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Abstract. We apply quantum statistics to our quantized versions of

Schwarzschild-AdS and Kerr-AdS black holes and also to the quantized
globally hyperbolic spacetimes having an asymptotically Euclidean

Cauchy hypersurface by first proving, for the temporal Hamiltonian

H0, that e−βH0 , β > 0, is of trace class and then, that this result is
also valid for the spatial Hamiltonian H1, which has the same eigenval-

ues but with larger multiplicities. Since the lowest eigenvalue is strictly

positive the extension of e−βH1 to the corresponding symmetric Fock
space is also of trace class and we are thus able to define a partition

function Z, the operator density ρ, the entropy S, and the average

energy E. We prove that S and E tend to infinity if the cosmologi-
cal constant Λ tends to 0 and vanish if |Λ| tends to infinity. We also

conjecture that E is the source of the dark matter and that the dark

energy density is a multiple of the eigenvalue of ρ with respect to the
vacuum vector which is Z−1.
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1. Introduction

In three recent papers we applied our model of quantum gravity to a
globally hyperbolic spacetime with an asymptotically Euclidean Cauchy hy-
persurface [5] and to a Schwarzschild-AdS [4] resp. Kerr-AdS black hole [6].
In all three cases the quantized model had the same structure, namely, it
consisted of special solutions to a wave equation

(1.1)
1

32

n2

n− 1
ü− (n− 1)t2−

4
n∆u− n

2
t2−

4
nRu+ nt2Λu = 0,

in a quantum spacetime

(1.2) N = R+ × S0,

where S0 is a n-dimensional, n ≥ 3, Cauchy hypersurface of the original
spacetime. The Laplacian and the scalar curvature correspond to the metric
σij in S0, cf. [3, Theorem 6.9], where we derived this wave equation after
a canonical quantization process. The special solutions are a sequence of
smooth functions which are a product of temporal and spatial eigenfunctions,
where the spatial eigenfunctions are eigendistributions.

In case of the globally hyperbolic spacetime with an asymptotically Eu-
clidean Cauchy hypersurface the solutions to the wave equation can be ex-
pressed in the form

(1.3) uij = wivij , i ∈ N, 1 ≤ j ≤ m ≤ ∞,
where the wi are the eigenfunctions of a temporal Hamilton operator H0

(1.4) H0wi = λiwi

and the λi have multiplicity one such that

(1.5) 0 < λ0 < λ1 < · · ·
and for each fixed i the at most countably many vij generate an eigenspace

(1.6) Eλi ⊂ S ′(S0)

of a spatial Hamiltonian H1, i.e.,

(1.7) H1vij = λivij .

We have

(1.8) vij ∈ C∞(S0) ∩S ′(S0).

In the two remaining cases of the black holes the special solutions are labelled
by three indices

(1.9) uijk = wiζijkϕj ,

where the wi are the same temporal eigenfunctions as before, the ϕj are the
eigenfunctions of an elliptic operator A on a smooth compact Riemannian
manifold (M,σij), where topologically

(1.10) M ' Sn−1,
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at least the physically interesting cases, i.e.,

(1.11) Aϕj = µ̃jϕj ,

(1.12) µ̃0 < µ̃1 ≤ µ̃2 ≤ · · ·
The ϕj form a mutually orthogonal basis of L2(M). For a Schwarzschild-AdS
black hole we know that

(1.13) µ̃0 ≤ 0,

and for a Kerr-AdS black hole this condition can be assured by assuming that
the rotational parameter a is small enough such that the scalar curvature of
σij is positive. Let us emphasize that we considered in [6] Kerr-AdS black
holes of odd dimensions

(1.14) dimN = 2m+ 1, m ≥ 2,

and assumed that all rotational parameters ai are equal

(1.15) ai = a 6= 0 ∀ 1 ≤ i ≤ m.
The ζijk are eigendistributions in S ′(R) satisfying

(1.16) − ζ ′′ijk = ω2
ijζijk, k = 1, 2,

where

(1.17) ζij1(τ) =
1√
2π
eiωijτ

and

(1.18) ζij2(τ) =
1√
2π
e−iωijτ ,

where

(1.19) ωij ≥ 0

is defined by the relation

(1.20) λi = µ̃j + ω2
ij ,

i.e., for any i ∈ N we look for all j satisfying

(1.21) µ̃j ≤ λi
and then choose ωij ≥ 0 satisfying (1.20). Let Ni be the set of integers such
that the µ̃j satisfy (1.21), then the smooth functions

(1.22) ζijkϕj

are mutually orthogonal in L2(M,σij)—for fixed i and k; note that we only
have two different eigendistributions ζijk, if

(1.23) ωij > 0,

otherwise we have only one. The eigendistributions ζij1 and ζij2 are also
considered to be

”
orthogonal“ since their Fourier transforms

(1.24) ζ̂ijk = δ±ωij
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have disjoint supports.
Finally, the smooth functions uijk in (1.9) can be considered to be mutually

orthogonal since uijk and ui′j′k′ are mutually orthogonal in

(1.25) L2(R+, dµ)⊗ L2(M),

where

(1.26) dµ = t2−
4
n dt,

if

(1.27) ωij = ωi′j′ ∧ k = k′

and as tempered distributions otherwise.
The uijk are eigendistributions for both the temporal Hamiltonian H0 as

well as for the spatial Hamiltonian H1 with the same eigenvalues λi, where
now the eigenvalues have finite multiplicities different from 1 by definition
of the eigendistributions and the uijk also solve the wave equation, since the
wave equation can be expressed as

(1.28) ϕ0(H0u−H1u) = 0,

where u = u(t, x) is a smooth function

(1.29) x ∈ S0 = R ×M

and

(1.30) ϕ0(t) = t2−
4
n .

