SMOOTHNESS OF LIPSCHITZ SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS

CLAUS GERHARDT

Contents

1. Lipschitz solutions are smooth References $\frac{1}{5}$

1. LIPSCHITZ SOLUTIONS ARE SMOOTH

 $u_{|_{|\partial \Omega}}=\varphi,$

We consider the Dirichlet problem

(1.1)
$$Au + H(x, u, Du) = 0,$$

where

(1.2)
$$Au = -D_i(a^i(x, u, Du))$$

is an elliptic quasilinear operator. The vector field a^i and H should satisfy

_

(1.3)
$$a^i \in C^{m-1,\alpha}(\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^n),$$

and

(1.4)
$$H \in C^m(\Omega \times \mathbb{R} \times \mathbb{R}^n),$$

such that $2 \leq m \in \mathbb{N}, 0 < \alpha < 1$. Then we can prove:

1.1. **Theorem.** Let $\Omega \in \mathbb{R}^n$ be open, connected with $\partial \Omega \in C^{m,\alpha}$, $2 \leq m \in \mathbb{N}$, $0 < \alpha < 1$, and let $\varphi \in C^{m,\alpha}(\bar{\Omega})$. Then any weak solution $u \in C^{0,1}(\bar{\Omega})$ of (1.1) is of class $C^{m,\alpha}(\bar{\Omega})$.

Proof. (i) Let $u_0 \in C^{0,1}(\overline{\Omega})$ be a weak solution such that

$$(1.5) 1 + |u_0| + |Du_0| \le M.$$

Date: June 27, 2011.

CLAUS GERHARDT

From [2, Section 1] and [1, Appendix II] we conclude that there exists a uniformly elliptic vector field $\tilde{a}^i \in C^{m-1,\alpha}(\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^n)$ and a function $\tilde{H} \in C^m(\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^n)$ such that

(1.6)
$$\left|\tilde{a}^{ij}\right| + \left|\frac{\partial \tilde{a}^i}{\partial x^j}\right| + \left|\frac{\partial \tilde{a}^i}{\partial t}\right| \le c,$$

(1.7) $|\tilde{a}^i| \le c(1+|\xi|),$

and (1.8) $|\tilde{a}^{ij}|_{m-2,\alpha} \leq c.$

Furthermore, we have

(1.9)
$$|\tilde{H}|_{m,\alpha} \le c,$$

(1.10)
$$Au_0 + H(x, u_0, Du_0) = \tilde{A}u_0 + \tilde{H}(x, u_0, Du_0),$$

Hence, there exists a constant $\gamma > 0$ such that the operator

(1.11)
$$u \to \tilde{A}u + H(x, u, Du) + \gamma u$$

is coercive, i.e., there exists a constant m>0 such that for any functions $u_i\in H^{1,2}(\varOmega),\,i=1,2$, with equal boundary values there holds

(1.12)
$$\langle \tilde{A}u_2 + \tilde{H}(x, u_2, Du_2) + \gamma u_2 - \tilde{A}u_1 - \tilde{H}(x, u_1, Du_1) - \gamma u_1, u_2 - u_1 \rangle \\ \geq m \|u_2 - u_1\|_{1,2}^2,$$

and we conclude that the Dirichlet problem

(1.13)
$$Au + H(x, u, Du) + \gamma(u - u_0) = 0,$$
$$u_{|_{\partial\Omega}} = \varphi,$$

has the unique solution $u = u_0$.

(ii) Since $\partial \Omega \in C^{m,\alpha}$, we may extend u_0 in a neighbourhood of $\overline{\Omega}$ such that the extension is as smooth as u_0 is up to the maximal regularity $C^{m,\alpha}$. This will be important when we improve the regularity of u_0 successively. The improved regularity will then be reflected in the boundedness of the corresponding norms of a mollification of u_0 , cf. the implication (1.17).

Let v_ϵ be a mollification of $u_0,$ then we shall show in Lemma 1.2 below that the Dirichlet problem

(1.14)
$$\tilde{A}u_{\epsilon} + \tilde{H}(x, u_{\epsilon}, Du_{\epsilon}) + \gamma(u_{\epsilon} - v_{\epsilon}) = 0,$$

 $u_{\epsilon|_{|\partial\Omega}} = \varphi,$

has a unique solution $u_{\epsilon} \in C^{m,\alpha}(\overline{\Omega})$ such that

(1.15)
$$|u_{\epsilon}|_{m,\alpha,\bar{\Omega}} \leq \text{const}$$

where the constant depends on

(1.16)
$$|v_{\epsilon}|_{m-2,\alpha,\bar{\Omega}} + |v_{\epsilon}|_{1,\Omega}$$

2

but not explicitly on ϵ .

Thus, we conclude

(1.17)
$$u_0 \in C^{m-2,\alpha}(\bar{\Omega}) \cap C^{0,1}(\bar{\Omega}) \implies |u_{\epsilon}|_{m,\alpha,\bar{\Omega}} \leq \text{const}$$

uniformly in ϵ , and the u_{ϵ} converge in $C^2(\bar{\Omega})$ to a solution $u \in C^{m,\alpha}(\bar{\Omega})$ of (1.13), and we deduce further that

$$(1.18) u = u_0,$$

i.e.,

(1.19)
$$u_0 \in C^{m-2,\alpha}(\bar{\Omega}) \cap C^{0,1}(\bar{\Omega}) \implies u_0 \in C^{m,\alpha}(\bar{\Omega}).$$

By assumption u_0 is Lipschitz and therefore $u_0 \in C^{2,\alpha}(\overline{\Omega})$. A simple induction argument then yields the final result.

