
ON THE EXISTENCE AND UNIQUENESS OF A WARPENING FUNCTION IN 

THE ELASTIC - PLASTIC TORSION OF A CYLINDRICAL BAR WITH 

MULTIPLY CONNECTED CROSS - SECTION 

C. Gerhardt * 

O. INTRODUCTION. 

In recent years the elastic - plastic torsion of a cylindrical 

bar has been of considerable interest for many mathematicians and mechan- 

ists. In the case of a bar with simply connected cross - section important 

are due to TING F9,10,11,12~ , BREZIS [2J , contributions and BREZIS & 

STAMPACCHIA [3 7 . They could show the regularity of the stress components 

and the existence of a unique displacement vector. 

In contrast to the torsion of a bar with simply connected cross - 

section the elastic - plastic torsion problem is much more involved when 

the cross - section is multiply connected in view of the non - homogeneous 

boundary conditions in that case. Using an idea of COURANT [4J LANCHON[7 i 

could determine the stress components in a weak sense as the gradient of 

the solution to a variational problem with constraints. The C 1'~ - regu- 

larity of that solution has been proved by us in E5] using an abstract 

regularity theorem of BREZIS & STAMPACCHIA ~ 3~ �9 

Up to now it has been an open problem to determine the displace- 

ment vector in the case of a multiply connected cross - section. It is the 

aim of this paper to solve this problem. The way we do that gives a new 

physical interpretation of the elastic - plastic torsion problem, namely, 

we shall treat this problem within the framework of the nonlinear elasti- 

* During the preparation of this article the author was supported 
by the SFB 40 at the University of Bonn. 
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city theory of hardenin~ materials, i.e. the elastic - plastic torsion 

problem may be looked at as a nonlinear problem without constraints in- 

stead of a linear problem with constraints. 

1. STATEMENT OF THE PROBLEM AND NOTATIONS. 

Let x = (x 1, x 2, x 3) be the Euclidean space coordinates. We con- 

sider the torsion of a cylindrical bar of arbitrary cross - section. Let 

the lower end of the bar be clamped in the plane x 3 = O, and suppose that 

a constant torque is applied to the other end, Let the x 3 - axis be paral- 

lel to the generators of the cylinder. The cross - section ~ is supposed 

to be a multiply connected domain with finitely many holes ~k' k = 1,...,N. 

We assume moreover that the respective boundaries r k = ~k satisfy rk~ 

F 1 : ~ for k ~ i. 

/ i g u r e  1 

The boundary of ~ is the union of the disjoint family {Fo, F1,..., 

FN}. We assume that ~ is a Lipschitz boundary which satisfies the fol- 

lowing outward sphere condition : for any boundary point x o there is a 

ball B of fixed radius R such that the intersection of ~ and ~ consists 

of x o alone. 

For later use we define 
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(1.1) 
N 

k=l 

Following the hypotheses of St. VENANT we assume that the cross - 

sections of the bar rotate in their planes, but are warped in the direct- 

ion of the x 3 - axis. Thus, the components of the displacement vector are 

(1.2) v I = - yx2x 3, v 2 = yx lx  3, v 3 = yw(x 1, x2 ) ,  

where y is the torsion per unit length of the bar, and w is an unknown 

function, the so - called warpening function . 

The components of the strain tensor e = (Eij) are defined through 

the relation 

eij = 1/2-(Divj + DJvi). 

el3 = yl2-(Dlw - x2), 

(1.4) 
e23 = yI2"(D2w + xl)' 

and all components of the diagonal are equal to zero. 

The only non - vanishing components of the symmetric stress tensor 

= (sij) are g13 = ~13(x I, x 2) and ~23 = ~23 (xi' x2)" They satisfy the 

equilibrium relation 

(1.5) D1~13 + D2a23 = 0 

in fl, and the boundary condition 

(1.6) a13 ~1 + a23 ~2 = 0 

on ~fi, where ~ = (91' ~2 ) is the exterior normal vector of ~. 

