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0. Introduction
We shall consider solutions u of variational inequalities of the form
(0.1) ucK; {Au+ Hu,v—up =0 VvcK,
where K = {v€ H"®(Q): v = v, v, = ¢}, where
0.2) Au = —Dy(d'(x, u, Du))

is an elliptic operator, and where
(0.3) Hu = H(x, u, Du).

Throughout the paper 2 denotes a bounded open set in R*, n = 2.

It is well-known that the solutions of (0.1) are of class H>?(£2) for any finite
D, if the data and the coefficients are smooth enough. More precisely, one can show
that

0.4) Aue L™(Q),

from which the L?-estimates are easily derived. It is also known that the second
derivatives of the solutions can at most be bounded. This border-line result has
been proved by FREHSE [3, 4] for linear operators and in our paper [5] for general
quasilinear operators, if the obstacle y is strictly below the prescribed boundary
data ¢ near the boundary. The method of proof in [5] also yields interior estimates
without any specific assumption on y near the boundary. Another proof for the
local C"!-regularity has been given by BrEzis and KINDERLEHRER in [1] for a
special class of non-linear operators.

The first global result has recently been obtained by JENSEN [7] for linear opera-
tors L of the form

0.5 Lu = —a’ D;Dju
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with C>* coefficients a”. His idea was to choose new coordinates x = X(x)
such that the new coefficients @” split on the boundary, namely

(0.6) a” =0 on 09,

for 1< 6=<n—1. Since the old coefficients enter into the transformation
@: x— X, it is evident that @ is of class C™*1 if the a”’s are of class C™ with a
corresponding relation for the weak differentiability.

In the non-linear case the corresponding transformation @ would be only
of class H*? for any finite p, and its second derivatives could only be estimated
by the second derivatives of the solution u. Thus, even if it were possible to esti-
mate the second derivatives of « in the new coordinate system (which seems doubt-
ful) this would give no bound of the second derivatives in the original coordinate
system.

To derive Cl-estimates in the nonlinear case, we therefore do not transform
the coordinates so that the coefficients matrix split in the new coordinates. In-
stead, using the method of penalization we approximate any given solution of the
variational inequality by smooth functions, and prove uniform estimates for the
global C'-norm. Unfortunately, our method of proof does not yield local esti-
mates near the boundary. Precisely, we prove the following resulf.

0.1 Theorem. Let 22 be of class C**, p € C3(Q), p€ C¥Q). Assume that the
a’s are of class C* in x and u and of class C* in the p variables, and that H is of
class C! in all its arguments. Then any solution of the variational inequality (0.1)
is of class H>*(Q).

Of course, C™ can everywhere be replaced by C™ "1,

1. Preliminaries

The a priori estimates which we shall derive in the next section are for solutions
u of approximating problems. To be sure that approximating solutions exist, we
shall replace A and H by operators Aand H satisfying appropriate growth condi-
tions so that corresponding Dirichlet problems are always solvable.

To be precise, let u, be a solution of the variational inequality (0.1). Then, by
assumption, u, is Lipschitz continuous and therefore of class H>?(2) for any
finite p. Let M be such that

(1.1) 1+ luog| + | Duo| = M.

We then change the operator as follows: first let # be a smooth real valued function
such that

R s t, [t M
(1.2 (t)Z{M+1, =M+ 1
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Secondly, let w, g be smooth functions such that

l, 0sr=2M
1.3 =
(1.3) (?) {0, =M

and g is convex satisfying

00 0=<t=<M
(1.9) g(t) = {c ot oM,
where ¢ > 0.
We then define
(1.5) d(x, t, p) = d(x, Xt), p) - o(|p|*) + k- g'(|p|») - P’
and
(1.6) H(x, 1, p) = H(x, 8(t), p) - (| p|?).

If we choose k large enough, the &’ then form a uniformly elliptic vector field such
that

(1.7 Aug + Hug = Aug + Huo;

for details, see [6; Appendix 1I].
Moreover, for large y the operator

(1.8) Au + Hu + yu
is uniformly monotone in the sense of MINTY, that is, there exists ¢ > 0 such that

1.9 <,:fu1 + ﬁux + yu — I‘qu - ﬁuz — Yy Uy — Uy = ¢ |lug — u2||f,2,

for any u,, u, € H"*(£) which agree on the boundary. In the following we shall
omit the tilde, assuming that 4 and H have all the attributes stated above.
For the approximation process we also need slightly sharper differentiability
assumptions on the a”’s and on H: for simplicity we shall assume for the moment
that the a”’s and H are of class C* in all their arguments.
We then consider solutions u of the Dirichlet problem

