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O. Introduction 

We shall consider solutions u of variational inequalities of the form 

(0.1) uE K; (Au + Hu, v -- u) >= O Y vE K ,  

where K = (v E HI'~176 v ~ ~0, rio ~ : ~} ,  where 

(0.2) Au : - - D i ( a i ( x ,  u, Du)) 

is an elliptic operator, and where 

(0.3) Hu = H(x, u, Du). 

Throughout the paper /2 denotes a bounded open set in R", n ~ 2. 
It is well-known that the solutions of (0.1) are of class H2'p(/2) for any finite 

p, if the data and the coefficients are smooth enough. More precisely, one can show 
that 

(0.4) Au E L~176 

from which the LP-estimates are easily derived. It is also known that the second 
derivatives of the solutions can at most be bounded. This border-line result has 
been proved by FREHSE [3, 4] for linear operators and in our paper [5] for general 
quasilinear operators, if the obstacle ~v is strictly below the prescribed boundary 
data 9 near the boundary. The method of proof in [5] also yields interior estimates 
without any specific assumption on ~0 near the boundary. Another proof for the 
local cl'l-regularity has been given by BR~ZIS and KINDERLEHRER in [1] for a 
special class of non-linear operators. 

The first global result has recently been obtained by JENSEN [7] for linear opera- 
tors L of the form 

(0.5) Lu = --a  e DiD~u 
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with C 2'~ coefficients a e. His idea was to choose new coordinates ~----.x(x) 
such that the new coefficients fi"J split on the boundary, namely 

(0.6) rio. _--0 on 812, 

for 1 _< a _< n -  1. Since the old coefficients enter into the transformation 
�9 : x - +  3, it is evident that # is of class C m+l if the a;/'s are of  class C m with a 
corresponding relation for the weak differentiability. 

In the non-linear case the corresponding transformation # would be only 
of  class H 2,p for any finite p, and its second derivatives could only be estimated 
by the second derivatives of the solution u. Thus, even if it were possible to esti- 
mate the second derivatives of u in the new coordinate system (which seems doubt- 
ful) this would give no bound of the second derivatives in the original coordinate 
system. 

To derive cl'l-estimates in the nonlinear case, we therefore do not transform 
the coordinates so that the coefficients matrix split in the new coordinates. In- 
stead, using the method of  penalization we approximate any given solution of the 
variational inequality by smooth functions, and prove uniform estimates for the 
global Cl'l-norm. Unfortunately, our method of proof  does not yield local esti- 
mates near the boundary. Precisely, we prove the following result. 

0.1 Theorem. Let 8K2 be of class C 3'c~, ~9 E C3(~'~), I/)E C2(~t~). Assume that the 
d 's  are of class C 2 in x and u and of class C a in the p variables, and that H is of  
class C 1 in all its arguments. Then any solution of the variational inequality (0.1) 
is of  class HE'~176 

Of course, C m can everywhere be replaced by C m 1,i. 

1. Preliminaries 

The a priori estimates which we shall derive in the next section are for solutions 
u of  approximating problems. To be sure that approximating solutions exist, we 

shall replace A and H by operators ,4 a n d / t  satisfying appropriate growth condi- 
tions so that corresponding Dirichlet problems are always solvable. 

To be precise, let Uo be a solution of  the variational inequality (0.1). Then, by 
assumption, Uo is Lipschitz continuous and therefore of  class H2'p(f2) for any 
finite p. Let M be such that 

(1.1) 1 + luo l  + IDuol S M. 

We then change the operator as follows: first let ~ be a smooth real valued function 
such that 

I t, ]t[<=M 
(1 .2)  = . 

