall n \ K(A \upharpoonright n) \leq^+ g(n)$.*

And (*) turns out to be a characterization of Solovay function among all right-c.e. functions.

Theorem (Bienvenu, Downey, Nies and Merkle, 2015)

If g is a computable (right-c.e.) function such that for any sequence A, A is K-trivial iff $\forall n \ K(A \upharpoonright n) \leq^+ g(n)$, then g is a (weak) Solovay function.
Theorem (Gács-Miller-Yu)

A sequence A is Martin-Löf random iff for all $n \in \omega$, \[C(A \upharpoonright n) \geq^+ n - K(n). \]
<table>
<thead>
<tr>
<th>Theorem (Gács-Miller-Yu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A sequence A is Martin-Löf random iff for all $n \in \omega$, $C(A \upharpoonright n) \geq^+ n - K(n)$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Bienvenu, Merkle and Nies, 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If g is a (weak) Solovay function, then (**) a sequence A is Martin-Löf random iff $\forall n \ C(A \upharpoonright n) \geq^+ n - g(n)$.</td>
</tr>
</tbody>
</table>
Gács-Miller-Yu theorem and Solovay functions

Theorem (Gács-Miller-Yu)

A sequence A is Martin-Löf random iff for all $n \in \omega$, $C(A \upharpoonright n) \geq n - K(n)$.

Theorem (Bienvenu, Merkle and Nies, 2011)

If g is a (weak) Solovay function, then (∗∗) a sequence A is Martin-Löf random iff $\forall n \ C(A \upharpoonright n) \geq n - g(n)$.

Theorem (Bienvenu, Downey, Nies and Merkle, 2015)

Let g be a computable (right-c.e.) function such that for any sequence A, A is Martin-Löf random iff $\forall n \ C(A \upharpoonright n) \geq n - g(n)$, then g is a (weak) Solovay function.
Weak lowness for K and Solovay functions

Definition

- A sequence A is \textit{weakly low for} K if $\exists^\infty n K^A(n) \geq K(n)$;
- A sequence A is \textit{low for} Ω if Ω is Martin-Löf random relative to A.
Weak lowness for K and Solovay functions

Definition

- A sequence A is *weakly low for K* if $\exists^\infty n K^A(n) \geq K(n)$;
- A sequence A is *low for Ω* if Ω is Martin-Löf-random relative to A.

Miller first showed that these two lowness are equivalent, while Bienvenu noticed a simple proof using Solovay function:
Weak lowness for K and Solovay functions

Definition

- A sequence A is weakly low for K if $\exists^\infty n K^A(n) \geq K(n)$;
- A sequence A is low for Ω if Ω is Martin-Löf random relative to A.

Miller first showed that these two lowness are equivalent, while Bienvenu noticed a simple proof using Solovay function:

- Function K is right-c.e., it is also right-c.e. relative to A.
- And K is also an upper bound for K^A up to an additive constant.
- By definition, A is weakly low for K iff K is a weak Solovay function relative to A.
- Relativizing the equivalent characterization of Solovay function, K is a weak Solovay function relative to A iff $\Omega_K = \sum_n 2^{-K(n)}$ is Martin-Löf random relative to A.
- So A is weakly low for K iff A is low for Ω.
Theorem

If g is a weak Solovay function, then a sequence A is weakly low for K iff $\exists^\infty n K^A(n) \geq^+ g(n)$.
Weak lowness for K and Solovay functions

Theorem

If g is a weak Solovay function, then a sequence A is weakly low for K iff $\exists^\infty n K^A(n) \geq^+ g(n)$.

- One direction is trivial.
- A is weakly low for K, then it is low for Ω.
- $\Omega_g = \sum_n 2^{-g(n)}$ is 1-random and left-c.e., then by Kučera-Slaman Theorem, it is Ω-like.
- Then Ω_g is 1-random relative to A.
- By relativization, $\exists^\infty n K^A(n) \geq^+ g(n)$.
Theorem

Let g be a right-c.e. function such that for any sequence A, A is weakly low for K iff $\exists^\infty n K^A(n) \geq^+ g(n)$, then g is a weak Solovay function.
Weak lowness for K and Solovay functions

Theorem

Let g be a right-c.e. function such that for any sequence A, A is weakly low for K iff $\exists^\infty n K^A(n) \geq^+ g(n)$, then g is a weak Solovay function.

- For all sequence A, $\forall n K^A(n) \leq^+ K(n)$.
- If for some sequence A, $\exists^\infty n K^A(n) \geq^+ g(n)$, then $\exists^\infty n K(n) \geq^+ g(n)$.
- If g is not an upper bound of K, then $\sum_n 2^{-g(n)} = \infty$.
- For all A, $\sum_n 2^{-K^A(n)} < \infty$, $\exists^\infty n K^A(n) \geq^+ g(n)$.
Theorem (Miller)

A set A is 2-random iff \(\exists \infty n K(A \upharpoonright n) \geq^+ K(n) + n \).
2-randomness and Solovay functions

Theorem (Miller)

A set A is 2-random iff $\exists^\infty n K(A \restriction n) \geq^+ K(n) + n$.

