THE QUANTIZATION OF GRAVITY: THE QUANTIZATION

OF THE FULL EINSTEIN EQUATIONS

CLAUS GERHARDT

ABsTRACT. We quantized the full Einstein equations in a globally hy-
perbolic spacetime N = N™t1 n > 3, and found solutions of the re-
sulting hyperbolic equation in a fiber bundle E which can be expressed
as a product of spatial eigenfunctions (eigendistributions) and temporal
eigenfunctions. The spatial eigenfunctions form a basis in an appropri-
ate Hilbert space while the temporal eigenfunctions are solutions to a
second order ordinary differential equation in R, . In case n > 17 and
provided the cosmological constant A is negative the temporal eigen-
functions are eigenfunctions of a self-adjoint operator Hy such that the
eigenvalues are countable and the eigenfunctions form an orthonormal
basis of a Hilbert space.
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Hamiltonian theory provided that the Lagrangian is regular, i.e., the second
derivatives of the Lagrangian with respect to the time derivatives of the vari-
ables, which form a bilinear form, should be invertible. The Einstein-Hilbert
Lagrangian is not regular. However, in a groundbreaking paper Arnowitt,
Deser and Misner (ADM) [1] proved that with the help of a global time func-
tion x° the Einstein-Hilbert functional could be expressed in a form which
allowed to define a Hamiltonian H and two constraints, the Hamilton con-
straint and the diffeomorphism constraint. Employing the Hamiltonian one
could define the Hamilton equations and combined with the two constraints
the resulting constrained Hamiltonian system was equivalent to the Einstein
equations. Bryce DeWitt used this constrained Hamiltonian system to per-
form a first canonical quantization of the Einstein equations in [4]. The
Hamiltonian H would be transformed to an operator H which would act
on functions v depending on Riemannian metrics g;; and the Hamilton con-
straint, which could be expressed as an equation,

(1.1) H=0,

would be transformed to the equation

(1.2) Hu =0.
The last equation is now known as the Wheeler-DeWitt equation. It could
at first only be solved in highly symmetric cases like in the quantization of
Friedman universes, cf. [19, 22, 18, 20, 5] and also the monographs [17, 21]
and the bibliography therein.

In [7] we quantized a general globally hyperbolic spacetime N = N™*!
n > 3, where n is the space dimension, by using the afore mentioned papers [1,
4]. In that paper we first eliminated the diffeomorphism constraint by proving
that the Einstein equations, which are the Euler-Lagrange equations of the
Einstein-Hilbert functional, are equivalent to the Euler-Lagrange equations
which are obtained by only considering Lorentzian metrics which split, i.e.,
they are of the form

(1.3) ds? = —w?(dz")? + g;;(2°, 2)dx" da?

where the function w > 0 and the Riemannian metrics g;; are arbitrary, cf.
[7, Theorem 3.2, p. 8]. Let Go3, 0 < o, 8 < n, be the Einstein tensor and
A a cosmological constant. If only metrics of the form (1.3) are considered
then the resulting Einstein equations can be split in a tangential part

(1.4) Gij +Agij =0

and a normal part

(1.5) Gapr®v? — A =0,

where v = (%) is a normal vector field to the Cauchy hypersurfaces

(1.6) {29 =t}, tea®(N).
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The mixed Einstein equations are trivially satisfied since
(17) Goj = goj = 0.

The tangential Einstein equations are equivalent to the Hamilton equations,
which are defined by the Hamiltonian H, and the normal equation is equiv-
alent to the Hamilton constraint which can be expressed by the equation
(1.1).

We also introduced a firm mathematical setting by quantizing a globally
hyperbolic spacetime N and working after the quantization in a fiber bundle
E with base space Sy, where Sy was a Cauchy hypersurface of the quantized
spacetime N. The fibers consisted of the Riemannian metrics defined in Sp.
The quantized Hamiltonian H was a hyperbolic differential operator of second
order in F acting only in the fibers. We solved the Wheeler-DeWitt equation
(1.2) in E, where u = u(t, x, g;;), for given initial values, cf. [7, Theorem 5.4,
p. 18]. Note that the Wheeler-DeWitt equation represents a quantization
of the Hamilton condition, or equivalently, of the normal Einstein equation.
The tangential Einstein equations have been ignored.