(1.10) Au + Hu + yu + up(u — p) = yuo, U0 = @,

where u > 0 is a parameter tending to infinity and f is a monotone function
satisfying

0, =0
(1.11) p@) = {<0, <0
For our purpose it is convenient to choose the special function
0, t=0
(1.12) B®) ={_t2, o,

which is of class CH(R).
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In view of our assumptions, the boundary value problem (1.10) always has a
solution u of class C**(£2). We shall show that the second derivatives of u are
uniformly bounded, independently of u. In the limit, # will tend to the given solu-
tion u, of the variational inequality, after having removed the additional differen-
tiability assumptions on the &”s and on H.

The following lemma is an immediate consequence of the maximum principle.

1.1 Lemma. Let u be a solution of (1.10). Then u —y = ¢ -,u_% and

(1.13) ue Bl — )| = 2,
where
(1.149) c? = sup |4y + Hy|.

Hence we conclude that
(1.15) Aue L*(Q)
with a uniform bound, and

(1.16) lulp=c V1I=p<oo,

where the constant depends on p, ||p|
tities.

Next, let x, be an arbitrary but fixed point on the boundary. We may “smooth”
a small portion of the boundary near x,, and so may assume without loss of gen-
erality that x, = 0, that the equation (1.10) is defined in the upper half-ball
Bit(0), and that the part of the hyperplane which is defined through

2,000 | @ll2,000 82, and on other known quan-

(1.17) F={&x):|%<1,x =0

represents the “smoothed” portion of 9£2.

For later use, we note that coordinates with Greek indices like x° refer to
coordinates in the hyperplane 1 <¢ < »n — 1. The differential operators D,,
D,D,, etc., are similarly defined. We further remark that the coefficients a”,
a’*, etc. are obtained from o’ by differentiation with respect to the p variable alone.

[T}

The symbol “,” is defined through the following rule

1.18 ; 22 %
( . ) a,k(x’ u, u) _'a_)'c?_}"a_u KU

A similar definition applies for “,,”. Finally we denote by f* any vector field such
that
(1.19) 1, < el + Jul,)”

for any 1 < p < oo, where ¢ and m are arbitrary constants depending on p;
similarly f will denote any function which can be estimated in the same way.
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2. The a priori estimates

Following the ideas in [2] and [7], we shall estimate the quantity
Q.1 A-d" DDy -t DDu, 1>0

from below, first for 1 <r,5<n—1 and then for 1=<r=n—1, s=n.
Since a*/ DDy is bounded, this gives an estimate for all second derivatives of u
except for D,D,u. But the normal derivatives can then be bounded by using the
equation and the uniform ellipticity of the a”s.

Let us differentiate equation (1.10) with respect to D, to obtain

(22) — D{(d’ DDy + a.) + pu- B Dfu — y) + DH + y Du =y Dyuy.
Differentiating further, this time with respect to D,, yields

2.3)

—Dya’ D;D,Du) + u - B D(u — ) Dyu — y) + y D,Dgu + p - ' D,Dfu — )

= Dif".
On the other hand, let us consider the relation
24 —D,(a” Dy(d” D, D))
= —Dy(d"d" D;D,Du + a"d"™ D, Dyu - DDy + a’a D, D)
= —Dy(a" D,D, D) a + D.f' — &' D;DDu(@™ D;Dpu + a).
We observe that the last expression on the right-hand side of (2.4) is equal to
(2.5 —Dya’ D;D,u - '™ D,Dju) + @’ D;D;D,u - & DD + Dif - f
= D,(a" D,Dju) - @™ D, D + D;f’ + f,
so that finally we deduce that
(2.6)  —Dy(a” D{(a"' D, D))
= —Dy(@’ DD D) ' + p - f Dyl — ) - & DDyt + Dif ' + 1,
where we have also used the differentiated form of (1.10), namely
.7 —a" D;Dju — a'; + Hu + p - Bu — v) + yu = yu,.
Combining (2.3) and (2.6), we conclude that
(2.8) —Dy(a” D{4d" D,Dju + D,Dsu)
-+ y{Ad" DDy + D,Dgs}
+ - B (A Dilu — y) - Dl — y) + Di(u — ) Di(u — )}
+ p - B{2a" D, D(u — y) + D,Dy(u — )}
—p+f A Dyu —y)- d"" DD =f + Dif'.
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Bearing in mind that the @*’ are uniformly elliptic, we now choose 1 so large
that

2.9)  2d" Dy(u — v) Du — ¢) + D(u — y) Du — 9) = 2+ | D(u — y) 2.