We assume the yield criteria of v. MISES[8] 

(1.7) T2 = Ia1312 + Ia2312 ! 1, 

(1.3) 

Hence we obtain 
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where the elastic range is defined by the strict inequality sign. T is 

called the tangential stress intensity. 

The elastic - plastic torsion problem consists in finding a 

warpening function w and a stress tensor a such that the relations (1.4) - 

(1.7) and 

(1.8) ~ij : ~ ~ij 

are satisfied, where G is a positive constant, the shear modulus, and 

A6 L~(fl) has the property 

1, T < 1 
(1.9) ~ = A 1, T = 1. 

A is a Lagrange multiplier. 

To determine u LANCHON solved the variational problem 

(I.I0) ~, IDvl 2 dX - 4Gy'~,V dX § min in KI, 

where K 1 is the convex set 

: = (1.11) K 1 = {vg HI'2(flW)o : IDvl -- < 1, vl~ k const, k 1 .... ,N}. 

If u is the solution to this problem, then u is determined through the 

definition 

(1.12) a13 = D2u' u23 = - Dlu 

in fl; u is called the stress function. 

J any p, According to the result of [5 u belongs to aloc 
for 

1 ~ p < ~; precisely we proved 

(1.13) A u ~  L~(~). 

The crucial step in solving the elastic - plastic torsion problem 

completely is to determine w and k, such that the relations (1.4) and 

(1.8), or equivalently, 
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(1.14) 

l. D2u : Gy.(Dlw - x 2) 

-l. Dlu : Gy.(D2w + x 1) 

are satisfied. 

We attack this problem by treating it as the limit case of a 

sequence of nonlinear problems without constraints, namely, we shall 

approximate the elastic - plastic behaviour of the material by the be- 

haviour of hardening materials. 

Let r be the shear strain intensity 

(1.15) r 2 = 1/4"(I11312 + I12312). 

Then, for elastic - plastic materials, the dependence between T and F 

is given by 

(1 16) T :~GF' if T < 1 
�9 i, if T = 1, 

i.e. the dependence is not invertible. 

(1.17) 

For hardening materials F can be expressed as a function of T 

F = g(T2) 
G �9 T, 

where the real function g = g(t) satisfies 

(1.18) g ~ 1 and ~t A O. 

(1.19) 

The relation between E and e is then of the form 

r : 2G aij" 

For hardening materials the stress function u is determined as 

the solution of the variational problem 

lovl 2 
(1.20) f I g(t) dtdx - 4Gy.$ v dx § min in K2, 

K 2 = {vE H ,2(~) : vla k = const, k = 1,...,N}; 
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The solution u then satisfies the nonlinear differential equation in 

(1.21) - Di(g(IDul2)Diu) - 2Gy : O 

and the free boundary conditions 

(1.22) I g(IDui2)'Du-u dH 1 = 2GT"l~kl 
F k 

for k = I,...,N, where l~kl is the Lebesgue measure of ilk' and where for 

positive r H r denotes the r - dimensional Hausdorff measure. 

To determine the warpening function w in this case we have to 

integrate the following system of first order partial differential equa- 

tions 

(1.25) 

g(IDul2).D2u : Gy.(Diw - x 2) 

-g(IDul2).Dlu : Gy.(D2w + xl). 

But necessary and sufficient conditions to solve this system are 

just the relations (1.21) and (1.22). Thus, for hardening materials the 

torsion problem is completely solvable. 

Our plan is to approximate the non - invertible relation (1.16) 

by injective relations valid for hardening materials. This is indicated 

in Figure 2. 

f 

J 

/ 

hardening materials 
/_ 

I 

j elastic - plastic materials 
/ 

Figure 2 

In doing so, we see that the corresponding functions gr converge 

towards the monotone graph 

(1.24) go(t) t,1 
t = l .  
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Let u be the corresponding solutions of the approximating prob- 

lems. We are going to show in the next section, that we can approximate 

H2,2. . the graph go such that the ue's are uniformly bounded in H1'2(~)~ loc(2), 

and that they converge to the solution u of the variational problem (1.10). 

