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Abstract. We quantize the interaction of gravity with Yang-Mills and
spinor fields, hence offering a quantum theory incorporating all four

fundamental forces of nature. Using canonical quantization we obtain

solutions of the Wheeler-DeWitt equation in a vector bundle and the
method of second quantization leads to a symplectic vector space (V, ω)

and a corresponding CCR representation for the bosonic components

and a CAR representation for the fermionic part. The solution space of
the Wheeler-DeWitt equation is invariant under gauge transformations

and under isometries in the spacelike base space S0 of a given Riemann-

ian metric ρij . We also define a net of local subalgebras which satisfy
four of the Haag-Kastler axioms.
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1. Introduction

A unified quantum theory incorporating the four fundamental forces of
nature is one of the major open problems in physics. The Standard Model
combines electro-magnetism, the strong force and the weak force, but ignores
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2 CLAUS GERHARDT

gravity. The quantization of gravity is therefore a necessary first step to
achieve a unified quantum theory.

The Einstein equations are the Euler-Lagrange equations of the Einstein-
Hilbert functional and quantization of a Lagrangian theory requires to switch
from a Lagrangian view to a Hamiltonian view. In a ground breaking paper,
Arnowitt, Deser and Misner [1] expressed the Einstein-Hilbert Lagrangian
in a form which allowed to derive a corresponding Hamilton function by
applying the Legendre transformation. However, since the Einstein-Hilbert
Lagrangian is singular, the Hamiltonian description of gravity is only correct
if two additional constraints are satisfied, namely, the Hamilton constraint
and the diffeomorphism constraint. Dirac [8] proved how to quantize a con-
strained Hamiltonian system—at least in principle—and his method has been
applied to the Hamiltonian setting of gravity, cf. the paper of DeWitt [6]
and the monographs by Kiefer [13] and Thiemann [15]. In the general case,
when arbitrary globally hyperbolic spacetime metrics are allowed, the prob-
lem turned out to be extremely difficult and solutions could only be found
by assuming a high degree of symmetry.

However, we recently achieved the quantization of gravity for general hy-
perbolic spacetimes, cf. [11], and, in a subsequent paper [10], we developed a
unified quantum theory for the interaction of gravity with a Yang-Mills field.

Using these results we are able to treat the interaction of gravity with
Yang-Mills and spinor fields thereby offering a unified quantum theory for
all four fundamental forces. Though we only consider the interaction of
gravity with one Yang-Mills and one spinor field the inclusion of additional
independent fields poses no problem.

We look at the Lagrangian functional

(1.1)

J = α−1
M

∫
Ω̃

(R̄− 2Λ)−
∫
Ω̃

1
4γāb̄ḡ

µρ2 ḡλρ1F āµρ1F
b̄
ρ2λ

−
∫
Ω̃

{ 1
2 ḡ
µλγāb̄Φ

ā
µΦ̄

b̄
λ + V (Φ)}

+

∫
Ω̃

{ 1
2 [ψ̃IE

µ
a γ

a(Dµψ)I + ψ̃IE
µ
a γa(Dµψ)I ] +mψ̃Iψ

I},

where αM is a positive coupling constant, Ω̃ b N = Nn+1 and N a globally
hyperbolic spacetime with metric ḡαβ , 0 ≤ α, β ≤ n.

As we proved in [11] we may only consider metrics ḡαβ that split with
respect to some fixed globally defined time function x0 such that

(1.2) ds̄2 = −w2(dx0)2 + gijdx
idxj

where gij(x
0, ·) are Riemannian metrics in S0,

(1.3) S0 = {x0 = 0}.
The functional J consists of the Einstein-Hilbert functional, the Yang-Mills

and Higgs functional and a massive Dirac term. Instead of the potential

(1.4) mψ̃Iψ
I
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we could have considered an arbitrary potential as long as it is quadratic in
ψ and real.

The Yang-Mills field (Aµ)

(1.5) Aµ = fc̄A
c̄
µ

corresponds to the adjoint representation of a compact, semi-simple Lie group
G with Lie algebra g. The fc̄,

(1.6) fc̄ = (f āc̄b̄)

are the structural constants of g.
We assume the Higgs field Φ = (Φā) to have complex valued components.
The spinor field ψ = (ψIA) has a spinor index A, 1 ≤ A ≤ n1, and a colour

index I, 1 ≤ I ≤ n2. Here, we suppose that the Lie group has a unitary
representation R such that

(1.7) tc̄ = R(fc̄)

are antihermitian matrices acting on Cn2 . The symbol Aµψ is now defined
by

(1.8) Aµψ = tc̄ψA
c̄
µ

In our previous papers we used canonical quantization to obtain a first
quantization leading to the Wheeler-DeWitt equation

(1.9) Hu = 0,

where the Hamiltonian H is a symmetric, normally hyperbolic differential
operator in a bundle E with base space S0 and fibers which were considered
to be globally hyperbolic Lorentzian manifolds equipped with a Lorentzian
metric which was composed of the DeWitt metric and further Riemannian
metrics resulting from the presence of the Yang-Mills and Higgs fields.

In a second step we had to use the method of second quantization to de-
velop a quantum field theory for the solutions of the Wheeler-DeWitt equa-
tion leading to a real symplectic vector space (V, ω) and a corresponding CCR
representation. The CCR representation could be defined by a quantum field
ΦM , where M ⊂ E was a Cauchy hypersurface.

In the present paper we follow this approach. First, we prove in Sec-
tion 3 that the Dirac Lagrangian LD (without the integration density) can
be expressed in the form

(1.10)
LD = i

2 (χ̄I χ̇
I − ˙̄χIχI)w

−1ϕ−1 +miχ̄Iγ
0χIϕ−1

− i
2{χ̄Iγ

0Eka′γ
a′D̃kχ

I − χ̄Iγ0Eka′γ
a′D̃kχI}ϕ−1.

Here, we fixed a Riemann metric ρij on S0 and defined the function ϕ on N
by

(1.11) ϕ2 =
det(gij)

det(ρij)
,

where the spacetime metric has the form as in (1.2).
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The spinor field χ = (χIA) is defined by

(1.12) χ =
√
ϕψ.

Applying Casalbuoni’s results in [4] and [5] we obtain a corresponding
Hamilton function

(1.13)
HD = i

2{χ̄Iγ
0Eka′γ

a′D̃kχ
I − χ̄Iγ0Eka′γ

a′D̃kχI}
−miχ̄Iγ0χI ,

where χ̄AI and χJB satisfy the anticommutation rules

(1.14) {χ̄AI , χJB}∗+ = −iδJI δAB .
Canonical quantization—with h̄ = 1—then requires that the correspond-

ing operators χ̂IA, ˆ̄χBJ satisfy the anticommutative rules

(1.15) [χ̂IA, ˆ̄χBJ ]+ = i{χIA, χ̄BJ }∗+ = δIJδ
B
A

and

(1.16) [ ˆ̄χAI , ˆ̄χBJ ]+ = [χ̂IA, χ̂
J
B ]+ = 0.

We realize these quantum rules in the Grassmann algebra

(1.17) P = P(χIA)

consisting of polynomial functions

(1.18) u = a0 +
∑
k,m

aA1···Am

I1···Ik χI1···IkA1···Am
,

where the coefficients are complex numbers being asymmetric in their indices,
by defining

(1.19) χ̄AI =
∂

∂χIA
to be the left derivative. The space P is also endowed with a natural Her-
mitian scalar product.

After quantization the Hamilton operator HD can be viewed as a self-
adjoint operator in the finite dimensional Hilbert space P.

