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Let f2 be a bounded open subset of R" with smooth boundary 012 and let A 
be a quasilinear differential operator in divergence form, 

(1) 

with 

(2) 

and 

(3) 

A =  - Di(a,(x, u, p)), 

a~eC 1, t (,.~ x JR. x ~ " )  

( ~ a ~  r162  for all ~elR"-{0}.  0p J / 

Suppose that u e K  is a solution of the variational inequality 

(4) < A u + H ,  v - u > > O  for all veK,  

where 
K = { v e i l  1' ~176 (f2): v > ~k, rio a = f } ,  

and where H, f ,  and r are given functions such that 

H e l l  1, ~ 

f e C 2 ( ~ ) ,  

(5) 

(6) 

and 

(7) 

Moreover, assume that 

(8) 

and hence 

(9) 

~,EH ~' ~(a), ~qo~<f. 

A u is essentially bounded 

u6H2'p(O) for any p, l < p < o o ,  t 

1 For a short proof of this well-known conclusion the reader is referred to the Appendix. 
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The aim of this paper is to show that the second derivatives of u are locally 
bounded. Up to now results in this direction have been given by J. FREHSE [2], [3] 
and D. KINDERLEHRER [6] for linear variational inequalities. Moreover, in the 
case of two dimensions and a concave obstacle ~k, D. KINDERLEHRER has an- 
nounced regularity results for the (nonlinear) minimal surface operator (to appear 
in Proc. Symp. Pure Math. Vol. 23). 

We shall show that Frehse's method of proof continues to work in the general 
case of a nonlinear operator. 

Theorem. Under the assumptions stated above the variational inequality (4) has 
a solution u~Hi2'c ~176 (f2). 

Proof. Define the coincidence set I by 

I={xEa: u(x)=~(x)}. 

Since u, ~b~C~ it is clear t h a t / i s  closed, and since u - S > 0  on aE2 there exists 
an open set IT with I c  c ~2'~ ~ ~2. Choose h~P," -{0} such that f2 '_ .hc  = E2. 
Then for any non-negative q5 ~ C~ ([2' - I) there exists a value eo = eo (~b, h) such 
that for 0 < ~__< ~o 

(10) u,=u + ~4~h~K 

where 

(11) Sh (X) = I h [- 2 {$ (x + h) - 2 ~b (x) + ~b ( x -  h)}. 

Setting v = u, in (4), we obtain 

(12) ( Au+ H, ~ph) >O. 

First of all, let us consider the term 

S a, (x, u, D u) D' {dp ( x -  h)-  dp (x)} d x, 

which can be written also in the form 

(13) S{ai(x+h,u(x+h),Du(x+h))-a,(x,u(x),Du(x))}D'~bdx. 

Since the expression in the braces is 

1 d 
(14) J --~--i-ai(x+th, tu(x+h)+(l -t)u(x),  tOu(x+hl+(1-t)Du(x))dt, 

we can write (13) in the form 

(15) ~ {a,j(h)DJ[u(x +h)-u(x)]+bi(h)[u(x +h)-u(x)]+c,.i(h)hi} O%kdx, 

where we have set 
10a i 

ai~(h)= J -ff-pT-pJ(...)dt, 

Oat 1 
b,(h)=J-ffff-u (...)dt, c,j(h)=J ~ ( . . . ) d t  

and where the dots denote the arguments in (14). 
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Let w be a solution of the equation 

(16) --A w = H  

in any ball B, ~ ~ ~ B. Then using the preceding results we derive from the in- 
equality (12) 

S {atJ (h) D ~ uh + I h J - 2 [aij ( -  h ) -  afj (h)] D ~ [u (x - h ) -  u (x)] 

(17) + b i(h) uh + ] h ] - 2 [b, ( -  h) - bi (h)] [u (x - h ) -  u (x)] 

+l  h1-2 [ cq (h ) -  c i j ( -  h)] hJ+l h1-2 D i Wh) D ~ ~ d x  >-0. 