In Section 3 we shall prove that we can define an abstract Hilbert space H,
where the eigendistributions uijk resp. uij in (1.3) form a basis of mutually
orthogonal unit vectors such that the Hamiltonian H1 can be defined on
the dense subspace, which is the algebraic span of the basis vectors, as an
essentially self-adjoint operator. Let H̃1 be its unique self-adjoint extension,
namely its closure, then we shall prove that for any β > 0

(1.31) e−βH̃1

is of trace class in H. In addition H̃1 satisfies

(1.32) H̃1 ≥ λ0I, λ0 > 0.

Let

(1.33) H ≡ dΓ (H̃1)

be the canonical extension of H̃1 to the symmetric Fock space

(1.34) F = F+(H),

then

(1.35) e−βH
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is of trace class in F because of (1.31) and (1.32), cf. [1, Prop. 5.2.27]. Hence
we can define the partition function

(1.36) Z = tr(e−βH),

the density operator

(1.37) ρ = Z−1e−βH

and the von Neumann entropy

(1.38) S = − tr(ρ log ρ) = logZ + βE,

where E is the average energy and β > 0 the inverse temperature

(1.39) β = T−1.

Here is a summary of the results derived in Section 3:

1.1. Theorem. (i) Let β0 > 0 be arbitrary, then, for any

(1.40) 0 < β ≤ β0,

we have

(1.41) lim
Λ→0

E =∞

as well as

(1.42) lim
Λ→0

S =∞,

where the limites are uniform in β.
(ii) Let β0 > 0 be arbitrary, then, for any

(1.43) β ≥ β0,

we have

(1.44) lim
|Λ|→∞

E = 0

as well as

(1.45) lim
|Λ|→0

S = 0,

where the limites are uniform in β.

The behaviour of Z with respect to Λ is described in the theorem:

1.2. Theorem. Let β0 > 0 be arbitrary, then, for any

(1.46) 0 < β ≤ β0,

we have

(1.47) lim
Λ→0

Z =∞

and for any

(1.48) β0 ≤ β
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the relation

(1.49) lim
|Λ|→∞

Z = 1

is valid. The convergence in both limites is uniform in β.

1.3. Remark. The first part of Theorem 1.1 reveals that the energy be-
comes very large for small values of |Λ|. Since this is the energy obtained
by applying quantum statistics to the quantized version of a black hole or
of a globally hyperbolic spacetime—assuming its Cauchy hypersurfaces are
asymptotically Euclidean—a small negative cosmological constant might be
responsible for the dark matter, where we equate the energy of the quantized
universe with matter. As source for the dark energy density we consider the
eigenvalue of the density operator ρ with respect to the vacuum vector η

(1.50) ρη = Z−1η,

i.e., the dark energy density should be proportional to Z−1.

In Section 4 we also applied quantum statistics to the quantized version
of a Friedmann universe and proved:

1.4. Theorem. The results in the theorems and the conjectures in the re-
mark above are also valid, if the quantized spacetime N = Nn+1, n ≥ 3, is
a Friedmann universe without matter but with a negative cosmological con-
stant Λ and with vanishing spatial curvature. The eigenvalues of the spatial
Hamiltonian H1 all have multiplicity one.

1.5. Remark. Let us also mention that we use Planck units in this paper,
i.e.,

(1.51) c = G = ~ = KB = 1.

2. Trace class estimates

We want to apply quantum statistics to the system described by the wave
equation and its special solutions. Therefore, we need a separable Hilbert
space H and a Hamiltonian H such that

(2.1) H ≥ λ0 > 0

and

(2.2) e−βH , β > 0,

is of trace class in H.
A natural candidate is the temporal Hamiltonian H0 mentioned in the

introduction which corresponds to a generalized eigenvalue problem that has
been considered in [5, Section 4]: Define the bilinear forms

(2.3) B(w, w̃) =

∫
R∗+
{ 1

32

n2

n− 1
w̄′w̃′ + n|Λ|t2w̄w̃}
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and

(2.4) K(w, w̃) =

∫
R∗+
t2−

4
n w̄w̃

in the Sobolev space H1 which is the completion of

(2.5) C∞c (R∗+,C)

in the norm defined by the first bilinear form.
We then look at the generalized eigenvalue problem

(2.6) B(w,ϕ) = λK(w,ϕ) ∀ϕ ∈ H1.

The following theorem was proved in the former paper.

2.1. Theorem. The eigenvalue problem (2.6) has countably many solu-
tions (wi, λi) such that

(2.7) 0 < λ0 < λ1 < λ2 < · · · ,

(2.8) limλi =∞,
and

(2.9) K(wi, wj) = δij .

The wi are complete in H1 as well as in L2(R∗+).

The eigenfunctions wi solve the ordinary differential equation

(2.10) Awi = − 1

32

n2

n− 1
ẅi + n|Λ|t2wi = λit

2− 4
nwi.

Let ϕ0 = ϕ0(t) be defined by

(2.11) ϕ0(t) = t2−
4
n ,

then the operator

(2.12) Ã = ϕ−1
0 A

is symmetric in

(2.13) H = L2(R+, dµ), dµ = ϕ0dt,

and the wi are eigenfunctions of Ã

(2.14) Ãwi = λiwi.

The equation (2.10) is equivalent to

(2.15) ϕ0Ãwi = λiϕ0wi

and Ã with domain

(2.16) D(Ã) = 〈wi : i ∈ N〉 ⊂ H
is essentially self-adjoint as will be proved later, Lemma 3.1 on page 19, in a
more general setting. We denote its unique self-adjoint extension by H0.
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We shall now prove that

(2.17) e−βH0 , β > 0,

is of trace class in H.
First, we need two lemmata:

2.2. Lemma. The embedding

(2.18) j : H1 ↪→ H0 = L2(R+, dµ̃),

where

(2.19) dµ̃ = (1 + t2)−2dt,

is Hilbert-Schmidt.