In our paper [10] and in the monograph [11] we finally quantized the full
Einstein equations by incorporating the Hamilton condition in the Hamilton
equations and we quantized this evolution equation. There are two possi-
bilities how the Hamilton condition can be incorporated in the Hamilton
equations and both modified Hamilton equations combined with the origi-
nal Hamilton equations are equivalent to the full Einstein equations, cf. [11,
Theorem 1.3.3, p. 13, & equ. 1.6.22, p. 41]. After quantization of the
modified Hamilton equations, however, the resulting hyperbolic equations
are different: one equation, let us call it the first equation to give it name, is
a hyperbolic equation where the elliptic parts—two Laplacians with respect
to certain metrics—act both in the fibers as well as in the base space of a
fiber bundle. The second equation is only a hyperbolic equation in the base
space, since the Laplacian acting in the fiber had been eliminated by the
modification.

The first equation has the form

" —9
(1.8) —Au— (n—1)pAu — nTgo(R —2M)u =0,

cf. [10, equ. (4.51)] or [11, equ. (1.4.88)], where the embellished Laplacian
Au is the Laplacian in the base space Sy with respect to the metric g;; if the
function

(1.9) ue CF(E,C)
is evaluated at

(1.10) (x,9:i5(2)) € E,
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or equivalently, after choosing appropriate coordinates in the fibers,

n 0 ou

(1.11) 1) o) T A

+ tQ_%{—(n —1)Asu— nT_ZRUU} + n- 2t2/1u =0,
where
(1.12) m = w A n = dim Sp.

The index o indicates that the corresponding geometric quantities are defined
with respect to the metric 0;; € M, where M is the Cauchy hypersurface,

(1.13) M={t=1}.

The term R, denotes the scalar curvature of the metric o;; and A is a cos-
mological constant. By choosing a suitable atlas in the base space Sy, cf.
Lemma 3.1 on page 14, each fiber M (x) consists of the positive definite ma-
trices o;;(x) satisfying

(1.14) deto;(z) =1,

and hence, it is isometric to the symmetric space

(1.15) SL(n,R)/SO(n) = G/K.

cf. [4, equ.(5.17), p. 1123| and [16, p. 3].

In [10] and [11] we could solve the hyperbolic equation (1.11) only ab-
stractly. But because of the results in our paper [12] we are now able to
apply separation of variables to express the solutions u of (1.11) as a product
of spatial and temporal eigenfunctions, or better, eigendistributions. There

are three types of spatial eigenfunctions: First, the eigenfunctions of —A,,
for which we choose the elements of the Fourier kernel ey p, such that

(1.16) —Anerse = (AP +101*)ex o,

see Section 3 on page 14 for details, and then the eigenfunctions of the oper-
ator

(1.17) —n—-1)A, — =2

R,.

While the operator in (1.16) acts in the fibers, and hence, the variables are
the metrics o;; € M, the operator in (1.17) is an elliptic differential operator
of second order in Sy for a fixed o;;. Thus, we have to specify a Riemannian
metric 0;; in Sp which is considered to be important either for physical or
mathematical reasons. When a globally hyperbolic spacetime is quantized
then Sy is a Cauchy hypersurface, usually a coordinate slice, and it will be
equipped with a Riemannian metric x;;. It can be arranged that an arbitrary
Riemannian metric x;; will be an element of M. Thus, our choice will be
provided by the initial Cauchy hypersurface. In [13] we incorporated the
Standard Model into our model and hence, we chose Sy = R? and Xij = 0ij.
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When we quantized black holes, Schwarzschild-AdS or Kerr-AdS black
holes, the interior region of a black hole can be considered to be a globally
hyperbolic spacetime and the slices {r = const} are Cauchy hypersurfaces
with induced Riemannian metrics x;;(r) (note that here r is a label not a
variable). If the event horizon is characterized by r = ¢ we proved that the
Riemannian metrics x;;(r) converge to a Riemannian metric x;;(ro) in an
appropriate coordinate system. Thus, we chose Sy to be the event horizon
and x;; = X:j(70). Moreover, Sy could be written as a product

(1.18) So =R x My,
where My was a compact Riemannian manifold and x a product metric
(1.19) X=0Ra,

where § is the standard "metric" in R and ¢ a Riemannian metric on Mj.