Moreover, the sequence g~(IDugl 2) is uniformly bounded and a subsequence 

converges weakly in L2(~) to a function X satisfying k(x)gg~(IDul 2) for 

a.e. x. 

Furthermore, if w r 
that the relations 

are the corresponding warpening functions, so 

(1.25) 

ge(IDugi2).D2ur = Gy.(Dlw6 - x 2) 

-gg(IDu 12).DIur = Gy.(D2~ + x I) 

are valid, then it follows from the preceding estimates that a subsequence 

of the w's converges uniformly to a Lipschitz function w being the warpen- 
c 

ing function for the elastic - plastic torsion problem. 

The stress function u also solves the differential equation 

(1.26) - Di(kDiu) - 2Gy = O, 

or writing it more suggestively, 

(1.27) - D i ( g ~ I D u I 2 ) D i u )  - 2 G y ~ O .  

2. THE EXISTENCE OF A LAGRANGE MULTIPLIER. 

In this section we make the same assumptions as before, except 

that ~ is supposed to be a bounded domain of IR n, n �9 2. 

Let g e be the sequence of functions 

1, t < 1 

(2.1) geCt) : -- 
em/e.(t - I) t �9 1 

where the positive constant m is to determined later. The ge's satisfy the 

condition (1.18) and approximate the monotone graph go" 

Consider the variational problems 
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IDvl 2 
(2.2) ~/* 0 / gC (t) dtdx - 4Gy-l..V dX § min in K 2. 

Let u be the solutions of these problems. Then the sequence 
c 

{u~} is bounded in Hol'2(~W), and hence a subsequence, not relabled, con- 

verges weakly to some element Uo~ K 2. We assert 

(2.3) u o : u, 

where u is the solution of problem (1.10). 

To prove this, we observe that 

(2.4) u § u in L2(~*). 
O 

Thus, for each k, k = 1,...,N, 

(2.5) C k : uel~k 

is bounded. Hence, we deduce 

c _ c~l < (2.6) ICk _ const- Gist (Fk, F 1 ) 

c is equal to zero. for k, 1 : O,...,N, where c o 

From the estimate (2.6) we immediately conclude (cf. Theorem 2~I 

below for similar considerations) that IDuel~2 

hence IDur 

(2.7) 

is uniformly bounded, and 

We finally affirm 

IOUol ~ ~ 1. 

Suppose for a moment that this estimate would be valid. Then u o 

would belong to KI, and would therefore be a solution of problem (1.10). 

The assertion (2.3) would then follow from the uniqueness of the solution. 

To prove (2.7), choose p > 1 and ~ >O arbitrarily. Then it fol- 

lows from the minimum property of u that 
E 

(2.8) ]E [ : I{IDuc] > p}[ < e for a.e.r 
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Hence, we conclude 

(2.9) I max{IDur - p, O} dx = $ {IDuEI - p} dx ~ const-a 
n E 

for those values of r on account of the uniform boundedness of IDur 

Since the function t § max{t - p, O} is convex, we then obtain 

(2.10) I max{IDUol - p, O} dx ~ const.~, 

from which the result follows in view of the arbitrariness of ~ and p. 

This result implies especially 

(2.11) c E k § Ck for k = O,...,N, 

where c k are the boundary values of u on F k. 

We now make the following fundamental assumption, namely, we 

suppose 

(2.12) lek - Cll < dist(rk, rl) for k ~ 1. 

This inequality is trivially satisfied if we replace the strict inequal- 

ity sign by " < ". 
m 

The strict inequality means physically that there are no " plas- 

tic arcs " connecting two different components of the boundary of ~. 

This condition is always satisfied if the cross - section is simply con- 

nected, or if the torsion angle is sufficiently small, since the plastic 

parts spread out from the boundary and vary continuously with 7. 

Combining the relations (2.11) and (2.12) we immediately conclude 

that the inequality 

(2.13) Ic~- Cll _~ dist(r k, r I) 

is valid for a.e.e. 