We then define two bundles. The first bundle E is essentially the bundle
we already used in [10] with base space S0 and fibers

(1.20) F(x) = F (x)× (g⊗ T 0,1
x (S0))× g× g.

The second bundle is a vector bundle Ê with base space E and fiber

(1.21) F̂ = T 0,2
x, symm(S0)× (g⊗ T 0,1

x (S0))× g× P.
Writing the elements u of the fiber in coordinates we obtain

(1.22) u = (fij , A
ā
m, Φ

b̄, w),

where w ∈ P, the components Φb̄ are complex, while fij and Aām are real. We

consider F̂ to be a real vector space and shall later equip it with a natural
real scalar product.
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The common Hamilton function has the form

(1.23)
H = HG +HYM +HH +HD

≡ H̃ +HD,

and after quantization it will be transformed to a symmetric, normally hy-
perbolic differential operator H acting only in the fibers of E. H looks like

(1.24) H = −∆+ c,

where HD is part of the zero order term c and H is defined for sections
u ∈ C∞c (E, Ê). The solution space of the Wheeler-DeWitt equation

(1.25) Hu = 0

is identical with

(1.26) G(C∞c (E, Ê)),

where G is the Green’s operator.
In order to apply the method of second quantization we split the fiber in

Ê into its bosonic and fermionic components. For the bosonic components
we obtain a CCR representation of a symplectic vector space (V, ω) and each
Cauchy hypersurface M ⊂ E defines a quantum field ΦM such that

(1.27) W ([u]) = eiΦM (u), [u] ∈ V,

is a Weyl system for (V, ω), while we construct a CAR representation and a
corresponding quantum field for the fermionic part.

These results are proved in Section 5 and Section 6. In the last section
we define local subalgebras and prove that they satisfy four Haag-Kastler
axioms.

Let us conclude this section with the important remark:

1.1. Remark. The choice of the metric ρij in (1.11) is arbitrary, but the
metric should have a rich group of isometries, since these isometries as well
as the gauge transformations act as isometries in the fibers of Ê and they
leave the solution space of the Wheeler-DeWitt equation invariant. They are
also symplectic transformations in (V, ω).

2. Definitions and notations

Greek indices α, β range from 0 to n, Latin i, j, k from 1 to n and we
stipulate 0 ≤ a, b ≤ n but 1 ≤ a′, b′ ≤ n. Barred indices ā refer to the Lie
algebra g, 1 ≤ ā ≤ n0 = dim g.
γāb̄ is the Cartan-Killing metric.
The Dirac matrices are denoted by γa and they satisfy

(2.1) γaγb + γbγa = 2ηabI,

where ηab is the Minkowski metric with signature (−,+, . . . ,+). γ0 is anti-

hermitian and γa
′

Hermitian.
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The indices a, b are always raised or lowered with the help of the Minkowski
metric, Greek indices with the help of the spacetime metric ḡαβ .

The γa act in

(2.2) C2
n+1
2 ,

if n is odd and in

(2.3) C2
n
2 ⊕ C2

n
2 ,

if n is even. In both cases we simply refer to these spaces as

(2.4) Cn1 ,

i.e., the spinor index A has range 1 ≤ A ≤ n1.
The colour index I has range 1 ≤ I ≤ n2 and hence a spinor field ψIA has

values in

(2.5) Cn1 ⊗ Cn2 .

Finally, a Hermitian form 〈·, ·〉 is antihermitian in the first argument.

3. Spinor fields

The Lagrangian of the spinor field is stated in (1.1). Here, ψ = (ψIA) is a
multiplet of spinors with spin 1

2 ; A is the spinor index, 1 ≤ A ≤ n1, and I,
1 ≤ I ≤ n2, the colour index. We shall also lower or raise the index I with
the help of the Euclidean metric (δIJ).

Let Γµ be the spinor connection

(3.1) Γµ = 1
4ω

b
µ aγbγ

a,

then the covariant derivative Dµψ is defined by

(3.2) Dµψ = ψ,µ + Γµψ +Aµψ.

Let (ebλ) be a n-bein such that

(3.3) ḡµλ = ηabe
a
µe
b
λ,

where (ηab) is the Minkowski metric, and let (Eµa ) be its inverse

(3.4) Eµa = ηabḡ
µλebλ,

cf. [9, p. 246].
The covariant derivative of Eαa with respect to (ḡαβ) is then given by

(3.5) Eαa;µ = Eαa,µ + Γ̄αµβE
β
a

and

(3.6) ω b
µ a = Eλa;µe

b
λ = −Eλa ebλ;µ,

hence the spin connection Γµ can be expressed as

(3.7) Γµ = 1
4ω

b
µ aγbγ

a = 1
4E

λ
a;µe

b
λγbγ

a = − 1
4E

λ
a e
b
λ;µγbγ

a.

We shall first show:
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3.1. Lemma. Let ḡαβ be a fixed spacetime metric that is split by the time
function x0, then there exists an orthonormal frame (eaλ) such that

(3.8) e0
k = 0, 1 ≤ k ≤ n,

and

(3.9) ea
′

k;0 = ea
′

,0 − Γ̄λk0e
a′

λ = 0

for all 1 ≤ a′ ≤ n and 1 ≤ k ≤ n.

Proof. Assume that

(3.10) ḡ00 = −w2,

then define the conformal metric

(3.11) g̃αβ = w−2ḡαβ .

The curves

(3.12) (γα(t, x)) = (t, xi), x ∈ S0,

are then geodesics with respect to g̃αβ . Let (êa
′

λ ), 1 ≤ a′ ≤ n, be an orthonor-
mal frame in T 0,1(S0) ↪→ T 0,1(N) such that

(3.13) êa
′

0 = 0 ∀ 1 ≤ a′ ≤ n.

The êa
′

depend on x = (xi) ∈ S0. Let (ẽa
′

λ )(t, x) be the solutions of the flow
equations

(3.14)

D

dt
ẽa

′

λ = 0,

ẽa
′

λ (0, x) = êa
′

λ (x),

i.e., we parallel transport êa
′

along the geodesics. Setting

(3.15) (ẽ0
λ) = (1, 0, . . . , 0)

the (ẽaλ) are then an orthonormal frame of 1-forms in (N, g̃αβ) such that the
ẽa satisfy

(3.16) ẽaλ:0 = 0 ∀ 0 ≤ a ≤ n,

where we indicate covariant differentiation with respect to g̃αβ by a colon.
Define eaλ by

(3.17) eaλ = wẽaλ,

then the eaλ are orthonormal frames in (N, ḡαβ). The Christoffel symbols Γ̄ γαβ
resp. Γ̃ γαβ are related by the formula

(3.18) Γ̄ γαβ = Γ̃ γαβ − w
−1wαδ

γ
β + w−1wβδ

γ
α − w−1w̌γ g̃αβ ,

where

(3.19) w̌γ = g̃γλwλ.
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In view of (3.16) we then infer

(3.20) 0 = ẽa
′

j:0 = ˙̃ea
′

j − Γ̃ k0j ẽa
′

k

and we deduce further

(3.21)

ea
′

j;0 = ẇẽa
′

j + w ˙̃ea
′

j − Γ̄ k0jwẽa
′

k

= ẇẽa
′

j + Γ̃ k0jwẽ
a′

k − Γ̄ k0jwẽa
′

k

= 0

because of (3.18). �

Subsequently we shall always use these particular orthonormal frames.
We are now able to simplify the expressions for the spin connections

(3.22) Γµ = − 1
4E

λ
a e
b
λ;µγaγ

b.