Following the lead from the black holes we shall also assume in case of the
quantization of a general globally hyperbolic spacetime N = N1 n > 3,
that Sy is a product

(120) S() =R" x Mo,
at least topologically, and that M is a compact manifold of dimension
(].2].) dimM() =Nn-—Nni.

If N should be a mathematical model of our universe then we would choose
n; = 3 and M should be a compact manifold, hidden from our observation,
of fairly large dimension. Indeed we shall see that n > 17 would be preferable
if at the same time the cosmological constant A would be negative. Moreover,
assuming that N should be equipped with an Einstein metric we would choose
My to be a Calabi-Yau manifold if A = 0, while in case of A4 < 0 Mj should
be a Kahler-Einstein space, and if A > 0 then Mj is supposed to be a round
sphere with a given radius. The metric o which we would use in the definition
of the operator (1.17) would then be

(1.22) c=x=0®0a7,

where ¢ would be the Euclidean metric in R™ and ¢ the Riemannian metric
in My. The differential operator in (1.17) would then have the form

n—2

(1.23) —(n=1)As = (n—-1)A5 - Rs,

which would have eigenfunctions of the form

(1.24) Cp

where ( is an eigenfunction of the Euclidean Laplacian and ¢ an eigenfunction
of the remaining part of the operator. Hence, we would have three types
of spatial eigenfunctions which are well-known—both mathematically and
physically—and their product will play the part of the spatial eigenfunctions
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of the hyperbolic equation (1.11). The solution u of that equation will then
be of the form

(1.25) u = wuly

where

(1.26) v = e 0 [g0]

is an eigenfunction of —A); satisfying

(1.27) Ao = (AP + oo
and

(1.28) v(x(z)) =1 Ve S,

for details we refer to the arguments following Remark 3.2 on page 16. The
function w depends only on t and it will solve a second order ordinary dif-
ferential equation (ODE). The functions u will be evaluted at (¢, x, x). More
precisely, we proved:

Theorem 1.1. Assume that Sy is a direct product as in (1.20) endowed
with the metric x in (1.22). Then, a solution u = u(zx,t,0;;) of the hyperbolic
equation (1.11) can be expressed as a product of spatial eigenfunctions v =
v(oi), ¢ =CY), vr = pr(z), k € N, and temporal eigenfunctions w = w(t);
u 15 evaluated at o5 = 45, where

(1.29) u = wolPy.
The temporal eigenfunction w is a solution of the ODE

w9 W —2/1\2 2
6 -1y o (") T (A

(1.30) )
4 n —
2 (0= DIEP + o + e Aw = 0

m 0 <t<oo.

In Section 5 on page 20 we look at the case n > 17 and A < 0 and
prove that the equation (1.30) can be considered to be an implicit eigenvalue
problem where A plays the part of the eigenvalue provided

16(n — 1)

(1.31) IA]? < 238.

To understand the corresponding theorem, we need a few remarks and defi-
nitions. First we multiply equation (1.30) by
16(n — 1)

)

(1.32) -

then we use the abbreviations

(1.39) po == ey o),
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16(n —1)

(134 my = =D )i + )
and
(1.35) Mg = w
and define for w € C*(R )
(1.36) Bw = —t*mg(tma—w) —t72
' v i\ ot Hott-

Remark 1.2. Note that pg > 0 which would in general deprive of success
any attempt to solve a meaningful eigenvalue problem for this operator. But
if (1.31) is satisfied and n > 17, then it is possible to prove the following
theorem in Section 5 on page 20.

Theorem 1.3. There are countably many solutions (A;, w;) of the implicit
etgenvalue problem

(137) Bwi — mg/lithi = mth_%wi

with eigenfunctions w; € Ho such that

(1.38) Ay < Aipg <0 VieN,

(1.39) lim 4; =0,

and their multiplicities are one. The transformed eigenfunctions
(1.40) i(t) = wi AT e),

where

(1.41) A= (=A)7

form a basis of Ha and also of L*(R,,m).

The equation (1.37) is identical to the equation (1.30) if A is replaced by
A;. The vector spaces Ho and L2 (R, m) are Hilbert spaces which are defined
later.

However, if we consider A < 0 to be a fixed cosmological constant and not
a parameter which can also play the role of an implicit eigenvalue, we have
to use a different approach.