Now we are able to prove the main theorem 
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THEOREM 2.1. - Let ~ satisfy an outward sphere condition of radius R. 

Let u resp. u E be the solutions to the variational problems (1.10) resp. 

(2. 2 ) and suppose inequality (2.12) to be valid. Then, we can demonstrate 

the followin~ propositions 

(i) lim sup IDuEJ ~ _< i, 

(ii) g~(iDu e j2) < const, 

(iii) I ] ~  I ]  _< cons= i qn H2o2(i~), 
(iV) u ~ u in HI'2(~), 

7 ( v )  gE(,Du E )"-~ kg L'(R) in L2(~), 

where 

(vi) ~(x)6 go([Dul 2) for a.e.x. 

From these relations we finally conclude 

(2.14) - Di(lDiu) - 2Gy = O. 

PROOF : To prove (i) it will be sufficient to estimate lim sup IDuEI~. 

For each boundary point x o~ ~ we shall construct barrier funct- 

+ satisfying ions 6 , 6r 

(2.15) - Di(gc(IO6+12)Di6:) - 2Gy >_ O, 

(2.16) - Di(gE(ID6~I2)Di6~) - 2Gy _< O, 

(2.17) lim sup max{ID6~l~, ID6:I~} _< I, 

(2.18) ~(x) < uc(x) < 6:(x) for all x& ~, 

and 

= 6+(Xo ) : u (Xo). (2.19) 6~(Xo) r c 

From the maximum principle we then conclude 

(2.2o) JDuEI ~ ~ ]DugI~ ~ max{IO6~l~, JD~I~}" 

To construct the barriers let x o@ ~ be arbitrary, and let B be 

a ball of radius R touching ~ at x o from the exterior. We suppose that 

B is centered in the origin. Let d be a constant such that 

(2.21) d ~ Ixl - R for all x~ ~. 



338 

We then define 

(2.22) 6;(x) : 6E(x ) + ur , 

where 
eCd ( 1  - e - c ( [ x  I - R ) ) .  (2.23) 6r : r 

6 is similar defined 
C 

(2.24) 6~(x) : - 6E(x) * ur 

In the following we shall only consider the upper barrier 6 +. 

the considerations for 6 are identical. 
E 

(2.25) 

and 

(2.26) 

From the definition of 6 we immediately conclude 

oi6r : eE(d + R - jxl).xilxl-1 
, o  ~ o . ~ 

DiDJ6r = eE(d + R - ]x]).{~ xlx olx] 3 r ~xlxJ~ 

Thus, we obtain 

(2.27) 

and 

(2.28) 

I D 6 ;  I : e ~ ( d  * R - I x l )  

D i D J 6 ;  " D i 6 + C ' D j 6 ;  = _ r 1 6 2  + R - Ixl) 

We therefore deduce 

( 2 . 2 9 )  - D i ( g r  - 2Gy = g r  A6; + 2m;e 3r  § R -  ]x l )}_  

- 2Gy > 2m - n/R - 2Gy > O 

for small values of c and sufficiently large m. 

In view of these relations the conditions (2.15) - (2.19) are 

satisfied. Hence, the estimates (2.20) and (2.27) yield 

(2 .30)  IDucl n ~ e Ed 

from which proposition (ii) 

(2.31) lim sup gr 12) ~ e 2md 
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is easily derived. 

lemma 

Proposition (iii) is an immediate consequence of the following 

LEMMA 2.1. - Let g satisf~ the condition (1.18), and let u6 C3(fl)~ C~ 

be a solution of the partial differential equation 

(2.32) - Di(g(IDuI2)Diu) - p = O, 

where p6L'(~) is 5iven. Then, for an~ compact domain ~', fl'CC ~, the 

estimate 

(2.33) liull2,2,fl, ~ const 

i_~s valid, where the constant depends o.~.n n', Ig(IDul2)In, IDuln, and I~I~. 