We have

(3.23)

4Γ0 = −Eλa ebλ;0γbγ
a

= −Eλa e0
λ;0γ0γ

a − Eλa eb
′

λ;0γb′γ
a

= −E0
0e

0
0;0γ0γ

0 − Eia′e0
i;0γ0γ

a′ − E0
0e
b′

0;0γb′γ
0 − Eia′eb

′

i;0γb′γ
a′

= −Eia′e0
i;0γ0γ

a′ − E0
0e
b′

0;0γb′γ
0

in view of Lemma 3.1 and the fact that

(3.24) e0
0;0 = 0.

The matrices γ0γ
a′ and γb′γ

0 are hermitian, since γ0 is antihermitean, γa
′

hermitean and there holds

(3.25) γ0γ
a′ = −γa

′
γ0.

Hence, the quadratic form

(3.26) ψ̃E0
aγ

aΓ0ψ = −iE0
0 ψ̄Γ0ψ

is imaginary and will be eliminated by adding its complex conjugate. Γ0 can
therefore be ignored which we shall indicate by writing

(3.27) Γ0 ' 0.

A similar notation should apply to other terms that will be cancelled when
adding the complex conjugates.

Let us consider Γk:

(3.28)

4Γk = −Eλa ebλ;kγbγ
a

= −Eλa e0
λ;kγ0γ

a − Eλa eb
′

λ;kγb′γ
a

= −E0
0e

0
0;kγ0γ

0 − Eia′e0
i;kγ0γ

a′ − E0
0e
b′

0;kγb′γ
0 − Eia′eb

′

i;kγb′γ
a′ .

The first term on the right-hand side vanishes, since

(3.29) e0
0;k = wk − Γ̄ 0

0kw = 0.
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Furthermore, there holds

(3.30) e0
i;k = −Γ̄ 0

ikw = − 1
2 ġikw

−1

and

(3.31) eb
′

0;k = −Γ̄ j0ke
b′

j = − 1
2g
lj ġkle

b′

j ,

yielding

(3.32)
4Γk = 1

2 ġikw
−1Eia′γ0γ

a′ + 1
2w
−1glj ġkle

b′

i γb′γ
0 − Eia′eb

′

i;kγb′γ
a′

= w−1ġikE
i
a′γ0γ

a′ − Eia′eb
′

i;kγb′γ
a′ ,

since

(3.33) γ0γ
a′ = −γa

′
γ0.

The first term on the right-hand side of (3.32) has to be eliminated because
of the presence of ġik. To achieve this fix a Riemannian metric ρij = ρij(x) ∈
T 0,2(S0) and define the function ϕ by

(3.34) ϕ =

√
det gij
det ρij

and the spinors χ = (χiA) by

(3.35) χ =
√
ϕψ,

then

(3.36) χ̇ =
√
ϕψ̇ + 1

4g
ij ġijχ

and

(3.37) χ,k = 1
2ϕkϕ

−1/2χ+
√
ϕψ,k.

Looking at the real part of the quadratic form

(3.38) iχ̃Eka′γ
a′χ,k

we deduce that

(3.39) χ,k '
√
ϕψ,k.

Moreover, we infer

(3.40)

iψ̃Ekc′γ
c′Γkψ = iψ̄Ekc′γ

0γc
′
Γkψ

= 1
4 iψ̄E

k
c′E

j
a′w
−1ġjkγ

0γc
′
γ0γ

a′ψ

− 1
4 iψ̄E

k
c′E

j
a′e

b′

j;kγ
0γc

′
γb′γ

a′ψ.

We now observe that

(3.41) γ0γc
′
γ0γ

a′ = −γ0γ0γ
c′γa

′
= −γc

′
γa

′
,

hence

(3.42) Ekc′E
j
a′γ

0γc
′
γ0γ

a′ = −Ekc′E
j
a′γ

c′γa
′

= −gjk
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and we conclude

(3.43)
iψ̃Eµc γ

cDµψϕ ' −iχ̄χ̇w−1

+ iχ̄Ekc′γ
0γc

′
{χ,k − 1

4E
j
a′e

b′

j;kγb′γ
a′χ+Akχ}

3.2. Remark. The term in the braces is the covariant derivative of χ with
respect to the spin connection Γ̃k

(3.44) Γ̃ b
′

ka′ = 1
4 ω̃

b′

ka′ = − 1
4E

j
a′e

b′

j;kγb′γ
a′

and the Yang-Mills connection (Aµ) satisfying A0 = 0 such that

(3.45) D̃kχ = χ,k + Γ̃kχ+Akχ.

The gauge transformations for both the Yang-Mills connection as well as for
the spin connection do not depend on x0 but only on x ∈ S0. In case of the
Yang-Mills connection this has already been proved in [10, Lemma 2.6] while

the proof for the spin connection Γ̃k will be given in the next section.

Summarizing the preceding results we obtain:

3.3. Lemma. The Dirac Lagrangian can be expressed in the form

(3.46)
LD = i

2 (χ̄I χ̇
I − ˙̄χIχI)w

−1ϕ−1 +miχ̄Iγ
0χIϕ−1

− i
2{χ̄Iγ

0Eka′γ
a′D̃kχ

I − χ̄Iγ0Eka′γ
a′D̃kχI}ϕ−1,

where χ and D̃k are defined in (3.35) resp. (3.45).

4. Quantization of the Lagrangian

We consider the functional

(4.1)

J = α−1
M

∫
Ω̃

(R̄− 2Λ)−
∫
Ω̃

1
4γāb̄ḡ

µρ2 ḡλρ1F āµρ1F
b̄
ρ2λ

−
∫
Ω̃

{ 1
2 ḡ
µλγāb̄Φ

ā
µΦ̄

b̄
λ + V (Φ)}

+

∫
Ω̃

{ 1
2 [ψ̃IE

µ
a γ

a(Dµψ)I + ψ̃IE
µ
a γa(Dµψ)I ] +mψ̃Iψ

I},

where αM is a positive coupling constant and Ω̃ b N .
We use the action principle that, for an arbitrary Ω̃ as above, a solution

(A,Φ, ψ, ḡ) should be a stationary point of the functional with respect to
compact variations. This principle requires no additional surface terms for
the functional.

As we proved in [11] we may only consider metrics ḡαβ that split with
respect to some fixed globally defined time function x0 such that

(4.2) ds̄2 = −w2(dx0)2 + gijdx
idxj

where g(x0, ·) are Riemannian metrics in S0,

(4.3) S0 = {x0 = 0}.
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The first functional on the right-hand side of (4.1) can be written in the form

(4.4) α−1
N

∫ b

a

∫
Ω

{ 1
4G

ij,klġij ġkl +R− 2Λ}wϕ,

where

(4.5) Gij,kl = 1
2{g

ikgjl + gilgjk} − gijgkl

is the DeWitt metric,

(4.6) (gij) = (gij)
−1,

R the scalar curvature of the slices

(4.7) {x0 = t}

with respect to the metric gij(t, ·), and where we also assumed that Ω̃ is a
cylinder

(4.8) Ω̃ = (a, b)×Ω, Ω b S0,

such that Ω̃ ⊂ Uk for some k ∈ N, where the Uk are special coordinate patches
of N such that there exists a local trivialization in Uk with the properties
that there is a fixed Yang-Mills connection

(4.9) Ā = (Āāµ) = fāĀ
ā
µdx

µ

satisfying

(4.10) Āā0 = 0 in Uk,

cf. [10, Lemma 2.5]. We may then assume that the Yang-Mills connections
A = (Aāµ) are of the form

(4.11) Aāµ(t, x) = Āāµ(0, x) + Ãāµ(t, x),

where (Ãāµ) is a tensor, see [10, Section 2].