From the assumption (5) and from the Calderon-Zygmund Inequalities we 
conclude that w belongs to Ha'P(t2) for any p, 1 < p <  oo. Moreover, the a~fs are 
Lipschitz functions and the second derivatives of u are p-summable for any p, 
1 < p < o o .  Therefore, the lower order terms in (17) belong to LP(~) for any p, 
1 <p  < oo. Hence it follows from a theorem due to STA~ACCHIA (see [8], Th6o- 
r~me 4.1) that 

(18) uh__>min(0, min u h ) - c  in t 2 ' - l ,  
8(t~'-I) 

where the constant c does not depend on h. 

Since Ot2'~-{u>~} we know that u h is bounded on aQ', while for xEI, uh(x) 
is estimated from below by ~h (x). Thus 

(19) uh(x)> --const. for all x~Q' .  

Now take a fixed x ~ ' - I .  Since u e C 2 ( t 2 ' - I )  we obtain from (19) 

(20) O2u(x)~2~_-cons t .  for all ~eR",  ]~1=1. 

To complete the proof we need the following 

Lemma. Let B=(btj)~,j= a ...... and C= (ctj)i,j=~ ...... be symmetric matrices 
such that B>O and C>0.  Then 

(21 ) IIB II _-< tr (BC).  II C I1" II C- all 2. 

Suppose the lemma to be valid. Then we take fo rBthe  matrix D2u+cons t . I  
and for C the coefficient matrix (aij), a~j=Oa~/01 ri, and from (8), (20), and (21) 
conclude that D2u is bounded on O ' - L  Since D2u=D2~k a.e. on L the theorem 
is completely proved. 

Proof of the Lemma, Let ~elR"-{0} and define t/ by Ctl=~; then 

(22) (B~, ~) = (BCtl, Crl) = (CBCtl, rl). 

We may assume CBC to be diagonalized with corresponding nonnegative eigen- 
values 2i; thus 

(23) <B ~, ~> = Z 2i I nil2 :~_ tr (CBC).  [ t/[2. 

Since B, C are non-negative and symmetric, we obtain 

(24) tr (CBC) = tr (BC 2) < tr (BC).  II CII, 
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and hence 

(25) (B~, ~ ) < t r ( B C ) .  IICII" [IC-all 2. I~12 

from which the assertion follows. 

The problem of the boundedness of the second derivatives of solutions to 
nonlinear variational inequalities with obstacles has also been solved by H. BREZIS 
and D. KINDERLEHRER [9]. They showed that the solutions of certain approximating 
differential equations have locally uniformly bounded second derivatives. 

Appendix 
We shall give a brief outline of the proof of the assertion (9). 

Theorem. Let u be a Lipschitz function such that Au belongs to LP(t2) for 
p > n, and such that Uloo=f, f e C2 ( ~). Then 

(26) u ~H 2' P(g2). 

Proof. From [10], Thror~me 11.1 and Thror~me 11.2, we conclude that u 
belongs to HZ'Z(f2)nCl"'(O) for any ~, 0 < g < l .  Hence we can differentiate 
formally to obtain 

(27) 2; aij D ~ D i u = F, 

where F~L~(f2) and the coefficients a~i are H61der continuous. Subtracting 
Za~jDiDJffrom the equation, we may restrict ourselves to the case Ulea=O. 

Assuming that the (unique) solution u of (27), with Ulea= O, lies in the Sobolev 
space H2'p(f2), then the following a priori estimate holds (see [11]): 

(28) II u l[ 2, p ~ const. �9 { [I F IIp + II u 11 ~}, 

where the constant depends on p, n, ~2, the ellipticity constant of the a~j's, and on 
the modulus of continuity of the coefficients. 

Conversely, approximating F by smooth functions F~, we can solve the equa- 
tions 

Z aijDiDJu~=F~ 
(29) 

U~loa=O 

in C2'~(O), 0 < ~ < 1 ,  since the coefficients are H61der continuous. The asser- 
tion (26) now follows from the a priori estimate, since the equation (27) has a 
unique solution u~H 2' 2 (~) c~ C~ (~). 
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