HI'2c~) and ne Ce(fl).Multiplying the equation PROOF OF LEMMA 2.1 : Let ~ loc" c 
2 

(2.32) with ~q and integrating by part yield 

(2.34) $ gDiu{Di~q 2 + 2~Dinn} dx : I ~n 2 dx. 

Setting ~ = - DrDru for some fixed number r, 1 ~ r ~ n, we derive 

(2.35) I g{IDDrul2q 2 + 2nDiu(DrqDiDru - DinDrDru)} dx + 
n 

+ I 2g'IDiDruDiui2q 2 dx = - I pDrDrun2 dx 
n 

The assertion is now obvious in view of (1.18). 

(2.36) 

To prove (iv) we observe that u converges uniformly to u and that 
E 

- Di(g~(IDul2Diu) = - AU. 

Thus, we obtain 

(2.37) I IO(U - u )I 2 dx < I {ge(IDul2)Diu - gr162 - ur dx 

< $1Au - 2GyI.Iu - U I dx + const �9 flu - u I -- ~ r ~fl c dHn-I 

from which the result follows. 
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The assertion (v) is an immediate consequence of (ii). The crucial step 

is to prove (vi) : Let G : {x~ ~ : IDu(x) I < I}. Then 

gr162 2) § I for a.e. x~ (2.38) G 

in view of (iv). The result now follows from Lebesgue's dominated con- 

vergence theorem. 

The final relation (2.14) is derived from (iv) and (v). 

3. THE EXISTENCE OF A WARPENING FUNCTION. 

Let us return to the physical case n = 2. As we have seen in 

Section I there are functions w such that 
r 

gr162 : Gy(Dlwr - x 2) 

(3.~) 
- ge(IDuel2)Dlu = Gy(D2w + xl). r r 

Thus, IDwr is uniformly bounded. On the other hand we know that the We'S 

itselves are uniformly bounded, since they can be expressed as integrals 

of bounded functions. Therefore, a subsequence converges to some function 

w satisfying the system (1.14). 

4. THE UNIQUENESS OF THE LAGRANGE MULTIPLIER. 

We shall show that the condition (2.12) guaranteeing the existence 

of a Lagrange multiplier k will also serve for proving the uniqueness of 

The warpening function is then uniquely determined up to an additive con- 

st ant. 

The proof is a slight modification of BREZIS' proof [lJ who de- 

rived the same result in the case of a simply connected domain. 

We assume in the following that ~CIR n, n ~ 2, and that ~ is of 

class C 2, so that u~H2'2(~) (extend the result of Theorem 2.1 up to the 

boundary, or cf. [5] ). 
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Suppose there were two different multipliers 11 and X 2. Set ~ : 11 - 12 . 

Let E = {IDu I < 1} and P = {IDu I = 1}. Then ~ is identically zero on E, 

and we have to show that this is also true on P. 

(4.~) 

We deduce from (2.14) 

- Di(~Diu) : O. 

Let k, 0 ~ k ~ N, be given, and let U k be neighbourhood of F k. 

We are going to prove 

(4.2) pl~ ~uk ~ 0 

if U k is sufficiently small. 

Let h be an arbitrary smooth function with support in Uk, and set 

u(x) 
(4.3) ~k(x) : f h(x + (t - u)Du) dr. 

c k 

Then ~k = 0 on Fj for each j : for j = k this is trivial, and for j ~ k 

we observe 

(4.4) x + (t - U(X))Du(x)~F k 

if x~rj and t~ [c k, cj~in view of (2.12). Thus, ~k~,2(~)I and B~ZIS' 
proof is applicable yielding 

(4.5) "Is~u ~ o 

in some neighbourhood U of 8~. 

Finally, let h be a smooth function and n, 0 ~ n ~ I, be such that 

n = I on ~ - U and n = o on ~. Set 

u(x) 
(4.6) ~(x) = I h(x + (t - u)Du) dr. 

0 

Then, multiplying (4.1) with ~n we immediately conclude 

(4.6) I ~'Dmu'Dm~ dx : O, 
fl 

hence the result (cf. [I] ). 
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