Proof. Maurin was the first to prove that the embedding

(2.20) Hm,2(Ω) ↪→ L2(Ω),

where

(2.21) Ω ⊂ Rn

is a bounded domain, is Hilbert-Schmidt provided

(2.22) m >
n

2
,

cf. [8, Theorem 1, p. 336]. We adapt his proof to the present situation.
Let w ∈ H1, then, assuming w is real valued,

(2.23)
|w(t)|2 = 2

∫ t

0

ẇw ≤ 2

∫ ∞
o

|ẇ|2 +
1

2

∫ ∞
0

|w|2

≤ c‖w‖21
for all t > 0, where ‖·‖1 is the norm in H1. To derive the last inequality in
(2.23) we used

(2.24)

∫ 1

0

|w|2 ≤ 2

∫ 1

0

|ẇ|2 +
1

2

∫ 1

0

|w|2

which is easily be deduced from the equation in (2.23). The estimate

(2.25) |w(t)| ≤ c0‖w‖1 ∀ t > 0

is of course also valid for complex valued functions from which infer that, for
any t > 0, the linear form

(2.26) w → w(t), w ∈ H1,

is continuous, hence it can be expressed as

(2.27) w(t) = 〈ϕt, w〉,
where

(2.28) ϕt ∈ H1
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and

(2.29) ‖ϕt‖1 ≤ c0.

Now, let

(2.30) ei ∈ H1

be an ONB, then

(2.31)

∞∑
i=0

|ei(t)|2 =

∞∑
i=0

|〈ϕt, ei〉|2 = ‖ϕt‖21 ≤ c20.

Integrating this inequality over R+ with respect to dµ̃ we infer

(2.32)
∞∑
i=0

∫ ∞
0

|ei(t)|2dµ̃ ≤ c20

completing the proof of the lemma. �

2.3. Lemma. Let wi be the eigenfunctions of H0, then there exist positive
constants c and p such that

(2.33) ‖wi‖1 ≤ c|λi|p‖wi‖0 ∀ i ∈ N,

where ‖·‖0 is the norm in H0.

Proof. We have

(2.34) ‖wi‖21 = λi

∫ ∞
0

t2−
4
n |wi|2.

Let ε > 0 be arbitrary and define

(2.35) q =
2

2− 2
n

=
n

n− 1

and the conjugate exponent

(2.36) q′ =
q

q − 1
= n,

then the integral on the right-hand side of (2.34) can be estimated from above
by

(2.37)
1

q
εq
∫ ∞

0

{t2− 4
n (1 + t)

2
n }q|wi|2 +

1

q′
ε−q

′
.

∫ ∞
0

(1 + t)−
2
n q
′
|wi|2

We note that by definition

(2.38) {t2− 4
n (1 + t)

2
n }q ≤ (1 + t)2

and that in view of (2.24)

(2.39)

∫ ∞
0

(1 + t)2|wi|2 ≤ c‖wi‖21.
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Combining (2.34), (2.37) and (2.39) we then infer

(2.40) ‖wi‖21 ≤ c
1

q
εqλi‖wi‖21 + c

1

q′
ε−q

′
λi‖wi‖20

and deduce further, by choosing ε appropriately, that the result is valid with
a different constant c. �

We are now ready to prove:

2.4. Theorem. Let β > 0, then the operator

(2.41) e−βH0

is of trace class in H, i.e.,

(2.42) tr(e−βH0) =
∞∑
i=0

e−βλi = c(β) <∞.

Proof. In view of Lemma 2.2 the embedding

(2.43) j : H1 ↪→ H0

is Hilbert-Schmidt. Let

(2.44) wi ∈ H
be an ONB of eigenfunctions, then

(2.45)
e−βλi = e−βλi‖wi‖2 = e−βλiλ−1

i ‖wi‖
2
1

≤ e−βλiλ−1
i c|λi|2p‖wi‖20,

in view of (2.33), but

(2.46) ‖wi‖20 = ‖wi‖21 ‖w̃i‖20 = λi‖w̃i‖20,
where

(2.47) w̃i = wi‖wi‖−1
1

is an ONB in H1, yielding

(2.48)

∞∑
i=0

e−βλi ≤ c̃
∞∑
i=0

‖w̃i‖20 <∞,

since j is Hilbert-Schmidt. �

There is also a spatial Hamiltonian H1, which, in the case of the black holes
considered, is a direct product of a classical harmonic oscillator in R and an
elliptic operator A on a compact, smooth Riemannian manifold M = Mn−1,
n ≥ 3, with metric σij , where A has the form

(2.49) Aϕ = −(n− 1)∆ϕ− n

2
Rϕ

and the Laplacian is the Laplacian in M and R the scalar curvature of the
metric. A is self-adjoint with domain

(2.50) D(A) = H2,2(M) ⊂ L2(M),



A PARTITION FUNCTION FOR QUANTIZED SPACETIMES 11

where

(2.51) Hm,2(M), m ∈M,

are the usual Sobolev spaces with norm

(2.52) ‖ϕ‖2m,2 =
∑
|α|≤m

∫
M

|Dαϕ|2.

A has a pure point spectrum with countable many eigenvalues µ̃j with finite
multiplicities and mutually orthogonal eigenfunctions ϕj such that

(2.53) µ̃0 < µ̃1 ≤ · · ·
and

(2.54) lim
j
µ̃j =∞.

We want to prove that

(2.55) e−βA, β > 0,

is of trace class in L2(M).
The proof of this result will follow the previous arguments very closely.

2.5. Lemma. Let m > n−1
2 , then the embedding

(2.56) j : Hm,2(M) ↪→ L2(M)

is Hilbert-Schmidt.