M + I ,  ] t [ ~ M + l  
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Secondly, let to, g be smooth functions such that 

(1.3) 

and g is convex satisfying 

(1.4) 

where c > O. 
We then define 

(1.5) 

and 

(1.6) 

1, 0 --< t --< 2M 
to(t) = 

O, t ~ 3M 

g(t) = {  O' O < _ t < _ M  

c t, t > = 2 M ,  

hi(x, t , p )  = ai(x, oq(t),p) �9 to(lp]2) + k .  g'(lpl 2) .pi 

ffI(x, t, p )  = H ( x ,  ~9(t), p )  " to(lP [2). 
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If  we choose k large enough, the t~ i then form a uniformly elliptic vector field such 
that 

(1.7) .4Uo +/qUo = Auo + Huo;  

for details, see [6; Appendix II]. 
Moreover, for large 9' the operator 

(1.8) Ju  + / ~ u  + 9'u 

is uni formly  monotone  in the sense of MINTY, that is, there exists c > 0 such that 

- -  - -  - -  = - -  U 2 (1.9) (An1 + grul + ~,ul An2 gin2 9'u2, ul --  u2> > e .  Ilu~ 2111,2, 

for any ul, u2 E Hi'2(12) which agree on the boundary. In the following we shall 
omit the tilde, assuming that A and H have all the attributes stated above. 

For the approximation process we also need slightly sharper differentiability 
assumptions on the ai's and on H: for simplicity we shall assume for the moment 
that the d ' s  and H are of class C 4 in all their arguments. 

We then consider solutions u of the Dirichlet problem 

(1.10) A u  + H u  + y u  + #fl(u - -  v/) = yUo, Ul~ a = qJ, 

where # > 0 is a parameter tending to infinity and 3 is a monotone function 
satisfying 

0, t=>0 
(1.11) f l ( t ) - - -  < 0 ,  t < O "  

For our purpose it is convenient to choose the special function 

0, t ~ O  
(1.12) fl(t) = --t2, t < O, 

which is of class CI'i(R). 
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In view of our assumptions, the boundary value problem (1.10) always has a 

solution u of  class C3'~(/2). We shall show that the second derivatives of  u are 
uniformly bounded, independently of/~. In the limit, u will tend to the given solu- 
tion Uo of  the variational inequality, after having removed the additional differen- 
tiability assumptions on the ai's and on H. 

The following lemma is an immediate consequence of the maximum principle. 

1.1 Lemma. Let  u be a solution o f  (1.10). Then u -- ~v >: c .  #- �89 and 

(1.13) 

where 

(I .14) 

l (u - w)  l _-< c 

e 2 : :  sup ]A~v + H~v I . 

Hence we conclude that 

(1.15) 

with a uniform bound, and 

Au E L~176 

(1.16) Ilulh,p ~ c V 1 ~ p  < oo, 

where the constant depends on p, ][ ~v [12,~, [[ ~0 [12,~, ~ ,  and on other known quan- 
tities. 

Next, let Xo be an arbitrary but fixed point on the boundary. We may "smooth"  
a small portion of  the boundary near Xo, and so may assume without loss of  gen- 
erality that Xo = 0, that the equation (1.10) is defined in the upper half-ball 
B+(0), and that the part of  the hyperplane which is defined through 

(1.17) r = _-< 1, x n = 0}  

represents the "smoothed" portion of O.Q. 
For  later use, we note that coordinates with Greek indices like x ~ refer to 

coordinates in the hyperplane 1 _~ ~ _~ n -  1. The differential operators D~, 
D~D e, etc., are similarly defined. We further remark that the coefficients a ~ 
a ~ etc. are obtained from a i by differentiation with respect to the p variable alone. 
The symbol ",k" is defined through the following rule 

8a i 8a i 
(1.18) a~k(X, U, Du) : ~ + Tuu " Dku. 