First, let us express equation (1.30) in the equivalent form

cﬁol{ — %(tm%—z:) —t" 2w — tm+2m2/lw}
(1.42) B
n—
- =D - )lel? + madw =0,
where

(1.43) Po(t) =t
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and where we used the definitions (1.33) and (1.35). The term
(1.44) (n— DIEP + fix

is an eigenvalue of the operator in (1.23). |¢|? with £ € R™ is a continuous
eigenvalue while the sequence fi, k € N, satisfies the relations

(1.45) fio < fir < fig < -

and

(1.46) lim fi = oco.
k— o0

The corresponding eigenfunctions ¢ are smooth and the eigenspaces finite
dimensional.
On the other hand, the operator
N 0 0
(1.47) Hyw = 4,2)0_1 - = (tm—w) —t" 2 pow — " 2mg Aw
ot ot

is self-adjoint in the Hilbert space H = L*(R,dp), cf. (5.80) on page 28, with
a complete system of eigenfunctions w;, ¢ € N, and corresponding eigenvalues

(1.48) 0< A <A <A<

The eigenspaces are all one dimensional and the ground state wy does not
change sign, cf. Remark 5.9 on page 25. Thus, in order to solve equation
(1.42) we have to find for each pair (w;, A;) eigenvalues fi, and & € R™ such
that

16(n — 1)

(1.49) {(n=DIEP + e} =\

This is indeed possible provided either fig < 0 or

-1~ _,16(n—1)_
o 2)\01¥M0,

n

(1.50) A

cf. Corollary 5.15 on page 30. Using the eigenvalues on the left-hand side
of (1.49) and the corresponding eigenfunctions of the operator (1.23) we
then define a self-adjoint operator H; in a Hilbert space H having the same
eigenvalues \; as H, but with higher finite multiplicities. Relabelling these
eigenvalues to include the multiplicities and denoting them by by they satisfy

(1.51) 0<A <A <--

and

(1.52) lim ); = co.
1—> 00

In Section 6 on page 34 we shall prove that the operator e‘BFIU, 8 >0, is of
trace class from which we conclude that e=##1 is also of trace class. We are
then in a similar situation as in [11, Chapter 6.5|, where we proved:
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Lemma 1.4. For any B > 0 the operator

(1.53) e P

1s of trace class in H, i.e.,

(1.54) tr(e”PH1) = Ze_ﬂ:\i < 00.
=0

Let

(1.55) F = F1(H)

be the symmetric Fock space generated by H and let

(1.56) H =dI'(Hy)

be the canonical extension of Hy to % . Then

(1.57) e PH

is also of trace class in F

(1.58) tr(e ) = H(l - e_ﬂs‘i)_1 < 0.

i=0

Remark 1.5. In [11, Chapter 6.5] we also used these results to define the
partition function Z by

(1.59) Z =tr(e PH) = H(l — e B~
i=0

and the density operator p in % by

(1.60) p= 7 LleBH

such that

(1.61) trp=1.

The von Neumann entropy S is then defined by
S = —tr(plogp)
=log Z + BZ ' tr(He PH)

(1.62) Odlog Z
=logZ —p a5

=logZ + BE,
where F is the average energy
(1.63) E =tr(Hp).

FE can be expressed in the form

(1.64) E= i A
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Here, we also set the Boltzmann constant
(1.65) kg =1.

The parameter § is supposed to be the inverse of the absolute temperature
T

(1.66) B=T""

For a more detailed analysis and especially for the dependence on A we refer
to [11, Chapter 6.5].

Remark 1.6. Let us also mention that we use Planck units in this paper,

ie.,
(1.67) c=G=kp=h=1.
Moreover, the signature of a Lorentzian metric has the form (—,+,--- ,+).

2. QUANTIZING THE FULL EINSTEIN EQUATIONS

Let N = N"t! n > 3, be a globally hyperbolic Lorentzian manifold
with metric gog, 0 < o, 8 < n. The Einstein equations are Euler-Lagrange
equations of the Einstein-Hilbert functional

(2.1) /N (R A),

where R is the scalar curvature, A a cosmological constant and where we
omitted the integration density in the integral. In order to apply a Hamil-
tonian description of general relativity, one usually defines a time function
2% and considers the foliation of N given by the slices

(2.2) M(t) = {2° = t}.
We may, without loss of generality, assume that the spacetime metric splits
(2.3) ds? = —w?(dz®)? + g;;(2°, 2)da’ da?