Proof. This result is due to Maurin and its proof is identical with the proof
of Lemma 2.2 apart from some obvious modifications. �

We also need the lemma:

2.6. Lemma. Let m ∈ N, then there exists cm > 0 such that

(2.57) ‖ϕ‖22m,2 ≤ cm(‖Amϕ‖2 + ‖ϕ‖2)

and the bilinear form

(2.58) 〈Amϕ,Amψ〉0 + 〈ϕ,ψ〉0
defines an equivalent scalar product in H2m,2(M), where

(2.59) 〈ϕ,ψ〉0 =

∫
M

ϕ̄ψ.

Proof. Let

(2.60) f ∈ Hm,2(M)

and

(2.61) ϕ ∈ H2,2(M)

a solution of

(2.62) Aϕ = f,
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then it is well-known that

(2.63) ϕ ∈ Hm+2,2(M)

and there exists c̃m such that

(2.64) ‖ϕ‖m+2,2 ≤ c̃m(‖f‖m,2 + ‖ϕ‖0).

The constant c̃m also depends on A and M . Using this estimate the relation
(2.57) can be easily proved by induction. �

Now, we are ready to prove:

2.7. Theorem. Let A be the self-adjoint operator in (2.49), then

(2.65) e−βA

is of trace class in L2(M) for any β > 0.

Proof. Let m > n−1
4 and equip H2m,2(M) with the scalar product (2.58)

such that

(2.66) ‖ϕ‖22m,2 = 〈Amϕ,Amϕ〉0 + 〈ϕ,ϕ〉0,
then any eigenfunctions ϕi, ϕj of A satisfy

(2.67) 〈ϕi, ϕj〉0 = 0 =⇒ 〈ϕi, ϕj〉2m,2 = 0.

Let (ϕj) be an ONB of eigenfunctions of A in L2(M) and define

(2.68) ϕ̃j = ϕi‖ϕj‖−1
2m,2,

then the ϕ̃j form an ONB in H2m,2(M) and we conclude

(2.69)
e−βµ̃j = e−βµ̃j‖ϕj‖20 = e−βµ̃j‖ϕj‖22m,2 ‖ϕ̃j‖20

= e−βµ̃j (1 + |µ̃j |2m)‖ϕ̃j‖20 ≤ cβ‖ϕ̃j‖20
yielding

(2.70)

∞∑
j=0

e−βµ̃j ≤ cβ
∞∑
j=0

‖ϕ̃j‖20 <∞

in view of Lemma 2.5. �

With the help of the preceding lemma we can now prove that, in case of
the black holes, the spatial Hamiltonian H1 has the property that

(2.71) e−βH1

is of trace class for all β > 0, where we still have to define an appropriate
Hilbert space.

We have

(2.72) H1v = −v̈ −Av,
where we write v as product

(2.73) v(τ, x) = ζ(τ)ϕ(x)
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with

(2.74) τ ∈ R ∧ x ∈M = Mn−1,

where A is the differential operator in (2.49). Let ϕj be the eigenfunctions
of A with eigenvalues µ̃j , then, for any eigenvalue λi we define

(2.75) Ni = {j ∈ N : µ̃j ≤ λi}
and ωij ≥ 0 such that

(2.76) ω2
ij + µ̃j = λi.

Note that

(2.77) 0 ∈ Ni ∀ i ∈ N,

since

(2.78) µ̃0 ≤ 0.

Let

(2.79) ζijk, k = 1, 2,

be the tempered distributions

(2.80) ζij1 =
1√
2π
eiωijτ

and

(2.81) ζij2 =
1√
2π
e−iωijτ ,

where this distinction only occurs for

(2.82) ωij > 0.

Let ζ̂ijk be the Fourier transform of ζijk, then

(2.83) ζ̂ij1 = δωij ∧ ζ̂ij2 = δ−ωij

such that these tempered distributions are considered to be mutually
”
or-

thogonal“. The smooth functions

(2.84) uijk = ζijkϕj

satisfy

(2.85) H1uijk = λiuijk.

Label the eigenvalues of H1 including their multiplicities and denote them
by λ̃i. Then

(2.86)

∞∑
i=0

e−βλ̃i ≤ 2

∞∑
i=0

e−βλin(λi) = 2

∞∑
i=0

e−
β
2 λie−

β
2 λin(λi),

where

(2.87) n(λi) = #Ni.
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2.8. Lemma. Let β0 > 0 be arbitrary, then, for any

(2.88) 0 < β0 ≤ β

and for any i ∈ N, the estimate

(2.89) e−
β
2 λin(λi) ≤ c(β) ≤ c(β0),

where c(β0) also depends on A but is independent of i ∈ N.

Proof. Each Ni is the disjoint union

(2.90) N ′i ∪̇N ′′i ,

where

(2.91) N ′i = {j ∈ Ni : µ̃j ≤ 0}

and N ′′i is its complement. The operator A has only finitely many eigenvalues
which are non-positive, i.e.,

(2.92) #N ′i ≤ n0 ∀ i ∈ N,

hence

(2.93)

e−
β
2 λini(λi) ≤ n0 +

∑
j∈N ′′i

e−
β
2 λi ≤ n0 +

∑
j∈N ′′i

e−
β
2 µ̃j

≤ n0 +
∑
j≥n0

e−
β
2 µ̃j

= n0 +
∑
j≥n0

e−
β
2 µ̃j (1 + |µ̃|2mj ) ‖ϕ̃j‖20

≤ n0 + c(β)

∞∑
j=0

‖ϕ̃j‖20 <∞,

where we used (2.69). The estimate for the Hilbert-Schmidt norm of the
embedding

(2.94) j : Hm,2(M)→ L2(M)

depends on A, since we used the equivalent norm given in (2.66), and

(2.95) c(β) = sup
t>0

e−
β
2 t(1 + t2m).

