CLOSED IMMERSED UMBILIC HYPERSURFACES IN \mathbb{R}^{n+1} ARE SPHERES

CLAUS GERHARDT

0. Main Theorem

The following theorem is well-known, though I don't know who proved it first. It certainly follows from Alexandrov's result that embedded closed hypersurfaces of constant mean curvature are spheres. It also holds locally, see [1, Vol. IV, p. 11].

0.1. **Theorem.** Let M be a closed, connected, umbilic immersion into \mathbb{R}^{n+1} of class C^3 , then M is a sphere and the immersion is an embedding.

Proof. Since every point of M is umbilic, we have

(0.1)
$$h_{ij} = \kappa g_{ij},$$

where $\kappa \in C^1(M)$. Using the Codazzi equations we deduce

(0.2)
$$\kappa_i = h_{i:i}^j = h_{j:i}^j = H_i = n\kappa_i$$

and hence κ is constant.

Let

(0.3)
$$x: M_0 \to \mathbb{R}^{n+1}, \qquad x = x(\xi)$$

be the immersion of M and $\xi_0 \in M_0$ be a point such that

(0.4)
$$\frac{1}{2}|x(\xi_0)|^2 = \sup_{M_0} \frac{1}{2}|x|^2,$$

then we deduce

(0.5)
$$0 \ge \langle x_{ij}, x \rangle + \langle x_i, x_j \rangle = -h_{ij} \langle x, \nu \rangle + g_{ij}$$

and we infer further, since $\langle x, \nu \rangle = |x|$,

(0.6)
$$\kappa \ge |x|^{-1} > 0.$$

Thus, M is an immersed, closed, strictly convex hypersurface and hence embedded, in view of Hadamard's theorem, and it bounds a strictly convex body \hat{M} .

Date: January 31, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 35J60, 53C21, 53C44, 53C50, 58J05.

CLAUS GERHARDT

After a translation we may assume that $0 \in \operatorname{int} \tilde{M}$. Let $u = \langle x, \nu \rangle$ be the support function of M. Using the Gauß map we assume that u is defined on S^n and then it satisfies the equation

(0.7)
$$\kappa g_{ij} = h_{ij} = u_{ij} + u\sigma_{ij}.$$

where σ_{ij} is the metric in S^n and the covariant derivatives of u are defined with respect to that metric.

Moreover, σ_{ij} can be expressed as the induced metric of the embedding of S^n via the Gauß map, i.e.,

(0.8)
$$\sigma_{ij} = \langle \nu_i, \nu_j \rangle = h_i^k h_{kj} = \kappa^2 g_{ij},$$

where we used the Weingarten equations

(0.9)
$$\nu_i = h_i^k x_k.$$

Hence we conclude

$$(0.10) g_{ij} = \kappa^{-2} \sigma_{ij}$$

and equation (0.7) can be rewritten as

(0.11)
$$\kappa^{-1}\sigma_{ij} = u_{ij} + u\sigma_{ij}$$

or equivalently

(0.12)
$$(u - \kappa^{-1})\sigma_{ij} = -u_{ij}.$$

Setting

(0.13)
$$\varphi = u - \kappa^{-1}$$

we conclude that φ is a spherical harmonic of degree 1, since

(0.14)
$$-\Delta\varphi = n\varphi \quad \wedge \quad \int_{S^n} \varphi = 0,$$

hence φ can be written as a linear combination of ν^α the coordinate functions of \mathbb{R}^{n+1} restricted to S^n

(0.15)
$$\varphi = a_{\alpha}\nu^{\alpha}$$

and thus we obtain

(0.16)
$$\tilde{u} = u - a_{\alpha}\nu^{\alpha} = \kappa^{-1} = \text{const}$$

which can be looked at as the support function of the translated hypersurface $x - (a^{\alpha})$, the image of which we still denote by M. Let $x = x(\xi)$ be the embedding of M, then

(0.17)
$$\tilde{u} = \langle x, \nu \rangle$$

and differentiating $\varphi = \frac{1}{2}|x|^2$ covariantly we deduce

(0.18)
$$\varphi_{ij} = g_{ij} - h_{ij} \langle x, \nu \rangle = g_{ij} - \kappa g_{ij} \kappa^{-1} = 0,$$

i.e., $\varphi = \text{const}$ and M is a sphere with center in the origin.

 $\mathbf{2}$

CLOSED IMMERSED UMBILIC HYPERSURFACES IN \mathbb{R}^{n+1} ARE SPHERES $\qquad 3$

References

[1] Michael Spivak, A comprehensive introduction to differential geometry. Vol. I-V. 2nd ed., Publish Perish, Inc., Berkeley, 1979.

Ruprecht-Karls-Universität, Institut für Angewandte Mathematik, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany

E-mail address: gerhardt@math.uni-heidelberg.de *URL*: http://www.math.uni-heidelberg.de/studinfo/gerhardt/