The Riemannian metrics gij(t, ·) are elements of the bundle T 0,2(S0). De-

note by Ẽ the fiber bundle with base S0 where the fibers F (x) consists of the
Riemannian metrics (gij). We shall consider each fiber to be a Lorentzian
manifold equipped with the DeWitt metric. Each fiber F has dimension

(4.12) dimF =
n(n+ 1)

2
≡ m+ 1.

Let (ξr), 0 ≤ r ≤ m, be coordinates for a local trivialization such that

(4.13) gij(x, ξ
r)

is a local embedding. The DeWitt metric is then expressed as

(4.14) Grs = Gij,klgij,rgkl,s,

where a comma indicates partial differentiation. In the new coordinate sys-
tem the curves

(4.15) t→ gij(t, x)



12 CLAUS GERHARDT

can be written in the form

(4.16) t→ ξr(t, x)

and we infer

(4.17) Gij,klġij ġkl = Grsξ̇
r ξ̇s.

Hence, we can express (4.4) as

(4.18) J =

∫ b

a

∫
Ω

α−1
n { 1

4Grsξ̇
r ξ̇sw−1ϕ+ (R− 2Λ)wϕ},

where we now refrain from writing down the density
√
ρ explicitly, since it

does not depend on (gij) and therefore should not be part of the Legendre
transformation. Here we follow Mackey’s advice in [14, p. 94] to always con-
sider rectangular coordinates when applying canonical quantization, which
can be rephrased that the Hamiltonian has to be a coordinate invariant,
hence no densities are allowed.

Denoting the Lagrangian function in (4.18) by L, we define

(4.19) πr =
∂L

∂ξ̇r
= ϕGrs

1

2αN
ξ̇sw−1

and we obtain for the Hamiltonian function ĤG

(4.20)

ĤG = ξ̇r
∂L

∂ξ̇r
− L

= ϕGrs
( 1

2αN
ξ̇rw−1

)( 1

2αN
ξ̇sw−1

)
wαN − α−1

N (R− 2Λ)ϕw

= ϕ−1GrsπrπswαN − α−1
N (R− 2Λ)ϕw

≡ HGw,

where Grs is the inverse metric. Hence,

(4.21) HG = αNϕ
−1Grsπrπs − α−1

N (R− 2Λ)ϕ

is the Hamiltonian that will enter the Hamilton constraint.
The Yang-Mills Lagrangian can be expressed as

(4.22) LYM = 1
2γāb̄g

ijÃāi,0Ã
b̄
j,0w

−1ϕ− 1
4FijF

ijwϕ.

Let E0 be the adjoint bundle

(4.23) E0 = (S0, g, π,Ad(G))

with base space S0, where the gauge transformations only depend on the
spatial variables x = (xi). Then the mappings t→ Ãāi (t, ·) can be looked at
as curves in T 1,0(E0)⊗ T 0,1(S0), where the fibers of T 1,0(E0)⊗ T 0.1(S0) are
the tensor products

(4.24) g⊗ T 0,1
x (S0), x ∈ S0,

which are vector spaces equipped with metric

(4.25) γāb̄ ⊗ gij .
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For our purposes it is more convenient to consider the fibers to be Riemannian
manifolds endowed with the above metric. Let (ζp), 1 ≤ p ≤ n1n, where
n0 = dim g, be local coordinates and

(4.26) (ζp)→ Ãāi (ζp) ≡ Ã(ζ)

be a local embedding, then the metric has the coefficients

(4.27) Gpq = 〈Ãp, Ãq〉 = γāb̄g
ijÃāi,pÃ

b̄
j,q.

Hence, the Lagrangian LYM in (4.22) can be expressed in the form

(4.28) LYM = 1
2Gpq ζ̇

pζ̇qw−1ϕ− 1
4FijF

ijwϕ

and we deduce

(4.29) π̃p =
∂LYM

∂ζ̇p
= Gpq ζ̇

qw−1ϕ

yielding the Hamilton function

(4.30)

ĤYM = πpζ̇
p − LYM

= 1
2Gpq(ζ̇

pw−1ϕ)(ζ̇qw−1ϕ)wϕ−1 + 1
4FijF

ijwϕ

= 1
2G

pqπ̃pπ̃qwϕ
−1 + 1

4FijF
ijwϕ

≡ HYMw.

Thus, the Hamiltonian that will enter the Hamilton constraint equation is

(4.31) HYM = 1
2ϕ
−1Gpqπ̃pπ̃q + 1

4FijF
ijϕ.

Using the Hamilton gauge as before the Higgs Lagrangian can be written
as

(4.32) LH = 1
2γāb̄Φ

ā
,0Φ

b̄
,0w
−1ϕ− 1

2g
ijγāb̄Φ

ā
i Φ

b̄
jwϕ− V (Φ)wϕ

which we have to use for the Legendre transformation; here, we also assume
without loss of generality that the coefficients of Φ are real without changing
the notation or the indices though the number of components have doubled.
However, later, when we define the fiber bundle, we shall use the correct real
dimensions, i.e., we shall use g×g instead of g. Before applying the Legendre
transformation we again consider the vector space g to be a Riemannian
manifold with metric γāb̄. The representation of Φ in the form (Φā) can be
looked at to be the representation in a local coordinate system (Θā).

Let us define

(4.33) pā =
∂LH

∂Φ̇ā
, Φ̇ā = Φā,0,

then we obtain the Hamiltonian

(4.34)

ĤH = pāΦ̇
ā − LH

= 1
2γāb̄(Φ̇

āw−1ϕ)(Φ̇b̄w−1ϕ)wϕ−1 + 1
2g
ijγāb̄Φ

ā
i Φ

b̄
jwϕ+ V (Φ)wϕ

≡ HHw.
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Thus, the Hamiltonian which will enter the Hamilton constraint is

(4.35) HH = 1
2ϕ
−1γāb̄pāpb̄ + 1

2g
ijγāb̄Φ

ā
i Φ

b̄
jϕ+ V (Φ)ϕ.

The spinorial variables χIA are anticommuting Grassmann variables. They
are elements of a Grassmann algebra with involution, where the involution
corresponds to the complex conjugation and will be denoted by a bar.

The χIA are complex variables and we define its real resp. imaginary parts
as

(4.36) ξIA = 1√
2
(χIA + χ̄IA)

resp.

(4.37) ηIA = 1√
2i

(χIA − χ̄IA).

Then,

(4.38) χIA = 1√
2
(ξIA + iηIA)

and

(4.39) χ̄IA = 1√
2
(ξIA − iηIA).

With these definitions we obtain

(4.40)
i

2
(χ̄I χ̇

I − ¯̇χIχI) =
i

2
(ξAI ξ̇

I
A + ηAI η̇

I
A).