�

2.9. Corollary. The sum on the left-hand side of (2.86) is finite and hence

(2.96) e−βH1 , β > 0,

is of trace class provided we can define a Hilbert space H such that such
that the eigendistributions form complete set of eigenvectors in H and H1 is
essentially self-adjoint in H.
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Proof. The first claim follows immediately by combining (2.93) and Theo-
rem 2.4. In Lemma 3.1 on page 19 we shall define the Hilbert space H and
shall prove that H1 is essentially self-adjoint in H and that the eigendistri-
butions form a complete set of eigenvectors in H. �

The elliptic operator A also depend on Λ, since the underlying Riemannian
metric depends on it. The estimates in the preceding lemma remain valid
provided |Λ| remains in a compact subset of R, since the operator A is then
still uniformly elliptic and smooth. However, when

(2.97) |Λ| → ∞,
then the relation (2.57) is no longer valid and a more sophisticated analysis
is necessary to achieve a corresponding estimate. Let us treat the cases
Schwarzschild-AdS and Kerr-AdS black holes separately.

For a Schwarzschild-AdS black hole the operator A can be written in the
form

(2.98) A = r−2
0 Ã,

where r0 is the black hole radius and

(2.99) Ãϕ = −(n− 1)∆̃ϕ− n

2
R̃ϕ.

Here, the Laplacian and the scalar curvature R̃ refer to the corresponding
quantities of Sn−1 with the standard metric, cf. [4, equ. (2.12) and (2.14)].

The eigenfunctions of A are the eigenfunctions of Ã. Let µj be the eigenvalues

of Ã and µ̃j the eigenvalues of A, then

(2.100) µ̃j = r−2
0 µj .

From the definition of the black hole radius

(2.101) mr
−(n−2)
0 = 1 +

2

n(n− 1)
|Λ|r2

0

it is evident that

(2.102) lim
|Λ|→∞

r0 = 0

and also

(2.103) lim
|Λ|→∞

|Λ|r2
0 =∞,

though the latter result is only needed when we shall treat the Kerr-AdS
case.

We can now prove:

2.10. Lemma. Let β0 be arbitrary and |Λ0| so large that

(2.104) r0 < 1 ∀ |Λ| > |Λ0|,
then for any i ∈ N, any β ≥ β0 and any |Λ| > |Λ0|

(2.105) e−
β
2 λin(λi) ≤ c(β) ≤ c(β0),
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where c(β0) also depends on Ã but is independent of |Λ| and i ∈ N.

Proof. We follow the proof of Lemma 2.8 but use Ã instead of A to define an
equivalent norm in Hm,2(M),

(2.106) M = Sn−1.

Then, we infer, cf. (2.93),

(2.107)

e−
β
2 λini(λi) ≤ n0 +

∑
j∈N ′′i

e−
β
2 λi ≤ n0 +

∑
j∈N ′′i

e−
β
2 µ̃j

≤ n0 +
∑
j≥n0

e−
β
2 µ̃j

= n0 +
∑
j≥n0

e−
β
2 µ̃j (1 + |µ|2mj ) ‖ϕ̃j‖20

≤ n0 + c(β)

∞∑
j=0

‖ϕ̃j‖20 <∞.

Here, we used

(2.108) µ̃j = r−2
0 µj > µj > 0.

�

Let us now look at Kerr-AdS black holes. In [6, equ. (2.50)] we described
the metric σij on M = Sn−1

(2.109)

ds2
M =

r2 + a2

1− a2l2
(
δijdµ

idµj + µ2
i δijdϕ

idϕj
)

+ a2 (1 + l2r2)(r2 + a2)

r2(1− a2l2)2
µ2
iµ

2
jdϕ

idϕj .

Here

(2.110) n = 2m, m ≥ 2,

and the coordinates µi, 1 ≤ i ≤ m are subject to the constraint

(2.111)

m∑
i=1

µ2
i = 1.

They are the latitudinal coordinates of Sn−1 and the ϕi, 1 ≤ i ≤ m are the
azimuthal coordinates. The metric

(2.112) δijdµ
idµj + µ2

i δijdϕ
idϕj

is the standard metric of Sn−1. The constant r is the radius of the event
horizon, a 6= 0 the rotational parameter and

(2.113) l2 = − 1

m(2m− 1)
Λ.
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The relation

(2.114) a2l2 < 1

is assumed. We also require that a is small enough such that the scalar
curvature R of the metric σij is positive. We can write the metric as a
conformal metric

(2.115) σij =
r2 + a2

1− a2l2
σ̃ij .

We note that the Schwarzschild-AdS black hole is obtained by setting a = 0
and that

(2.116) lim
a→0

r = r0,

the Schwarzschild black hole radius.
In order to prove the analogue of Lemma 2.10 we assume that, when

(2.117) |Λ| → ∞,

a is supposed so small that

(2.118) lim
|Λ|→∞

|Λ|a2 = 0

and

(2.119) lim
|Λ|→∞

|Λ|r2 =∞,

and we emphasize that these assumptions are always satisfied if a = 0, cf.
(2.103). If these are satisfied, then the operator A can be expressed in the
form

(2.120) A =
1− a2l2

r2 + a2
Ã,

where Ã converges uniformly in C∞(M) to the operator Ã in (2.99), i.e.,

for large |Λ| Ã is uniformly elliptic and smooth such that the number of

non-positive eigenvalues n0(Ã) is bounded from above by the n0 of the limit
operator

(2.121) n0 ≥ lim sup
|Λ|→∞

n0(Ã),

since n0 is upper semi-continuous as it is well-known.

2.11. Lemma. Under the assumptions (2.118) and (2.119) the results of
Lemma 2.10 are also valid for the Kerr-AdS black hole, i.e., there exists
|Λ0| > 0 such that for all

(2.122) |Λ| > |Λ0|

and for any β satisfying

(2.123) 0 < β0 ≤ β,
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where β0 is arbitrary,

(2.124) e−
β
2 λin(λi) ≤ c(β0)

uniformly in i ∈ N, |Λ| and β.