Theorem

If g is a weak Solovay function, then a sequence A is 2-random iff $\exists^\infty n K(A \restriction n) \geq^+ n + f(n)$.
2-randomness and Solovay functions

Theorem (Miller)

A set A is 2-random iff $\exists^\infty n K(A \upharpoonright n) \geq^+ K(n) + n$.

Theorem

If g is a weak Solovay function, then a sequence A is 2-random iff $\exists^\infty n K(A \upharpoonright n) \geq^+ n + f(n)$.

- A is 2-random iff A is 1-random and low for Ω.
- A is 1-random, by Ample Excess Lemma, $\forall n K^A(n) \leq^+ K(A \upharpoonright n) - n$.
- A is low for Ω, by previous result, $\exists^\infty n K^A(n) \geq^+ g(n)$.
- Thus, $\exists^\infty n K(A \upharpoonright n) \geq^+ n + g(n)$.
Theorem

If f is a right-c.e. function, and for any sequence A, A is 2-random iff $\exists^\infty n K(A \upharpoonright n) \geq^+ n + f(n)$, then f is a weak Solovay function.
Theorem

If f is a right-c.e. function, and for any sequence A, A is 2-random iff $\exists^\infty n \; K(A \upharpoonright n) \geq^+ n + f(n)$, then f is a weak Solovay function.

- For all sequence A, $\forall n \; K(A \upharpoonright n) \leq^+ n + K(n)$.
- If for some sequence A, $\exists^\infty n \; K(A \upharpoonright n) \geq^+ n + f(n)$, then $\exists^\infty n \; K(n) \geq^+ f(n)$.
- If g is not an upper bound of K, then for all A, $\exists^\infty n \; K^A(n) \geq^+ f(n)$.
- By Ample Excess Lemma, then all 1-random sequences A, $\exists^\infty n \; K(A \upharpoonright n) \geq^+ n + f(n)$.
Infinitely often K-triviality and Solovay functions

Definition

A sequence A is *infinitely often K-trivial* if there are infinitely many point n such that $K(A \upharpoonright n) \leq^+ K(n)$. It seems very promising that in the definition the function $K(n)$ can be replaced by arbitrary Solovay function, but we will see that it is false.

Theorem

There is a Solovay function f that for some sequence A there are infinitely many point n such that $K(A \upharpoonright n) + f(n)$ but A is not infinitely often K-trivial.
A sequence A is *infinitely often K-trivial* if there are infinitely many point n such that $K(A \upharpoonright n) \leq^+ K(n)$.

It seems very promising that in the definition the function $K(n)$ can be replaced by arbitrary Solovay function, but we will see that it is false.
Definition

A sequence A is *infinitely often K-trivial* if there are infinitely many point n such that $K(A \upharpoonright n) \leq^+ K(n)$.

It seems very promising that in the definition the function $K(n)$ can be replaced by arbitrary Solovay function, but we will see that it is false.

Theorem

There is a Solovay function f that for some sequence A there are infinitely many point n such that $K(A \uparrow n) \leq^+ f(n)$ but A is not infinitely often often K-trivial
Proof.

- Suppose f is a Solovay function, define f_1 and f_2 as follows:

 \[f_1(x) = \begin{cases} f(x) & \text{if } x \text{ is odd} \\ 2x & \text{if } x \text{ is even} \end{cases} \quad f_2(x) = \begin{cases} 2x & \text{if } x \text{ is odd} \\ f(x) & \text{if } x \text{ is even} \end{cases} \]

- $\forall x \ K(x) \leq^+ 2|x| \leq 2x$, and $\forall x \ K(x) \leq^+ f(x)$, then $\forall x \ K(x) \leq^+ f_1(x)$ and $K(x) \leq^+ f_2(x)$.

- As there are infinitely many x such that $K(x) \geq^+ f(x)$. then at least for one of $f_i (i = 0, 1)$, there are infinitely many x such that $K(x) \geq^+ f_i(x)$.

- Suppose $i = 1$, then f_1 is a Solovay function.

- For any sequence A, for all even number n, $K(A \upharpoonright n) \leq^+ 2n = f_1(n)$.

\[\Box\]
However, whether the converse is true is still not clear at present. Recently, George and Bauwens independently proved the following theorem.