A similar definition applies for ",kt". Finally we denote b y f  i any vector field such 
that 

(1.19) I[fi[lp :~ e(1 -]- I[ulh,.) m 

for any 1 ~ p ~ o% where c and m are arbitrary constants depending on p; 
similarly f will denote any function which can be estimated in the same way. 
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2. The a priori estimates 

Following the ideas in [2] and [7], we shall estimate the quantity 

(2.1) 2" akl DkDl u ::[: DrDsu, 2 > 0 

from below, first for 1 : < r , s ~ n - -  1 and then for l _ < r - - < n - - 1 ,  s = n .  
Since d "t DkDlU is bounded, this gives an estimate for all second derivatives of u 
except for DnDnu. But the normal derivatives can then be bounded by using the 
equation and the uniform ellipticity of the a'J's. 

Let us differentiate equation (1.10) with respect to Ds to obtain 

(2.2) - -  D i (a  ij DjDsu + a,is) -q- ,tt . fl '  Ds(u - -  v/) + OsH + y Osu : ~' Dsuo. 

Differentiating further, this time with respect to D r , yields 

(2.3) 

_Di(a i j  OjOrOsU) _[_ [~ " fit, Or(u  __ ~1)) O8(u - -  V)  "-~ ~ OrOsU + [/~ " ~t DrD,(u - -  ~?) 

: Di f f .  

On the other hand, let us consider the relation 

(2.4) - -Oi(a ij Dy(a kt OkOtU) ) 

: --Di(aiJa k! DjDkDlu -]- atJa ktm D m D j U .  DkDlU -~ aiJaff DkDtU ) 

: - -Di(a  0 DyDkDlU ) a kl -3 U D i f  i - -  aii DyDkDtu(a klm DiDmu q- a~,/). 

We observe that the last expression on the right-hand side of (2.4) is equal to 

(2.5) --D.i(a ij DiDmu" a klm DkOlU) q- a ij DiDjD,nu " aklm DkDlU -]- D i f  i - [ - f  

= Dm(a ij DiDju) �9 a klm DI, DIu + D i f  i + f ,  

SO that finally we deduce that 

(2.6) - -Di(a ij Dj(a k' DkOtU)) 

= --Di(a ij DyDkOlU ) a kl -~- i t .  fl' Om(U --  ~v)" a klm DkDlU ~- D i f i  + f ,  

where we have also used the differentiated form of (1.10), namely 

(2.7) - -a  0 DiDju a i. - -  ,, + H u  + # " f l ( u  - -  ~p) + ~,u = y u o .  

Combining (2.3) and (2.6), we conclude that 

(2.8) - -Di(a ij Dj(2a kt DkDlU -]- DrDsu) 

-~- ),{,,~a kl DkDlU + DrDsu} 

+ # "  fl"(2a kt Dk(U - -  ~v)" Ol(u - -  ~v) + O,(u - -  V) O,(u - -  ~p)} 

-t- tz . fl'(~.a kt OkOl(U - -  ~v) -1- DrOs(u - -  r)} 

- -  ,tt " fl' " 2" Dm(u --  W) " aklm DkDlU ~- f + D i f  i" 
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Bearing in mind that the a kl are uniformly elliptic, we now choose 2 so large 
that 

(2.9) 2a~t Dk(u - -  9 )  Dl(U - -  9 )  -{- Or(u - -  9 )  Os(u - -  9 )  ~ 2" ]D(u - -  9) 12. 

Furthermore, we note that 

(2.10) / 5 " =  - -2  where u < 9; /5"----0 elsewhere, 

and 

(2.11) /5' : I u --  9] where u < 9;  fl' : 0 elsewhere. 

Hence we get the estimate 

(2.12) #"/5' Dm(u -- 9)" aklm OkOtu >= I*" if '  ] D(u -- 9) [2 + # . / 5 .  f .  

But #"/5 is bounded, so finally 

(2.13) --Oi(a ii Dj(2. a kt DkOtu + D, Dsu)) 

+ y{2a kt OkOlU + D, Osu} 

+ #" fl'" ( 2~t DkOt(u -- 9) + D,D,(u -- 9)} >= f + Di f  i. 

Let w and w be defined through 

(2.14) w ---- 2a/'t DkDlu + DrD,u 

and 

(2.15) ~ = 2a kl DkOt9 + D, Ddp. 