Casalbuoni quantized a Bose-Fermi system in [5, section 4] the results of
which can be applied to spin 1

2 fermions. The Lagrangian in [5] is the same
as the main part our Lagrangian in (3.46) on page 10, and the left derivative
is used in that paper, hence we are using left derivatives as well such that
the conjugate momenta of the odd variables are, e.g.,

(4.41) πAI =
∂L

∂ξ̇IA
= − i

2
ξAI ,

and thus the conclusions in [5] can be applied.
The Lagrangian has been expressed in real variables—at least the impor-

tant part of it—and it follows that the odd variables ξIA, η
I
A satisfy, after

introducing anticommutative Dirac brackets as in [5, equ. (4.11)],

(4.42) {ξAI , ξJB}∗+ = −iδJI δAB ,

(4.43) {ηAI , ηJB}∗+ = −iδJI δAB ,

and

(4.44) {ξAI , ηJB}∗+ = 0,

cf. [5, equ. (4.19)].
In view of (4.38), (4.39) we then derive

(4.45) {χ̄AI , χJB}∗+ = −iδJI δAB .
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Canonical quantization—with h̄ = 1—then requires that the correspond-
ing operators χ̂IA, ˆ̄χBJ satisfy the anticommutative rules

(4.46) [χ̂IA, ˆ̄χBJ ]+ = i{χIA, χ̄BJ }∗+ = δIJδ
B
A

and

(4.47) [ ˆ̄χAI , ˆ̄χBJ ]+ = [χ̂IA, χ̂
J
B ]+ = 0,

cf. [4, equ. (3.10)] and [5, equ. (5.17)].
We shall realize these quantum rules in a suitable Grassmann algebra

which will be equipped with a natural scalar product.
Let gij be an arbitrary but fixed Riemannian metric in S0 and define

N = I × S0 to be the Lorentz manifold endowed with the product metric

(4.48) ds̄2 = −(dx0)2 + gij(x)dxidxj .

Let ea
′

i be an orthonormal frame on S0 and Eia′ its inverse. This orthonormal
frame can be lifted to N by setting

(4.49) ea0 = δa0 ∧ e0
a = δ0

a.

The orthonormal frame eaµ then satisfies the conditions in Lemma 3.1 on
page 7.

Let Γµ be the corresponding spin connection, then

(4.50) Γ0 = 0,

and hence, the spinorial gauge transformations only depend on x ∈ S0 and
not on x0, since any vielbein is supposed to satisfy (4.50).

Now, let χIA be a spinor field in N , define

(4.51) ψIA(x) = χIA(0, x)

and let ψIA(t, x) be the solution of the flow

(4.52)

D

dt
ψIA ≡ E

µ
0Dµψ

I
A = 0,

ψIA(0, x) = ψIA(x).

Then, ψIA is a spinor field in N satisfying

(4.53) ψIA(x0, x) = ψIA(x),

because

(4.54)
0 =

D

dt
ψ = ψ̇ + Γ0ψ +A0ψ

= ψ̇.

In the following we shall only consider spinor fields with this property
calling them spinor fields defined in S0 and we shall mostly use the symbol
χIA = χIA(x). We treat the components χIA as Grassmann variables and
define:
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4.1. Definition. Let χiA be Grassmann variables, then we define

(4.55) P = P(χIA)

to be the space of polynomial functions

(4.56) u = a0 +
∑
k,m

aA1···Am

I1···Ik χI1···IkA1···Am
,

where the coefficients are complex numbers being asymmetric in their indices.
The indices are also supposed to satisfy

(4.57) A1 < · · · < Am ∧ I1 < · · · < Ik.

If the usual summation convention is supposed to be implemented, i.e., if the
stipulation (4.57) is dropped, then

(4.58) u = a0 +
∑
k,m

1

k!m!
aA1···Am

I1···Ik χI1···IkA1···Am
.

However, we prefer to use the representation (4.56) with the implicit under-
standing of (4.57).

4.2. Remark. The vector space P(χIA) is a Grassmann algebra with base
vectors

(4.59) {1, χI1···IkA1···Am
: A1 < · · · < Am ∧ I1 < · · · < Ik},

where 1 is the symbol for the unit element. If we define

(4.60) χ̄AI =
∂

∂χIA

to be the left derivative and

(4.61) ū = ā0 +
∑
k,m

āI1···IkA1···Am
χ̄A1···Am

I1···Ik ,

where the indices of the coefficients are raised or lowered with the help of the
metrics δAB resp. δIK , then ū is a linear operator in P.

Stipulating that the base vectors in (4.59) are orthonormal we can define
a Hermitian scalar product in P which is antihermitian in the first argument.

Any function u ∈ P can also be viewed as a linear operator by defining

(4.62) uv ≡ u(v) = uv,

where the right-hand side is the Grassmann product.

4.3. Lemma. The operators χIA and χ̄AI satisfy the anticommutation rules

(4.63) [χ̄AI , χ
K
B ]+ = δABδ

K
I

and in addition

(4.64) χ̄AI = (χIA)∗,

where the star indicates the adjoint operator.
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The proof is elementary.
Spinorial or Yang-Mills gauge transformations then induce unitary trans-

formations in P.
The following lemma is worth noting:

4.4. Lemma. Let 〈·, ·〉 be a Hermitian scalar product in P which is anti-
hermitian in the first argument and satisfies (4.64), or equivalently,

(4.65)
( ∂

∂χIA

)∗
= χIA

as well as

(4.66) 〈1,1〉 = 1,

then the base vectors in (4.59) are orthonormal, hence it is uniquely deter-
mined.

The proof is an easy exercise.
After having realized the quantization rules (4.46) on page 15 in the Grass-

mann algebra P, let us look at the spinorial Hamilton function and its cor-
responding Hamilton operator after quantization.

From Lemma 3.3 on page 10 we deduce that the spinorial Hamilton func-
tion is equal to

(4.67)

ĤD = i
2{χ̄Iγ

0Eka′γ
a′D̃kχ

I − χ̄Iγ0Eka′γ
a′D̃kχI}w

−miχ̄Iγ0χIw

≡ HDw.

HD is the Hamilton function which has to be quantized. By applying the
definitions in (4.60), (4.62) and the results in Lemma 4.3 it is obvious that
HD can looked at as a self-adjoint operator in the finite dimensional Hilbert
space P without changing its notation.

Defining HD to be an element of L(P,P) is fairly straight-forward—only
the transformation of the covariant derivative, or more precisely, of the partial
derivative

(4.68)
∂

∂xk
χIA

requires some consideration.
For simplicity let us drop the spinor index A such that we only consider

the Grassmann variables χI . To express their partial derivatives let ψK be
Grassmann variables which do not depend on x, then

(4.69) χI = aIkψ
K ,

where aIK = aIK(x). Let

(4.70) (âKI ) = (aIK)−1,
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then

(4.71)
χI,k = aIK,kψ

K

= aIK,kâ
K
Mχ

M

and we immediately infer how χI,k can be transformed to be a linear operator
in P.

Combining the four Hamilton functions in (4.20), (4.31), (4.35) and (4.67)
the Hamilton constraint has the form

(4.72)
H = HG +HYM +HH +HD = 0

≡ H̃ +HD,

where

(4.73) H = H(ξr, ζp,Θā, Θ̃b̄, πr, π̃q, pc̄, p̃d̄, χ
I
A, χ̄

B
J ).

Here, (ξr, ζp,Θā, Θ̃b̄) are local sections of a bundle E with base space S0 and
fibers

(4.74) F(x) = F (x)× (g⊗ T 0,1
x (S0))× g× g.

Applying canonical quantization by setting ~ = 1 we replace

(4.75) πr = πr(x)→ 1

i

∂

∂ξr(x)

and similarly for the other conjugate momenta π̃q, pc̄, and p̃d̄, while the
conjugate momentum χ̄AI is being replaced by the left derivative with respect
to the Grassmann variable χIA as described previously.

The Hamiltonian H̃ will be transformed to a normally hyperbolic differ-
ential operator in the bundle E acting only in the fibers where the fibers in
(4.74) are equipped with the Lorentzian metric

(4.76) G = ϕdiag(α−1
N Grs, 2Gpq, 2γāb̄, 2γc̄d̄).

The fibers are then globally hyperbolic spacetimes as we proved in [10, The-
orem 4.1].