Proof. The proof is identical to the proof of Lemma 2.10 by using the fact
that the special Hm,2(M) norm

(2.125) 〈Ãmϕ, Ãmϕ〉0 + 〈ϕ,ϕ〉0,

with different m than used to express the dimension of M , is uniformly
equivalent to the standard Hm,2(M) norm, hence the Hilbert-Schmidt norm
of the embedding

(2.126) j : Hm,2(M) ↪→ L2(M)

is uniformly bounded. We also relied on

(2.127) µ̃j =
1− a2l2

r2 + a2
µj > µj > 0

for j ∈ N ′′i . �

Finally, let us derive the last result in this section.

2.12. Lemma. Let λi be the temporal eigenvalues depending on Λ and let
λ̄i be the corresponding eigenvalues for

(2.128) |Λ| = 1,

then

(2.129) λi = λ̄i|Λ|
n−1
n .

Proof. Let B and K be the bilinear forms defined in (2.3) resp. (2.4), where
B corresponds to the cosmological constant Λ and let B1 be the form with
respect to the value

(2.130) |Λ| = 1.

Moreover, let us denote the corresponding quadratic forms by the same sym-
bols, then we have

(2.131)
B(ϕ)

K(ϕ)
= |Λ|

n−1
n
B1(ϕ)

K(ϕ)
∀ 0 6= ϕ ∈ C∞c (R+).

To prove (2.131) we introduce a new integration variable τ on the left-hand
side

(2.132) t = µτ, µ > 0,

to conclude

(2.133)
B(ϕ)

K(ϕ)
= µ−4n−1

n
B1(ϕ)

K(ϕ)
∀ 0 6= ϕ ∈ C∞c (R+).
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provided

(2.134) µ = |Λ|− 1
4 .

The relation (2.131) immediately implies (2.129). �

3. The partition function

We first define the partition function for the black holes and shall later
show that the definitions and results are also applicable in case of the quan-
tized globally hyperbolic spacetimes with a negative cosmological constant
and asymptotically Euclidean Cauchy hypersurfaces.

We define the partition function by using the spatial Hamiltonian H1 of
the quantized black holes, Kerr or Schwarzschild, which is now defined in the
separable Hilbert space H generated by the eigendistributions

(3.1) uijk = wiζijkϕj

which are smooth functions satisfying the eigenvalue equations

(3.2) H1uijk = λiuijk

as well as

(3.3) H0uijk = λiuijk,

where H0 is the temporal Hamiltonian.
In order to explain how the eigendistributions can generate a Hilbert space

let us relabel the eigenfunctions and the eigenvalues by (ui, λ̃i) such that

(3.4) H1ui = λ̃iui

and

(3.5) H0ui = λ̃iui,

i.e., the multiplicities of the eigenvalues are now included in the labelling and
the ordering is no longer strict

(3.6) λ̃0 ≤ λ̃1 ≤ λ̃2 ≤ · · · .
To define the Hilbert space H we simply declare that the eigendistributions
are mutually orthogonal unit eigenvectors, hence defining a scalar product in
the complex vector space H′ spanned by these eigenvectors. We define the
Hilbert space H to be its completion.

3.1. Lemma. The linear operator H1 with domain H′ is essentially self-
adjoint in H. Let H̄1 be its closure, then the only eigenvectors of H̄1 are
those of H1.

Proof. H1 is obviously densely defined, symmetric and bounded from below

(3.7) H1 ≥ λ̃0I > 0.

Since λ̃0 > 0, the eigenvectors also span R(H1), i.e., R(H1) is dense. Let

(3.8) w ∈ H
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be arbitrary, and let

(3.9) H1vi ∈ R(H1)

be a sequence converging to w, then vi is a Cauchy sequence, because

(3.10) λ̃0‖vi − vj‖2 ≤ 〈H1vi −H1vj , vi − vj〉 ≤ ‖H1vi −H1vj‖ ‖vi − vj‖,
hence

(3.11) R(H̄1) = H
and H̄1 is the unique s.a. extension of H1.

It remains to prove that H̄1 has no additional eigenvectors. Thus, let u be
an eigenvector of H̄1 with eigenvalue λ

(3.12) H̄1u = λu,

and let

(3.13) E(λ̃i) ⊂ H′, i ∈ N,
be the eigenspaces of H1. Let us first assume that there exists j such that

(3.14) λ = λ̃j ,

but

(3.15) u /∈ E(λ̃j).

Without loss of generality we may assume

(3.16) u ∈ E(λ̃j)
⊥.

However, this leads to a contradiction, since then

(3.17) u ∈ E(λ̃i)
⊥ ∀ i ∈ N,

and hence

(3.18) u ∈ H′⊥

which implies u = 0.
Thus, let us assume

(3.19) λ 6= λ̃i ∀ i ∈ N,
but then (3.17) is again valid leading to the known contradiction. �

3.2. Remark. In the following we shall write H1 instead of H̄1.

3.3. Lemma. For any β > 0 the operator

(3.20) e−βH1

is of trace class in H. Let

(3.21) F ≡ F+(H)

be the symmetric Fock space generated by H and let

(3.22) H = dΓ (H1)
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be the canonical extension of H1 to F . Then

(3.23) e−βH

is also of trace class in F

(3.24) tr(e−βH) =

∞∏
i=0

(1− e−βλ̃i)−1 <∞.

Proof. The first part of the lemma has already been proved in Corollary 2.9
on page 14. This property can now be rephrased as

(3.25) tr(e−βH1) =

∞∑
i=0

e−βλ̃i <∞.

The second assertion is well known, since

(3.26) H1 ≥ λ̃0I > 0,

and the properties (3.25) and (3.26) imply (3.24), cf. [1, Proposition 5.2.7]
and [7, Volume II, p. 868], where the equation (3.24) is also proved. �

We then define the partition function Z by

(3.27) Z = tr(e−βH) =

∞∏
i=0

(1− e−βλ̃i)−1

and the density operator ρ in F by

(3.28) ρ = Z−1e−βH

such that

(3.29) tr ρ = 1.