We may then rewrite (2.13) as 

(2.16) --Di(a U Djw) + ~.  w + # .  f t .  (w -- w) >=f + Di f  i. 

We note for later reference that the same formula is also valid if we replace 
DrD, u by --DrDsu. 

We are now in the position to estimate the second derivatives of  u. We first 
consider the tangential part  of  these derivatives. 

2.1 Theorem. The second tangential derivatives of  u can be estimated by 

(2.17) sup [D~Oou I <= sup [OoOo~ol + c, 
B_l+ O) g 

where c depends on Ilull2,p for sufficiently large values of  p, and on IIn[Ioo, 119112,00. 

Proof. Let~/be a cut-off function such that r / =  1 in B~(0) and suppr/(B/~(0).  

Choose 

(2.18) ko = sup 10o0o91 + sup [~I ,  
B+(0) 

where we have used (2.14), (2.15) with s = <r and r = ~. 
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Next we multiply inequality (2.16) by wg �9 72 : =  min (w. ~/2 + k, 0) �9 ~72, 
where k >_ ko, and integrate to obtain 

(2.19) f a ij Djw " 172" Diw k ~r- ) '" f w 2 

=,+ =t 
<= f f " Wk " ~72 - -  f f i  . D,(wk " ~7 ~) --  f d j Djw D,~72" Wk, 

where we have used the fact that Wk vanishes on / ' .  
Let A(k)  be the set where Wk ~ O, and let [A(k) l be its Lebesgue measure. 

Then in view of the uniform ellipticity of  the aiJ's we conclude from (2.19) that 

(2.20) y i ,w l: + w:_-< e" i f " / , +  ,,(,o S Ifl" Iwl}, 

where e also depends on I D~/I. Applying the Sobolev inequality we derive 

(2.21) Iw * 7 =< c" I~(k)l o, 
B 

where 0 < a < 1 can be chosen arbitrarily close to 1, and where c depends 
on a and powers of  ]1 ulh,p for corresponding values of  p. Choosing a so that 

1 1 
a-I-  n 

we deduce for h > k that 

(2.22) Ih - kl" Ia(h)l < f Iw, I _--< e - IA(k) l  '§ 

Hence 

(2.23) w .  ~ => - -ko - e - IA(ko) l  ' /~ 

in view of a well-known lemma due to STAMPACCHIA [8; Lemme 4.1 ]. 
The same estimate is valid if  instead of 

(2.24) : w = 2a kt DkDtU -q- D,~Dou 

we choose 

(2.25) w = 2a/~l DkDlU i D~Do u 

and define ~ accordingly. 
In view of  the result of  Lemma 1.1 this proves the theorem. 
Let us next find a bound for DoD,u. 

2.2 "llaeorem. We have 

(2.26) sup ID,,D,u[ ~ c" (1 + I lulh,oD ~ 

f o r  any e, 0 < e < 1, where e depends on e, on Ilulh,pfor large p, and on known 
quantities. 
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Proof. We consider inequality (2.16) with 

(2.27) w = 2a k/DkDlU + DaDnu, 

and multiply it with 

Wk" r/2 :__ min (w- ~2 + k, 0)- ~2, 

where ~ is defined as in the proof of Theorem 2.1 and k ~ ko => sup I~[ + I. 
Integrating by parts, we obtain v 

(2.28) f I Dwk 12 + r'' f w~, 
B+ B+ 

~ c ( 1  q-[[u[Iz, oo)mlA(k)l  q- flfn'wkl +1 f a"J D:'r/Z'wkl, 
1" 2' 

where we have used the ellipticity of the aU's, and where the constant e also depends 
on I nr/I. 

To estimate the boundary integrals, let us first observe that 

(2.29) f l f " "  Wk[ <= [l/nlloo " f lwk[ < I[/"[[~ �9 f [Dwk[ .  
1" P B ~  

To estimate the second integral, we note that fl = ff  = 0 on F so that 

w = F + DoDnu, (2.30) 

where D j F  = f ,  a quantity which can be estimated without difficulty. Thus, the 
crucial term is 

(2.31) a nj DjD~Dnu. 

