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Let Q2 be a bounded open subset of R” with smooth boundary 0Q and let 4
be a quasilinear differential operator in divergence form,

(1) A= _Di(ai(x, u, P)),
with
) a;eCH (2 xR xIR")
and
0a; \ ij n
3) —.)5 >0 forall £eR"—{0}.
op’
Suppose that ueK is a solution of the variational inequality
“4) (Au+H,v—u)»=0 forall vek,
where

K={veH" “(Q): v2¥, vjpo=1},

and where H, f, and  are given functions such that

(5) HeH"*(Q),

(6) feC¥(@),

and

©) YeH> (@), Yon<f
Moreover, assume that

(8) Au is essentially bounded

and hence

) ueH*?(Q) forany p,1<p<co.!

1 For a short proof of this well-known conclusion the reader is referred to the Appendix.
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The aim of this paper is to show that the second derivatives of u are locally
bounded. Up to now results in this direction have been given by J. FREHSE [2], [3]
and D. KINDERLEHRER [6] for linear variational inequalities. Moreover, in the
case of two dimensions and a concave obstacle {, D. KINDERLEHRER has an-
nounced regularity results for the (nonlinear) minimal surface operator (to appear
in Proc. Symp. Pure Math. Vol. 23).

We shall show that Frehse’s method of proof continues to work in the general
case of a nonlinear operator.

Theorem. Under the assumptions stated above the variational inequality (4) has
a solution ue H2,® (Q).

loc
Proof. Define the coincidence set I by
I={xeQ: u(x)=y(x)}.

Since u, e C°(Q) it is clear that I is closed, and since u— >0 on &2 there exists
an open set Q' with /c ¢ ' < = Q. Choose heR"” —{0} such that @' +hc c Q.
Then for any non-negative ¢eCP (2'—1I) there exists a value gy=¢,(¢, 1) such
that for 0<g=<g,

(10) u,=u+sp,ck

where

an Gp(X)=1h1" 2 {$(x+h)=2¢(x)+P(x—h)}.
Setting v=1u, in (4), we obtain

(12) {Au+H, ¢;>20.

First of all, let us consider the term
fa;(x,u, Du)D*{¢p(x—h)—p(x)} dx,
which can be written also in the form
(13) {{a;(x+h, u(x+h), Du(x+h))—a;(x, u(x), Du(x))} D’ pdx.

Since the expression in the braces is
1
d
(14) [} ar a;(x+th, tu(x+h)+(1 - u(x), tDu(x+h)+(1 —t) Du(x))dt,
0

we can write (13) in the form
(15)  [{ay,;()D'[u(x+h)—u(x)]+bi(R)[u(x+ k) —u(x)]+c;(R) W} D pdx,

where we have set

! da;
aij(h)=6[ 7 (..)dt,
_9a L
bi(h)—oj 5 (-)dt cij(h)_og (Lt

and where the dots denote the arguments in (14).
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Let w be a solution of the equation
(16) —Aw=H

in any ball B,  « < B. Then using the preceding results we derive from the in-
equality (12)
{{ay (W) D uy+|h| " ?[a;;(—h)—ay;(h)] D’ [u(x—h)—u(x)]
17 +by(Wuy+ k|72 [by(—B)— by(B)][u(x— 1) —u(x)]
+1 k1 [ei;(h)—ci; (=))W +| k] > D'w,} D' pdx 20.

From the assumption (5) and from the Calderon-Zygmund Inequalities we
conclude that w belongs to H3'?(£) for any p, 1 <p <. Moreover, the a;;’s are
Lipschitz functions and the second derivatives of u are p-summable for any p,
1<p<oo. Therefore, the lower order terms in (17) belong to IP(Q) for any p,

1<p< . Hence it follows from a theorem due to STAMPACCHIA (see [8], Théo-
réme 4.1) that

(18) u,zmin(0, min u,)—c¢ in Q' —1I,
o' -1I)
where the constant ¢ does not depend on A.

Since dQ' ={u>y} we know that u, is bounded on d€’, while for xel, u,(x)
is estimated from below by ¥, (x). Thus

(19) u,(x)= —const, forall xeQ'.
Now take a fixed xe Q' —I. Since ue C?(€2’' —1I) we obtain from (19)
(20) D*u(x)&*z —const.  forall (eR”, |E|=1.

To complete the proof we need the following

Lemma. Let B=(b;)); j=1,.,n and C=(c;j); j=1,.,» be Symmetric matrices
such that B20 and C>0. Then

(21) IBI <tr (BC)-IICIl- IC™*I|*.

Suppose the lemma to be valid. Then we take for Bthe matrix D?u+const./
and for C the coefficient matrix (@;), 4, ,.=aa,./apf, and from (8), (20), and (21)
conclude that D*u is bounded on Q' —1. Since D?u=D?} a.e. on I, the theorem
is completely proved.

Proof of the Lemma. Let £eIR"—{0} and define n by Cn=¢; then
(22) (B¢, $>=<{BCn, Cn)={CBCn,n>.

We may assume CBC to be diagonalized with corresponding nonnegative eigen-
values 4;; thus

(23) (BE, &)=Y kin'|>Str(CBC) - |n|*.
Since B, C are non-negative and symmetric, we obtain

24 tr (CBC)=tr(BC*)£tr (BC) - | C|,
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and hence
(25) (BE Ey<tr(BC)-|IC|-|CTH)2- [y

from which the assertion follows.

The problem of the boundedness of the second derivatives of solutions to
nonlinear variational inequalities with obstacles has also been solved by H. BREZiS
and D. KINDERLEHRER [9]. They showed that the solutions of certain approximating
differential equations have locally uniformly bounded second derivatives.

Appendix
We shall give a brief outline of the proof of the assertion (9).

Theorem. Let u be a Lipschitz function such that Au belongs to I7(Q) for
p>n, and such that u,o=f, fe C*(Q). Then

(26) uecH*?(Q).

Proof. From [10], Théoréme 11.1 and Théoréme 11.2, we conclude that «
belongs to H*?*(Q)nC"*(Q) for any a, 0<a<1. Hence we can differentiate
formally to obtain

27N Zay;D'D'u=F,

where Felf(Q) and the coefficients a;; are Holder continuous. Subtracting
z aijD'Df f from the equation, we may restrict ourselves to the case u;,o=0.

Assuming that the (unique) solution u of (27), with u,,=0, lies in the Sobolev
space H?'?(Q), then the following a priori estimate holds (see [11]):

(28) lull,, p<const. - {|[Fll ,+llull,},

where the constant depends on p, n, 2, the ellipticity constant of the a;;’s, and on
the modulus of continuity of the coefficients.
Conversely, approximating F by smooth functions F,, we can solve the equa-
tions
Z‘aijDiDju£=I‘?s

29
(29) uelaf):O

in C**(Q), 0<a<]1, since the coefficients are Holder continuous. The asser-
tion (26) now follows from the a priori estimate, since the equation- (27) has a
unique solution ue H>'2(Q) n C§(Q).
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