The von Neumann entropy S is then defined by

(3.30)

S = − tr(ρ log ρ)

= logZ + βZ−1 tr(He−βH)

= logZ − β ∂ logZ

∂β

≡ logZ + βE,

where E is the average energy

(3.31) E = tr(Hρ).

E can be expressed in the form

(3.32) E =

∞∑
i=0

λ̃i

eβλ̃i − 1
.

Here, we also set the Boltzmann constant

(3.33) KB = 1.
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The parameter β is supposed to be the inverse of the absolute temperature
T

(3.34) β = T−1.

In view of Lemma 2.12 on page 18 we can write the eigenvalues λi in the
form

(3.35) λi = λ̄i|Λ|
n−1
n ,

where λ̄i are the eigenvalues corresponding to |Λ| = 1. Hence, Z, S, and E
can also be looked at as functions depending on β and Λ, or more conve-
niently, on (β, τ), where

(3.36) τ = |Λ|
n−1
n ,

since the λ̃i can also be expressed as

(3.37) λ̃i = λj = λ̄j |Λ|
n−1
n ,

where j is different from i

(3.38) j ≤ i,

because of the multiplicities of λ̃i. Let emphasize that the multiplicities also
depend on Λ, hence it is best to simply note that

(3.39) λ̃0 = λ0 = λ̄0|Λ|
n−1
n

and that the λ̃i are ordered. We shall never use the relation (3.37) explicitly
in the proofs of the subsequent theorems and lemmata referring to (3.35)
instead.

3.4. Theorem. (i) Let β0 > 0 be arbitrary, then, for any

(3.40) 0 < β ≤ β0,

we have

(3.41) lim
Λ→0

E =∞

as well as

(3.42) lim
Λ→0

S =∞,

where the limites are uniform in β.
(ii) Let β0 > 0 be arbitrary, then, for any

(3.43) β ≥ β0,

we have

(3.44) lim
|Λ|→∞

E = 0

as well as

(3.45) lim
|Λ|→0

S = 0,
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where the limites are uniform in β.

Proof.
”
(i)“ We first observe that

(3.46) E =

∞∑
i=0

λ̃i

eβλ̃i − 1
≥
∞∑
i=0

λi
eβλi − 1

Now, let m ∈ N be arbitrary, then

(3.47) E ≥
m∑
i=0

λi
eβλi − 1

=

m∑
i=0

λ̄iτ

eβλiτ − 1

and

(3.48)
lim inf
τ→0

E ≥ lim
τ→0

m∑
i=0

λ̄iτ

eβλiτ − 1

= (m+ 1)β−1 ≥ (m+ 1)β−1
0

yielding

(3.49) lim
Λ→0

E =∞

uniformly in β.
Since Z ≥ 1, the relation (3.42) follows as well.

”
(ii)“ We estimate E from above by

(3.50)

E =

∞∑
i=0

λ̃ie
−βλ̃i

1− e−βλ̃i
=

∞∑
i=0

λ̃ie
− β2 λ̃ie−

β
2 λ̃i(1− e−βλ̃i)−1

≤ (1− e−β0λ̃0)−1c(β0)

∞∑
i=0

e−
β
2 λ̃i ,

where we used (3.43) and

(3.51) λ̃ie
− β2 λ̃i ≤ sup

t>0
te−

β
2 t = c(β) ≤ c(β0).

Furthermore, we know that

(3.52)

∞∑
i=0

e−
β
2 λ̃i ≤ c̃(β)

∞∑
i=0

e−
β
4 λi

≤ c̃(β0)

∞∑
i=0

e−
β0
4 λi ,

cf. Lemma 2.10 on page 15 and Lemma 2.11 on page 17, hence we obtain

(3.53) E ≤ (1− e−β0λ̄0τ )−1c(β0)c̃(β0)

∞∑
i=0

e−
β
4 λ̄iτ
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deducing further

(3.54) lim sup
τ→∞

E ≤ c(β0)c̃(β0) lim
τ→∞

∞∑
i=0

e−
β
4 λ̄iτ = 0

uniformly in β and hence

(3.55) lim
τ→∞

E = 0.

It remains to prove that S vanishes in the limit. We have

(3.56)

Z =

∞∏
i=0

(1− e−βλ̃i)−1 =

∞∏
i=0

(1 + e−βλ̃i(1− e−βλ̃i)−1)

≤ exp{(1− eβ0λ̃0)−1
∞∑
i=0

e−βλ̃i},

where we used the inequality

(3.57) log(1 + t) ≤ t ∀ t ≥ 0

in the last step.
Applying then the arguments preceding the inequality (3.54) we conclude

(3.58) lim
τ→∞

Z = 1

uniformly in β. �

3.5. Remark. The first part of the preceding theorem reveals that the
energy becomes very large for small values of |Λ|. Since this is the energy ob-
tained by applying quantum statistics to the quantized version of a black hole
or of a globally hyperbolic spacetime—assuming its Cauchy hypersurfaces are
asymptotically Euclidean—a small negative cosmological constant might be
responsible for the dark matter, where we equate the energy of the quantized
universe with matter. As source for the dark energy density we conjecture
that the dark energy density should be proportional to the eigenvalue of the
density operator ρ with respect to the vacuum vector η

(3.59) ρη = Z−1η,

which is Z−1.

The behaviour of Z with respect to Λ is described in the theorem:

3.6. Theorem. Let β0 > 0 be arbitrary, then, for any

(3.60) 0 < β ≤ β0,

we have

(3.61) lim
Λ→0

Z =∞

and for any

(3.62) β0 ≤ β
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the relation

(3.63) lim
|Λ|→∞

Z = 1

is valid. The convergence in both limites is uniform in β.