Let Ê be the vector bundle with base space E and fiber

(4.77) F̂ = T 0,2
x, symm(S0)× (g⊗ T 0,1

x (S0))× g× P,
where P is the complex Hilbert space discussed above. Writing the elements
u of the fiber in coordinates we obtain

(4.78) u = (fij , A
ā
m, Φ

b̄, w),

where w ∈ P, the components Φb are complex, while fij and Aam are real.

We consider F̂ to be a real vector space and define the real scalar product

(4.79)
〈u, ũ〉 = (ρikρjl + ρilρjk)fij f̃kl + γāb̄ρ

pqAāpÃ
b̄
q

+ Re(γāb̄Φ
ā ¯̃Φb̄) + Re〈w, w̃〉,

where ρij is the fixed metric in S0 which is used to define ϕ. ρij should
be chosen such that it has an interesting group of isometries, since these
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isometries and the gauge transformations act naturally on the elements of
the fiber such that they are isometries with respect to the scalar product
above.

After quantization the Hamilton function H = H̃ + HD is replaced by a
normally hyperbolic differential operator, also denoted by H, which can be
looked at as a map from the sections C∞c (E, Ê) into itself. The linear map
HD is part of the zero order term of H. HD can be trivially extended to act
in the fibers.

The Wheeler-DeWitt equation has the form

(4.80) Hu = 0

with u ∈ C∞(E, Ê).

4.5. Lemma. The isometries of ρij and the Yang-Mills and spin gauge
transformations commute with H, hence the kernel of H is invariant under
these actions.

Proof. It suffices to prove the claim for spin gauge transformations. Let Φ be
such a transformation, then Φ defines a new variable ψA in the Graßmann
algebra P—note that we only consider one index to simplify the notation.
When we look at χA to be a vector, then

(4.81) ψA = Φ(χA)

and Φ is unitary for these particular basis vectors. We extend Φ to the other
basis vectors by setting

(4.82) Φ(1) = Φ(1)

and

(4.83) Φ(χAχB) = Φ(χA)Φ(χB)

and similarly in case of more factors. Hence, we obtain

(4.84) Φ(χAχB) = ψAψB .

Φ is then unitary in P and we obtain an orthonormal basis by simply replacing
the χ’s by the ψ’s.

Now, to prove that Φ commutes with the Hamiltonian H it suffices to only
consider the Dirac Hamiltonian HD and to prove that Φ commutes with HD.
HD is an invariant with respect to gauge transformations, i.e.

(4.85) Φ(HD) = HD.

Let us prove the commutation claim only in case of the base vectors

(4.86) χAχB ,
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then

(4.87)

HDΦ(χAχB) = HDψAψB

= Φ(HD)ψAψB

= Φ(HDχAχB)

because of the symmetry with respect to the variables χA and ψA, proving
the lemma. �

4.6. Remark. Since P is a Graßmann algebra with conjugation we also
have

(4.88) Φ(χA) = Φ(χ̄A)

as one easily checks by using the fact that

(4.89) χ̄A = χ∗A,

cf. (4.64).

Let each fiber F(x) of E be equipped with the Lorentz metric Gab in
(4.76), then there exists a natural measure on E and we can define a scalar

product in C∞c (E, Ê) by setting

(4.90) 〈u, v〉Ê =

∫
S0

∫
F(x)

〈u, v〉,

where 〈u, v〉 is the scalar product in (4.79). With respect to this scalar
product H is symmetric, i.e.,

(4.91) 〈Hu, v〉Ê = 〈u,Hv〉Ê ∀u, v ∈ C∞c (E, Ê),

since Hu can be expressed as

(4.92) Hu = −∆u+ cu.

The self-adjoint operator HD is part of the coefficient c. Let us emphazise
that, apart from HD, H is acting diagonally on each component of u.

5. The method of second quantization

In the previous sections we used canonical quantization to quantize a clas-
sical system leading to the Wheeler-DeWitt equation which can be solved
subject to Cauchy conditions. Indeed the solution space will be infinite di-
mensional.

To describe the existence results and the necessary techniques we first need
a definition:

5.1. Definition. A Cauchy hypersurface in the bundle E is a subbundleM
with same base space S0 such that each fiber M(x) is a Cauchy hypersurface
in the corresponding fiber F(x) of E.

The non-homogeneous Cauchy problems for the Hamilton operator H are
then uniquely solvable:
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5.2. Theorem. Let M ⊂ E be a Cauchy hypersurface with future directed
normal ν, H the Hamilton operator, u0, u1 resp. f sections in C∞c (M, Ê)

resp. C∞c (E, Ê), then the Cauchy problem

(5.1)

Hu = f,

u|M = u0,

uαν
α
|M = u1,

has a unique solution u ∈ C∞(E, Ê) such that

(5.2) suppu ⊂ JE(K) =
⋃
x∈S0

JF (x)(K(x)),

where

(5.3) K = suppu0 ∪ suppu1 ∪ supp f

and

(5.4) K(x) = K ∩ π−1(x), x ∈ S0,

π is the projection from E to S0. Furthermore,

(5.5) JE(K) = JE+ (K) ∪ JE− (K)

and

(5.6) JE± (K) =
⋃
x∈S0

J
F (x)
± (K(x));

these are the points that can be reached by causal curves starting in K. More-
over, u depends continuously on the data (u0, u1, f) with corresponding es-
timates, namely, for any compact sets K,K1 ⊂ N and K0 ⊂ M and any
m ∈ N there exists m′ ∈ N and a constant c = c(m,m′,K,K0,K1) such that

(5.7) |u|m,K ≤ c{|u0|m′,K0
+ |u1|m′,K0

+ |f |m′,K1
},

where u is a solution of the Cauchy problem and u0, u1 and f have support
in the respective sets K0 and K1.

A proof is given in [11, Theorem 5.4] based on the results in [2, Theo-
rem 3.2.11, Theorem 3.2.12]. Our former proof only considered functions in

C∞(E,C) but it is also valid in the more general setting when u ∈ C∞(E, Ê).

5.3. Remark. The solutions u in the preceding theorem do not have com-
pact support in E, but from (5.2) we deduce that their support is space-
like compact, since the fibers are globally hyperbolic. We use the notation
C∞sc (E, Ê) for the set of all such u ∈ C∞(E, Ê) for which there exists a
compact subset K ⊂ E such that

(5.8) suppu ⊂ JE(K),

cf. the corresponding definition in [2, Definition 3.4.5]. Sections with spacelike
compact support have the important property that the intersection of suppu
with any Cauchy hypersurface is compact, cf. [2, Corollary A.5.4].
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The bosonic and fermionic components in the bundle Ê have been treated
equally so far. However, in order to achieve a second quantization we have
to define a CCR representation for the bosonic and a CAR representation for
the fermionic part. Therefore, let us split the fiber F̂ into a direct sum

(5.9) F̂ = F̂bose ⊕ F̂ferm

which is also an orthogonal sum for the scalar product in (4.79) on page 18.

The bundle Ê splits accordingly

(5.10) Ê = Êbose ⊕ Êferm ≡ Ê1 ⊕ Ê2,

where all bundles have the common base space E. The bundles Êi are invari-
ant under the Hamilton operator H, i.e., a solution u of the Wheeler-DeWitt
equation can be written in the form

(5.11) u = u1 ⊕ u2,

where each ui ∈ C∞sd (E, Êi) satisfies the equation

(5.12) Hui = 0.