Let us first consider the part 

(2.32) a" D.DoD.u. 

From the equation we conclude that 

(2.33) a nn D,~DnDnu = f - -  a ~ D ,  DeDou - -  a no DeD,,Dnu - -  a on DeDaDnu 

where the second term on the right-hand side is bounded due to the assumption 
q~E C 3. Hence, we deduce that (2.31) is a sum o f f  and terms of the form 

(2.34) a Qn DeDoDnu, 

or equivalently, terms of the form 

(2.35) a en DQw 

in view of (2.30). 
Therefore, we finally obtain 

(2.36) anj Di w . r/2 . wk : f" Wk -t- �89 ~ D~w~,, 

where f also depends on I Dr/] and where, to be absolutely precise, we should also 
include terms of the form �89 "~ DQw~. 
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From the identity 

(2.37) f a e" Dew 2 : -- f D e a~ --- f f . 
.P 1" 1" 

it follows that the second boundary integral in (2.28) can be estimated in the same 
way as the first one, so that we arrive at an estimate of  the form 

(2.38) f IDwk[ 2 + r" f Iw, I 2 --< c(1 -I- IIull=,~) m. IA(k)]. 
B+ .+  

Arguing now as in the proof  of  Theorem 2.1, we conclude that 

(2.39) w.  72 => --ko -- e(1 + IluH2,oo) m. I A(ko)[ I/" 

with some new integer m. The value 1/n for the exponent of [A(ko)] is simply a 
coincidence, and it is not essential at all. 

We now optimize the right-hand side of (2.39) by appropriate choice of  ko. 
First, we observe that a m Dt, Dtu is bounded, and hence 

(2.40) A(ko) Q (x E B+ : I D,D,  u l > c .  ko} 

for a suitable constant c, if ko is sufficiently large. The volume of the larger set is 
estimated by 

(2.41) c -p" ko  p. f IO,,Onul p 

for any finite p, thus we obtain 

(2.42) w-72 ~ --ko --  c(1 + IlulE~) m. ko ~z" 

where c now depends on p and on Ilull2,r 
Choosing 

m ' n  

(2.43) ko ----- 1 -1- sup I~l + (1 + Ilull2,~)p § 
. +  

we obtain 

(2.44) w. 72 ~ - - c .  k o. 

The same estimate also holds if we replace D,,Dnu by --D,,Dnu in the definition 
of w. The theorem is therefore proved if p is chosen appropriately. 

To obtain an a priori bound for all second derivatives we note that by using 
the equation the normal derivatives D,D,,u can be expressed in terms of D,~Dnu 
and D,,Deu. Thus, we conclude that 

(2.45) I[ulI2,~,B~ 2 ~ c,(1 -}-Ilul12,o~)" 

for any e, 0 < e < 1. Since ~12 is compact this estimate also holds in a boundary 
neighbourhood N. A slightly revised version of the proof  of  Theorem 2.1 then 
yields 

(2.46) liull2,o~,,~xN ~ c,(1 -I- IlulE~)L 
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so that finally we get an a priori estimate for [[ U[12,o%.O depending only on the quan- 
tities mentioned in Theorem 0.1. 

Letting/z tend to infinity, we derive the existence of a function u E H2'~176 
solving the variational inequality 

(2.47) ( A u  + Hu  + y(u -- Uo), v --  u)  >= 0 V v E K ,  

where A, H, and 9 satisfy the stronger differentiability assumptions. Since the 
estimates are independent of these assumptions, a simple approximation argument 
shows that the variational problem (2.4) has a solution u E H2'~176 assuming 
only the weaker conditions. Uniqueness of the solution (cf. (1.9)) then yields 
U =  U O. 

Note. This work has been supported by the Deutsche Forschungsgemeinschaft. 
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