Furthermore, we note that

(2.10) f' = —2 where u<<y; p” =0 elsewhere,
and
.11 B = |u— y| where u<<y; B’ =0 elsewhere.

Hence we get the estimate
(212)  p-f Dyu—y) @ DDuzp-f"|Du—p)* +u-p-f.
But u-f is bounded, so finally
(2.13) —Dy(a” D{A - d*' D,Dju + D,Dsu))
+ y{Aa*! DD + D,Du}
+p+ B - {Ad DD(u — v) + D,D(u — 9)} = [+ Dif".
Let w and w be defined through

(.14 w = Ad* DD -+ D,Du
and
(2.15) w = Ad"' DDy 4 D,Dyyp.

We may then‘ rewrite (2.13) as
(2.16) —Dya” Dyw) +y-w+p-f - (w—w) =f+ Df’.

We note for later reference that the same formula is also valid if we replace
D.Dau by —D,Dgu.

We are now in the position to estimate the second derivatives of . We first
consider the tangential part of these derivatives.

2.1 Theorem. The second tangential derivatives of u can be estimated by
(2.17) sup |DyDyu| < sup | D,Dp| + ¢,
’ B; © B (0)
where c depends on |ul|,, for sufficiently large values of p, and on || H|w, ||%[12,00-
Proof. Let  be a cut-off function such that 4 =1 in B; (0) and supp% C B (0).
Choose

(2.18) ko =sup |D,Dp| + sup |w]|,
r +
Bf®

where we have used (2.14), (2.15) with s=0¢ and r =og.
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Next we multiply inequality (2.16) by wy-#5? := min (w-%* + k,0) - 77,
where k = k,, and integrate to obtain

(2.19) [a"Dw-n?-Dw, +y- [wi
B+

+
1 By

< [fowen®— [fDfwen?) — [d’ DwDm? - wy,
B Bl Bt
where we have used the fact that w, vanishes on I

Let A(k) be the set where w, == 0, and let | A(k)| be its Lebesgue measure.
Then in view of the uniform ellipticity of the a”’s we conclude from (2.19) that

Q) [IowP ey [wi=ee| [fsit 1711l
%+ 5t Al Al
B 1
where ¢ also depends on | D7|. Applying the Sobolev inequality we derive
n—1
(2.21) f\wki < |AK)|?,
By

where 0 <<a<<1 can be chosen arbitrarily close to 1, and where ¢ depends
on a and powers of ||ul|,, for corresponding values of p. Choosing a so that

1 1
a+—=14=—,
n 2n
we deduce for 7 > k that

(2.22) |h— k|- AR = [ [wi = c-[AGR)[' TP
B

Hence

(2.23) wen? 2 —ko — ¢ - | ko)™

in view of a well-known lemma due to STAMPACCHIA [8; Lemme 4.1].
The same estimate is valid if instead of

(2.24) o W = lakl Dleu "I" D,,Deu
we choose
(2.25) w = Ad" D Dju — D,Du

and define w accordingly.
In view of the result of Lemma 1.1 this proves the theorem.
Let us next find a bound for D Du.

2.2 Theorem. We have

(226) sup |D¢1Dnul =c (1 + ”uHZ,co)e
Bl+/2

Jor any &, 0 <& <1, where c depends on &, on ||ull,, for large p, and on known
quantities.
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Proof. We consider inequality (2.16) with
2.27) w = Ad" D, Dju + D,Du,
and multiply it with
Wi n? 1= min (w-5* + k,0) - 7%,

where # is defined as in the proof of Theorem 2.1 and k = ko = sup |w| + 1.
Integrating by parts, we obtain v

(228) [ 1 Dwel* +y- [ wi
Bt B

= el + llullz,0)™ [ AG)| +Ff|f"'wk| A | [ @ Do wil,

where we have used the ellipticity of the a¥’s, and where the constant c also depends

on | Dyl
To estimate the boundary integrals, let us first observe that
(2.29) JImwel S [l S0+ f | Dwil.
I I Bl+

To estimate the second integral, we note that = =0 on I so that
(2.30) w= F+ D,D,u,

where D;F = f, a quantity which can be estimated without difficulty. Thus, the
crucial term is