From Theorem 5.2 we deduce that there exist the advanced and retarded
Green distributions G+ and G− for H such that

(5.13) G± : C∞c (E, Ê)→ C∞(E, Ê)

(5.14) H ◦G± = G± ◦H |C∞
c (E,Ê)

= idC∞
c (E,Ê)

(5.15) supp (G+u) ⊂ JE+ (suppu) ∀u ∈ C∞c (E, Ê)

and

(5.16) supp (G−u) ⊂ JE− (suppu) ∀u ∈ C∞c (E, Ê).

We note that the Dirac Hamiltonian HD only acts in the fermionic case
non-trivially. In Ê1 there holds

(5.17) HD = 0

by definition.
We shall first construct a CCR representation or a Weyl system for Ê1.

For simplicity we refer to sections in C∞(E, Ê1) by using the symbols u, v,
etc. dropping the index 1.

There are two ways to construct a Weyl system given a formally self-
adjoint normally hyperbolic operator in a globally hyperbolic spacetime or,
in our case, in the bundle E. One possibility is to define a symplectic vector
space

(5.18) V = C∞c (E, Ê1)/N(G),

where G is the Green’s distribution

(5.19) G = G+ −G−.
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Since

(5.20) G∗ = −G

the bilinear form

(5.21) ω =

∫
S0

∫
F
〈u,Gv〉 u, v ∈ V

is skew-symmetric, non-degenerate by definition and hence symplectic, and
then there is a canonical way to construct a corresponding Weyl system.

The second method is to use a Cauchy hypersurface to define a quantum
field in Fock space. Let us start with this method keeping in mind that our
bundle is a real vector bundle.

First we need the following lemma which was proved in [11, Lemma 6.1]
when u, v are test functions but the proof is also valid in the more general case
when u, v are sections with values in a vector space with a scalar product.

5.4. Lemma. Let M be a Cauchy hypersurface in E, then

(5.22)

∫
S0

∫
F
〈u,Gv〉 =

∫
S0

∫
M

{〈Dν(Gu), Gv〉 − 〈Gu,Dν(Gv)〉}

for all u, v ∈ C∞c (E, Ê1), where ν is the future normal to M and the scalar

product is the standard scalar product in Ê1.

We now define the complex Hilbert space HM which is used to construct
the symmetric Fock space, namely, we set

(5.23) HM = L2(M, Ê1)⊗ C

to be the complexification of the real vector space L2(M, Ê1) with the com-
plexified scalar product

(5.24) 〈u, v〉M =

∫
S0

∫
M

〈u, v〉C,

where 〈·, ·〉C is the complexification of 〈·, ·〉 in F̂1 ⊗ C.
We denote the symmetric Fock space by F(HM ). Let Θ be the corre-

sponding Segal field. Since G∗ = −G we deduce from (5.15), (5.16) and
Remark 5.3

(5.25) G∗u|M ∈ C
∞
c (M, Ê1) ⊂ HM .

We can therefore define

(5.26) ΦM (u) = Θ(i(G∗u)|M −Dν(G∗u)|M ).

From the proof of [2, Lemma 4.6.8] we conclude that the right-hand side of
(5.26) is an essentially self-adjoint operator in F(HM ). We therefore call the

map ΦM from C∞c (E, Ê1) to the set of self-adjoint operators in F(HM ) a
quantum field for H defined by M .
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5.5. Lemma. The quantum field ΦM satisfies the equation

(5.27) HΦM = 0

in the distributional sense, i.e.,

(5.28) 〈HΦM , u〉 = 〈ΦM , Hu〉 = ΦM (Hu) = 0 ∀u ∈ C∞c (E, Ê1).

Proof. In view of (5.14) there holds

(5.29) G∗Hu = 0 ∀u ∈ C∞c (E, Ê1).

�

With the help of the quantum field ΦM we shall construct a Weyl system
and hence a CCR representation of the symplectic vector space (V, ω) which
we defined in (5.18) and (5.21).

From (5.26) we conclude the commutator relation

(5.30) [ΦM (u), ΦM (v)] = i Im〈iG∗u−Dν(G∗u), iG∗v −Dν(G∗v)〉MI,

for all u, v ∈ C∞c (E, Ê1), cf. [3, Proposition 5.2.3], where both sides are
defined in the algebraic Fock space Falg(HM ).

On the other hand

(5.31)

Im〈iG∗u−Dν(G∗u), iG∗v −Dν(G∗v)〉M
= − Im〈iG∗u,Dν(G∗v)〉M − Im〈Dν(G∗u), iG∗v〉M

=

∫
S0

∫
M

{〈G∗u,Dν(G∗v)〉 − 〈Dν(G∗u), G∗v〉}

=

∫
S0

∫
F
〈u,Gv〉

in view of (5.20) and (5.22).
As a corollary we conclude

(5.32) [ΦM (u), ΦM (v)] = i

∫
S0

∫
M

〈u,Gv〉I ∀u, v ∈ C∞c (E, Ê1).

From [3, Proposition 5.2.3] and (5.31) we immediately infer

5.6. Theorem. Let (V, ω) be the symplectic vector space in (5.18) and
(5.21) and denote by [u] the equivalence classes in V , then

(5.33) W ([u]) = eiΦM (u)

defines a Weyl system for (V, ω), where ΦM (u) is now supposed to be the
closure of ΦM (u) in F(HM ), i.e., ΦM (u) is a self-adjoint operator. The Weyl
system generates a C∗-algebra with unit which we call a CCR representation
of (V, ω).
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5.7. Remark. Since all CCR representations of (V, ω) are ∗-isomorphic,
where the isomorphism maps Weyl systems to Weyl systems, cf. [3, Theorem
5.2.8], this especially applies to the CCR representations corresponding to
different Cauchy hypersurfaces M and M ′, i.e., there exists a ∗-isomorphism
T such that

(5.34) T (eiΦM (u)) = eiΦM′ (u) ∀ [u] ∈ V.

5.8. Lemma. The transformations A in Lemma 4.5 on page 19 are also
symplectic transformations for the symplectic form ω defined in (5.21), i.e.,

(5.35) ω(u, v) = ω(Au,Av) ∀u, v ∈ V.

Proof. Let F+, F− be the fundamental solutions of the hyperbolic operator
H, where we suppress the dependence on a base point. Since A commutes
with H it follows immediately from the definition of F± that A also commutes
with F± and hence with G+, G− and with G. The result is then due to the
fact that A is also an isometry for the scalar product in (4.79) on page 18. �

Let us conclude this section with the following important theorem:

5.9. Theorem. Let H and G be as above and define

(5.36) N(H) = {u ∈ C∞sc (E, Ê) : Hu = 0 },

then

(5.37) N(H) = R(G)

and

(5.38) N(G) = R(H),

where R(G) resp. R(H) are the images of C∞c (E, Ê) under the respective
maps.

The proof of this theorem is an adaption of the proof of the corresponding
result in [2, Theorem 3.4.7] when E is not a bundle but a globally hyperbolic
manifold.

6. The CAR representation

Let us now consider the fermionic bundle Ê2. Its fibers are the Graßmann
algebra P which is also a complex Hilbert space with hermitian form

(6.1) 〈u, v〉 = 〈u, v〉P
We fix a Cauchy hypersurface M ⊂ E, which is a subbundle and define

the complex Hilbert space

(6.2) H̃ = H̃M = L2(M,M̂ × M̂),
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where M̂ is the corresponding subbundle in Ê2. For elements u = (u1, u2)

and v = (v1, v2) in H̃M the hermitian form is defined by

(6.3) 〈u, v〉 = 〈u, v〉H̃M
=

∫
M

(〈u1, v1〉P + 〈u2, v2〉P).