Proof.
”
(3.60)“ Let m ∈ N be arbitrary, then

(3.64)

Z ≥
∞∏
i=0

(1− e−βλi)−1 =

∞∏
i=0

(1− e−βλ̄iτ )−1

≥
m∏
i=0

(1− e−β0λ̄iτ )−1

and we infer

(3.65) lim
τ→0

Z = lim inf
τ→0

Z =∞.

”
(3.63)“ This limit relation has already been proved in (3.58). �

Let us now consider the quantized globally hyperbolic spacetimes with an
asymptotically Euclidean Cauchy hypersurface. The eigenspaces

(3.66) Eλi ⊂ S ′(S0)

of H1 are separable but they are in general not finite dimensional as can be
seen by the following counterexample

(3.67) H1 = −∆
in Rn. The eigenspaces

(3.68) Eλi , λi > 0,

contain the tempered distributions

(3.69) ei〈k,x〉, k ∈ Sn−1
λi

.

As a Hamel basis they generate a vector space the dimension of which is
equal to the cardinality of Sn−1. Of course, as a Schauder basis the functions
with

(3.70) k ∈ D ⊂ Sn−1
λi

,

where D is countable and dense, generate a dense subspace.
This example indicates that not all eigendistributions of H1 might be phys-

ically relevant. Contrary to the cases of the black holes, where the selection of
eigenvectors and eigendistributions was a natural process, only the temporal
eigenvectors are naturally selected in the present situation and of course at
least one matching spatial eigendistribution to obtain a solution of the wave
equation. Hence, we could use H0 to define the partition function. However,
we believe this choice would be too restrictive, and we shall instead stipulate
that we only pick at most

(3.71) c|λi|p
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spatial eigendistributions in Eλi , where c and p are arbitrary but fixed con-
stants, i.e., we assume that

(3.72) n(λi) ≤ c|λi|p ∀ i ∈ N.

With this assumption it becomes evident that the results and conjectures of
Theorem 3.4, Remark 3.5 and Theorem 3.6 are also valid in case of globally
hyperbolic spacetimes with asymptotically Euclidean hypersurfaces.

4. The Friedmann universes with negative cosmological
constants

In [3, Remark 6.11] we observed that, if the Cauchy hypersurface S0 is a
space of constant curvature and if the wave equation (1.1) on page 2 is only
considered for functions u which do not depend on x, then this equation is
identical to the equation obtained by quantizing the Hamilton constraint in
a Friedman universe without matter but including a cosmological constant.
The equation is then the ODE

(4.1)
1

32

n2

n− 1
ü− n

2
Rt2−

4
nu+ nt2Λu = 0, 0 < t <∞,

where R is the scalar curvature of S0. We cannot apply our previous ar-
guments to the solutions of this ODE. However, if we consider instead the
more general equation (1.1), where u is also allowed to depend on x, which
certainly is more general and accurate, then the previous arguments can be
applied if the curvature κ̃ of S0 vanishes

(4.2) κ̃ = 0.

The scalar curvature, which is equal to

(4.3) R = n(n− 1)κ̃,

then vanishes too and

(4.4) S0 = Rn.

We are now in the situation which we analyzed at the end of the previous
section, where now the spatial Hamiltonian is

(4.5) H1 = −(n− 1)∆

and some spatial eigendistributions are shown in (3.69) on page 25. However,
since we consider the quantized version of a Friedmann universe we shall look
for radially symmetric eigendistributions, i.e., we look for smooth functions
v = v(x) satisfying

(4.6) v(x) = ϕ(r)

such that

(4.7) ∆v = ϕ̈+ (n− 1)r−1ϕ̇ = −µ2ϕ in r > 0,
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where µ > 0. Obviously, it is sufficient to assume µ = 1, because, if ϕ is an
eigenfunction for µ = 1, then

(4.8) ϕ̃(r) = ϕ(µr)

is an eigenfunction for the eigenvalue µ2. Therefore, let us choose µ = 1.
We shall express the solution ϕ with the help of a Bessel function Jν . Let

ψ be a solution of the Bessel equation

(4.9) ψ̈ + r−1ψ̇ + (1− r−2ν2)ψ = 0,

where

(4.10) ν =
n− 2

2
,

then the function

(4.11) ϕ(r) = r−νψ

satisfies

(4.12) rϕ̈+ (2ν + 1)ϕ̇+ rϕ = 0,

which is equivalent to (4.7) with µ = 1. The Bessel equation (4.9) has the
two independent solutions Jν and Yν , the Bessel functions of first kind resp.
of second kind. It is well known that the functions

(4.13) r−νJν

can be expressed as power series in the variable r2, cf. [2, equ. (21), p. 420],
i.e., the function

(4.14) v(x) = ϕ(r) = r−νJν

is smooth in Rn, while the functions

(4.15) r−νYν

have a singularity in r = 0. Hence, there exists exactly one smooth radially
symmetric solution v of the eigenvalue equation

(4.16) −∆v = λ2v, λ > 0,

which is given by

(4.17) v = (λr)−νJν(λr).

This solution also vanishes at infinity, hence it is uniformly bounded and a
tempered distribution.

A solution of the wave equation (1.1) on page 2, in case of a quantized
Friedmann universe, is therefore given by a sequence

(4.18) ui = wi(t)vi(x), i ∈ N,
where wi is a temporal eigenfunction and vi a spatial eigenfunction. The
ui are also eigenfunctions for the temporal Hamiltonian as well as for the
spatial Hamiltonian. Each eigenvalue has multiplicity one. We have therefore
proved:
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4.1. Theorem. The results in Theorem 3.4, Remark 3.5 and Theorem 3.4
are also valid, if the quantized spacetime N = Nn+1, n ≥ 3, is a Friedmann
universe without matter but with a negative cosmological constant Λ and with
vanishing spatial curvature. The eigenvalues of the spatial Hamiltonian H1

all have multiplicity one.
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