Theorem

For any function f which goes to infinity, there exists a sequence A such that A is not infinitely often K-trivial but $\exists n \in \mathbb{N} (A|n) + K(n) + f(n)$. That's to say, among all right-c.e. functions which are upper bounds of K, if for any sequence A, A is infinitely often K-trivial iff $\exists n \in \mathbb{N} (A|n) + g(n)$, then g is a weak Solovay function.

But whether all computable (right-c.e.) functions which make the equivalence ture should be (weak) Solovay functions is still open.
However, whether the converse is true is still not clear at present. Recently, George and Bauwens independently proved the following theorem.

Theorem

For any function f which goes to infinity, there exists a sequence A such that A is not infinitely often K-trivial but

$$\exists^\infty n \ K(A \upharpoonright n) \leq^+ K(n) + f(n).$$
However, whether the converse is true is still not clear at present. Recently, George and Bauwens independently proved the following theorem.

Theorem

For any function f *which goes to infinity, there exists a sequence* A *such that* A *is not infinitely often* K-*trivial but* $\exists^\infty n \ K(A \upharpoonright n) \leq^+ K(n) + f(n)$.

That’s to say, among all right-c.e. functions which are upper bounds of K, if for any sequence A, A is infinitely often K-trivial iff $\exists^\infty n K(A \upharpoonright n) \leq^+ g(n)$, then g is a weak Solovay function.
Infinitely often K-triviality and Solovay functions

However, whether the converse is true is still not clear at present. Recently, George and Bauwens independently proved the following theorem.

Theorem

For any function f which goes to infinity, there exists a sequence A such that A is not infinitely often K-trivial but

$$\exists^\infty n \ K(A \upharpoonright n) \leq^+ K(n) + f(n).$$

That’s to say, among all right-c.e. functions which are upper bounds of K, if for any sequence A, A is infinitely often K-trivial iff $\exists^\infty n K(A \upharpoonright n) \leq^+ g(n)$, then g is a weak Solovay function.

But whether all computable (right-c.e.) functions which make the equivalence ture should be (weak) Solovay functions is still open.
Let \(g \) be any weak Solovay function, the following assertions are true.

1. \(\sum_n 2^{-g(n)} \) is a Martin-Löf random real.
2. A sequence \(A \) is \(K \)-trivial iff \(\forall n \ K(A \upharpoonright n) \leq^+ g(n) \).
3. A sequence \(A \) is Martin-Löf random iff \(\forall n \ C(A \upharpoonright n) \geq^+ n - g(n) \).
4. A sequence \(A \) is weakly low for \(K \), iff \(\exists^\infty n \ K^A(n) \geq^+ g(n) \).
5. A sequence \(A \) is 2-random, iff \(\exists^\infty n \ K(A \upharpoonright n) \geq^+ n + g(n) \).

What’s more, among all right-c.e. functions the respective assertion is true exactly for the Solovay functions.
The no-gap phenomena

Theorem

Suppose \(f \) is a right-c.e. function, the following are equivalent:

1. \(\forall x [K(x) \leq^+ f(x)] \);
2. \(\sum_n 2^{-f(n)} < \infty \);
3. If \(A \) is \(K \)-trivial, then \(\forall n K(A \upharpoonright n) \leq^+ f(n) \);
4. If \(A \) is 1-random, then \(\forall n C(A \upharpoonright n) \geq^+ n - f(n) \).
5. If \(\exists \infty n K^A(n) \geq^+ f(n) \), then \(A \) is weakly low for \(K \);
6. If \(\exists \infty n K(A \upharpoonright n) \geq^+ n + f(n) \), then \(A \) is 2-random;
The no-gap phenomena

Theorem

Suppose f is a right-c.e. function, and is an upper bound for K, the following are equivalent:

1. $\exists^\infty x[K(x) \geq^+ f(x)]$;
2. $\sum_n 2^{-f(n)}$ is 1-random;
3. If $\forall n K(A \upharpoonright n) \leq^+ f(n)$, then A is K-trivial;
4. If A is weakly low for K, then $\exists^\infty n K^A(n) \geq^+ f(n)$;
5. If A is 2-random, then $\exists^\infty n K(A \upharpoonright n) \geq^+ n + f(n)$;
6. If $\forall n C(A \upharpoonright n) \geq^+ n - f(n)$, then A is 1-random.
In the proof of our previous theorems, we proved the following so-called “no-gap” theorems:

No-gap

There is no function $h : \mathbb{N} \mapsto \mathbb{N}$ which tends to infinity and such that:

1. $C(A \upharpoonright n) \geq^+ n - K(n) - h(n) \implies A$ is Martin-Löf random;
2. $K(A \upharpoonright n) \leq^+ K(n) + h(n) \implies A$ is infinitely often K-trivial;

For K-triviality, George and Charlotte showed that there is no Δ^0_2 “gap”, but Martijn and George showed there does exist a Δ^0_3 “gap”.