Let Fferm(H) be the Fermi Fock space generated by H̃ and let a(u) resp.
a∗(u) be the corresponding annihilation resp. creation operators. These op-
erators satisfy the anti-commutation rules

(6.4)
{a(u), a(v)}+ = 0 ∀u, v ∈ H̃M
{a∗(u), a∗(v)}+ = 0 ∀u, v ∈ H̃M

and

(6.5) {a(u), a∗(v)}+ = 〈u, v〉 id ∀u, v ∈ H̃M .

A CAR relation is a triple {H,A(H), b}, where H is a complex Hilbert space,
A(H) a unital C∗-algebra and b a complex antilinear map from H to A(H)
such that its values satisfy the anti-commutation rules (6.4) and (6.5).

We define H to be the Hilbert space generated by

(6.6) { (Gu|M , DνGu|M ) : u ∈ C∞c (E, Ê2) } ⊂ L2(M,M̂ × M̂),

where ν is the future directed normal to M , and b by

(6.7) b(Gu|M ) = a(Gu|M ),

where, by abusing the notation, we identified

(6.8) Gu|M ≡ (Gu|M , DνGu|M ).

A(H) is the C∗-algebra generated by the elements

(6.9) {b(Gu|M , b
∗(Gu|M ), id} u ∈ C∞c (E, Ê2).

The map

(6.10) u ∈ C∞c (E, Ê2)→ b(Gu|M ),

also denoted by b, such that

(6.11) b(u) = b(Gu|M )

is a distribution.

6.1. Lemma. The map b is an antilinear distribution in C∞c (E, Ê2), or a

distribution if we regard C∞c (E, Ê2) as a real vector space. Moreover, b is a
weak solution of the fermionic Wheeler-DeWitt equation

(6.12) Hb = 0.
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Proof. Let us first prove that b is a distribution. We know that

(6.13) Gu|M ∧ DνGu|M

have compact support, even uniformly compact support if suppu is contained
in a compact K ⊂ E. This statement is also valid for

(6.14) G+u|M ∧ G−u|M

and the corresponding normal derivatives. G+u satisfies the hyperbolic equa-
tion

(6.15) HG+u = u

with vanishing Cauchy conditions on a suitable Cauchy hypersurface, hence,
for any compact subsets K,K ′ ⊂ E there exists an integer m ∈ N and a
constant c such that

(6.16) ‖G+u|M ‖K′ + ‖DνG+u|M ‖K′ ≤ c|u|m,K ∀u ∈ DK(E, Ê2),

where DK is the space of u’s with support in K.
The same result is also valid for G−u and hence for

(6.17) Gu = G+u−G−u.

This proves that b is a distribution.
By the definition of weak derivatives of a distribution we have

(6.18) 〈Hb, u〉 = b(Hu) = b(GHu|M ) = b(0) = 0,

since

(6.19) GHu = 0 ∀u ∈ C∞c (E, Ê2).

The corresponding quantum field Ψ is defined by

(6.20) Ψ(u) =
1√
2

(b(u) + b∗(u)) ∀u ∈ C∞c (E, Ê2).

Ψ(u) is self-adjoint and a weak solution of the fermionic Wheeler-DeWitt
equation. It satisfies the anti-commutation rules

(6.21) {Ψ(u),Ψ(v)}+ = Re〈Gu|M , Gv|M 〉M

as one easily checks.
The full quantum field Φ̂ for the solutions of the Wheeler-DeWitt equation

is defined by

(6.22) Φ̂ = (Φ,Ψ).

�
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7. The Haag-Kastler axioms

Dimock generalized in [7] the Haag-Kastler axioms for local observables
in Minkowski space by considering local observables in a general globally
hyperbolic spacetime. Dimock’s ideas can also be applied in the present
situation. We first look at the bosonic case.

7.1. Definition. Let ∅ 6= Ω ⊂ E be an open relatively compact set and
M a Cauchy hypersurface in E, then we define AM (Ω) to be the C∗-algebra
generated by

(7.1) { eiΦM (u) : u ∈ C∞c (Ω, Ê1) }.
We also define AM to be the C∗-algebra generated by

(7.2) { eiΦM (u) : u ∈ C∞c (E, Ê1) }.
Finally, we define

(7.3) Λ = {Ω ⊂ E : ∅ 6= Ω ∧ Ω open and relatively compact }.

7.2. Remark. Let M , M ′ be two Cauchy hypersurfaces in E and

(7.4) T : AM → AM ′

the ∗-isomorphism in Remark 5.7 on page 25, then

(7.5) T (AM (Ω)) = AM ′(Ω) ∀Ω ∈ Λ.

The collection

(7.6) {AM (Ω : Ω ∈ Λ }
forms a net of subalgebras of AM as defined in [12, Definition 2].

Dimock considered these nets of local algebras in case when E is a glob-
ally hyperbolic spacetime and listed five axioms satisfied by them. Four of
the axioms are also valid in the present situation and will be described sub-
sequently. The fifth, the so-called covariance axiom, is a bit more difficult
to translate. The bundles and the operators are certainly covariant with
respect to coordinate and gauge transformations, but the covariance axiom
postulates that an isometry of the underlying spacetime should induce an
isomorphism of the local algebras. At the moment we do not know how to
translate this axiom.

We shall now list the four axioms for a fixed Cauchy hypersurface M ⊂ E.

7.3. Axiom 1 The family {AM (Ω : Ω ∈ Λ } forms a net of local observ-
ables, i.e.,

(7.7) Ω ⊂ Ω′ =⇒ AΩ ⊂ AΩ′

and AM is the closure of

(7.8)
⋃
Ω∈Λ
AM (Ω).
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This axiom is certainly satisfied as well as

7.4. Axiom 2 (Primitivity) AM is primitive, i.e., it has a faithful irre-
ducible representation.

7.5. Axiom 3 (First causality) If Ω is spacelike separated from Ω′, then

(7.9) [AM (Ω),AM (Ω′)] = 0.

Spacelike separated means that there is no causal curve joining a point in Ω
to a point in Ω′.

This axiom is also satisfied since we deduce from (5.15), (5.16) on page 22,
Theorem 5.6 on page 24 and the properties of a Weyl system

(7.10) W ([u])W ([v]) = W ([u] + [v]) = W ([v])W ([u])

for all (u, v) ∈ C∞c (Ω, Ê1)× C∞c (Ω′, Ê1).

7.6. Axiom 4 (Second causality) If Ω is causally dependent on Ω′, then

(7.11) AM (Ω) ⊂ AM (Ω′).

Ω is said to be causally dependent on Ω′ if there exists a Cauchy hyper-
surface M ′ such that every endless causal curve through p ∈ Ω intersects
M ′ ∩Ω′. Hence, if u ∈ C∞c (Ω, Ê), then

(7.12) supp(Gu) ∩M ′ ⊂ JE(suppu) ∩M ′ ⊂ Ω′.

From the arguments in [7, p. 226] we then deduce that there exists v ∈
C∞c (Ω′) such that

(7.13) Gu = Gv

and we conclude

(7.14) ΦM (u) = ΦM (v)

and therefore

(7.15) AM (Ω) ⊂ AM (Ω′).

Dimock only considered the Klein-Gordon operator but his arguments are
valid for any self-adjoint normally hyperbolic operator.

In the fermionic case the four axioms are also valid, where in Axiom 3
the commutation brackets have to be replaced the anti-commutation braces.
The proofs are almost identical. In case of Axiom 3 we observe that

(7.16) {Ψ(u),Ψ(v)}+ = Re〈Gu|M , Gv|+〉M = 0,

if u ∈ C∞c (Ω, Ê2) and v ∈ C∞c (Ω′, Ê2), while in the other cases the proofs
are literally identical.
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