(2.31) a” D;,D.D,u.
Let us first consider the part
(2.32) a" D,D,Du.
From the equation we conclude that
(2.33) a"D,D,Du=f—a DD,Du— a D,D,Du — a* D,D,D,u

where the second term on the right-hand side is bounded due to the assumption
@€ C3. Hence, we deduce that (2.31) is a sum of f and terms of the form

(2.34) a” D,D,D,u,
or equivalently, terms of the form
2.35 a® Dyw

in view of (2.30).
Therefore, we finally obtain

(2.36) a’ Dw - n? - w, = f+ w + 30 Dwi,

where f also depends on | Dy| and where, to be absolutely precise, we should also
include terms of the form a™ D,wi.
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From the identity
2.37) faQ"DQwiz—nga@"wi=ff-wi
r r

r

it follows that the second boundary integral in (2.28) can be estimated in the same
way as the first one, so that we arrive at an estimate of the form

(2.38) J1Dw |y [ wiel® < el + [ull,e)™ - | AGR)]

Bt Bt
Arguing now as in the proof of Theorem 2.1, we conclude that
(2:39) Wt =2 —ko — o(1 + [[ully,0)™ + | Ako) "

with some new integer m. The value 1/n for the exponent of | A(ko)| is simply a
coincidence, and it is not essential at all.

We now optimize the right-hand side of (2.39) by appropriate choice of k.
First, we observe that ¢*' D,Du is bounded, and hence

(2.40) A(ko) C {x€ Bf : | D,Dyu| > ¢ ko}

for a suitable constant ¢, if k, is sufficiently large. The volume of the larger set is
estimated by
(2.41) cTPky?- f | DgDul?

B
for any finite p, thus we obtain

(2.42) wen? =2 —ko — e(1 + ||ull00)" - ko™
where ¢ now depends on p and on |u|,.

Choosing
(2.43) ko= 14 sup B -+ (1 + )™
we obtain B
244 w2 = —c k.

The same estimate also holds if we replace D,D,u by —D,D,u in the definition
of w. The theorem is therefore proved if p is chosen appropriately.

To obtain an a priori bound for all second derivatives we note that by using
the equation the normal derivatives D,D,u can be expressed in terms of D,D,u
and D,D,u. Thus, we conclude that

(2.45) Ilullz,w,Bﬁz = el + ullz,0)°

forany e, 0 << e << 1. Since 9£2 is compact this estimate also holds in a boundary
neighbourhood N. A slightly revised version of the proof of Theorem 2.1 then
yields

(2.46) lullz,o0, 0 = €l + llul2,00)°,
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so that finally we get an a priori estimate for | #[; -, o depending only on the quan-
tities mentioned in Theorem 0.1.

Letting ¢ tend to infinity, we derive the existence of a function u¢ H>%(2)
solving the variational inequality

2.47) (Au + Hu + y(u — ug), 0 —u) =0 VoeK,

where 4, H, and ¢ satisfy the stronger differentiability assumptions. Since the
estimates are independent of these assumptions, a simple approximation argument
shows that the variational problem (2.4) has a solution u¢ H**(£2) assuming
only the weaker conditions. Uniqueness of the solution (cf. (1.9)) then yields
U = u,.

Note. This work has been supported by the Deutsche Forschungsgemeinschaft.

References

1. Brézs, H., & D. KINDERLEHRER, The smoothness of solutions to nonlinear varia-
tional inequalities, Indiana Univ. Math. J. 23, 831-844 (1974).

2. CHrrot, M., Sur la régularité de la solution d’inéquations variationelles elliptiques.
C. R. Acad. Sci. Paris 288, Ser. A, 543-546 (1979).

3. FREHSE, J., On the regularity of the solution of a second order variational inequality
Bull. Un. Mat. Ital. 6, 312-315 (1972).

4. FrEHSE, J., On the regularity of solutions of linear elliptic variational inequalities.
(unpublished).

5. GERHARDT, C., Regularity of solutions of nonlinear variational inequalities. Arch.
Rational Mech. Analysis 52, 389-393 (1973).

6. GERHARDT, C., Hypersurfaces of prescribed mean curvature over obstacles. Math. Z.
133, 169-185 (1973).

7. JENSEN, R., Boundary regularity for variational inequalities. Indiana Univ. Math. J.
29, 495-504 (1980).

8. StaMPACCHIA, G., Equations elliptiques du second ordre a coefficients discontinus.
Sém. Math. Sup. Université de Montréal 1966.

Institut fiir Angewandte Mathematik
Ruprecht-Karls-Universitét
Heidelberg

( Received March 15, 1982)