1.2. Lemma. Under the assumptions of the preceding theorem the Dirichlet problem (1.14) has a solution $u_{\epsilon} \in C^{m,\alpha}(\bar{\Omega})$ satisfying the estimate (1.15).

Proof. For simplicity we drop the subscript ϵ in u_{ϵ} resp. v_{ϵ} . Linearizing the operator in (1.14), the equation can be written in the form

(1.20)
$$-\tilde{a}^{ij}u_{ij} + a(x, u, Du) + \gamma(u - v) = 0,$$

where

(1.21)
$$\tilde{a}^{ij} = \tilde{a}^{ij}(x, u, Du)$$

is uniformly elliptic, $a \in C^{m-2,\alpha}(\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^n)$

(1.22)
$$|a(x,t,\xi)| \le c(1+|\xi|).$$

and

(1.23)
$$\frac{\partial a}{\partial t} + \gamma > 0,$$

i.e., the maximum principle can be applied to yield uniqueness of the linearized equation.

(i) Now, let $u \in C^{m,\alpha}(\overline{\Omega})$ be a solution (1.20) with boundary values φ , then we first deduce a priori estimates in the C^0 -norm because of the maximum principle, and then a priori estimates in the C^1 -norm,

(1.24)
$$|Du| \le c(|v|_1),$$

cf. [4, Theorem 15.2].

(ii) Since u is also a solution of (1.14) we obtain L^2 -estimates

$$(1.25) ||u||_{2,2} \le c(|v|_1),$$

cf. PDE II, Kap. 1.6.

(iii) The De Giorgi-Nash estimates then yield a priori estimates in $C^{1,\lambda}(\bar{\Omega})$ for some $0 < \lambda < 1$. For simplicity we shall write α for λ having in mind that

CLAUS GERHARDT

this α might not be the original α . However, once we have proved uniform C^2 estimates it will be obvious that we can switch back to the original meaning
of α .

(iv) Applying then the Schauder estimates to the solution of (1.20), we infer

(1.26)
$$|u|_{2,\beta,\bar{\Omega}} \le c(|u|_{1,\alpha}, |v|_{0,\beta}, |v|_1)$$

for some

$$(1.27) 0 < \beta \le \alpha$$

Applying the Schauder estimates again, but this time using the fact that $u \in C^2(\overline{\Omega})$, we deduce

(1.28)
$$|u|_{2,\alpha,\bar{\Omega}} \le c(|u|_{1,\alpha},|v|_{0,\alpha},|v|_1).$$

Using induction we then conclude

(1.29)
$$|u|_{m,\alpha,\bar{\Omega}} \le c(|u|_{1,\alpha}, |v_{m-2,\alpha}|, |v|_1).$$

(v) The preceding a priori estimates are also valid, if, instead of the Dirichlet problem (1.14), we consider solutions of the problems

(1.30)
$$\tilde{A}u + \sigma \tilde{H}(x, u, Du) + (1 - \sigma) \frac{\partial \tilde{a}^i(x, u, Du)}{\partial x^i} + \gamma(u - \sigma v) = 0,$$
$$u_{|_{\partial \Omega}} = \sigma \varphi,$$

for fixed but arbitrary $0 < \sigma < 1$.

Choosing $\gamma > 0$ large enough, the new operator is also coercive independently of σ , because of (1.6), and the preceding a priori estimates are also independent of σ .

Then we conclude from [3, Theorem 3.1.2] that (1.14) has a solution $u_{\epsilon} \in C^{2,\alpha}(\bar{\Omega})$, and we deduce further that u_{ϵ} is also of class $C^{m,\alpha}$, because of the Schauder theory and the uniqueness, satisfying the estimate (1.29).

Using the L^p -estimates instead of the Schauder estimates we can prove:

1.3. **Theorem.** Let $\Omega \in \mathbb{R}^n$ be open, connected with $\partial \Omega \in C^2$, and let $\varphi \in H^{2,p}(\Omega)$, $n . Then any weak solution <math>u \in C^{0,1}(\overline{\Omega})$ of (1.1) is of class $H^{2,p}(\Omega)$.

Proof. Exercise; note that [3, Theorem 3.1.2] can also be applied in the present situation. \Box

4

References

- [1] Claus Gerhardt, Hypersurfaces of prescribed mean curvature over obstacles, Math. Z. **133** (1973), 169–185, pdf file. , Global $C^{1,1}$ -regularity for solutions to quasi-linear variational inequalities,
- [2]Arch. Rat. Mech. Analysis 89 (1985), 83–92, pdf file.
- _____, Existence theorems for quasilinear operators, 2008, pdf file, Lecture notes. [3]
- [4] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983.

RUPRECHT-KARLS-UNIVERSITÄT, INSTITUT FÜR ANGEWANDTE MATHEMATIK, IM NEUEN-HEIMER FELD 294, 69120 HEIDELBERG, GERMANY

E-mail address: gerhardt@math.uni-heidelberg.de

URL: http://www.math.uni-heidelberg.de/studinfo/gerhardt/