cf. [7, Theorem 3.2]. Then, the Einstein equations also split into a tangential
part

(24) Gij+ Agij =0
and a normal part
(2.5) Gopr®v? — A =0,

where the naming refers to the given foliation. For the tangential Einstein
equations one can define equivalent Hamilton equations due to the ground-
breaking paper by Arnowitt, Deser and Misner [1]. The normal Einstein
equations can be expressed by the so-called Hamilton condition

(2.6) " =0,

where H is the Hamiltonian used in defining the Hamilton equations. In the
canonical quantization of gravity the Hamiltonian is transformed to a partial
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differential operator of hyperbolic type # and the possible quantum solutions
of gravity are supposed to satisfy the so-called Wheeler-DeWitt equation

(2.7) Hu =0
in an appropriate setting, i.e., only the Hamilton condition (2.6) has been
quantized, or equivalently, the normal Einstein equation, while the tangential
Einstein equations have been ignored.

In [7] we solved the equation (2.7) in a fiber bundle E with base space Sy,

(2.8) So = {2° = 0} = M(0),
and fibers F(x), x € Sp,
(2.9) F(z) C T;*(So),

the elements of which are the positive definite symmetric tensors of order two,
the Riemannian metrics in Sy. The hyperbolic operator H is then expressed
in the form

(2.10) H=—-A—(R-2A),

where A is the Laplacian of the DeWitt metric given in the fibers, R the
scalar curvature of the metrics g;;(x) € F(z), and ¢ is defined by

2 det 9ij

where p;; is a fixed metric in Sy such that instead of densities we are con-
sidering functions. The Wheeler-DeWitt equation could be solved in E but
only as an abstract hyperbolic equation. The solutions could not be split in
corresponding spatial and temporal eigenfunctions.

The underlying mathematical reason for the difficulty was the presence
of the term R in the quantized equation, which prevents the application of
separation of variables, since the metrics g;; are the spatial variables. In
a recent paper [12] we overcame this difficulty by quantizing the Hamilton
equations instead of the Hamilton condition.

As a result we obtained the equation

(2.12) —Au=0

in E, where the Laplacian is the Laplacian in (2.10). The lower order terms
of H

(2.13) (R —2A)p

were eliminated during the quantization process. However, the equation
(2.12) is only valid provided n # 4, since the resulting equation actually
looks like

(2.14) f(g —2)Au = 0.
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This restriction seems to be acceptable, since n is the dimension of the base
space Sy which, by general consent, is assumed to be n = 3. The fibers add
additional dimensions to the quantized problem, namely,

1
(2.15) dim F = % =m+ 1.
The fiber metric, the DeWitt metric, which is responsible for the Laplacian
in (2.12) can be expressed in the form

B 16(n —1)

(2.16) ds® = dt? + oG Apderde?

where the coordinate system is

(2.17) (€)= (£°,¢%) = (t,€7).

The (£4), 1 < A < m, are coordinates for the hypersurface

(2.18) M = M(z) = {(gi;) : t* = det g;;(z) = 1,V € Sp}.

We also assumed that S = R™ and that the metric p;; in (2.11) is the
Euclidean metric ;5. It is well-known that M is a symmetric space

(2.19) M = SL(n,R)/SO(n) = G/K.

It is also easily verified that the induced metric of M in F is isometric to the
Riemannian metric of the coset space G/K.

Now, we were in a position to use separation of variables, namely, we wrote
a solution of (2.12) in the form

(2.20) = w(t(e),

where v is a spatial eigenfunction of the induced Laplacian of M
(2.21) —Apv = —Av = (IA? + |p]*)v

and w is a temporal eigenfunction satisfying the ODE

(2.22) W+ mt b+ pot 2w =0

with

(2.23) o= =D a2 4.

The eigenfunctions of the Laplacian in G/K are well-known and we chose
the kernel of the Fourier transform in G/K in order to define the eigen-
functions. This choice also allowed us to use Fourier quantization similar
to the Euclidean case such that the eigenfunctions are transformed to Dirac
measures and the Laplacian to a multiplication operator in Fourier space.

In the present paper we want to quantize the full Einstein equations by
using a previous result, cf. [10, Theorem 3.2] or [11, Theorem 1.3.4], where
we proved that the full Einstein equations are equivalent to the Hamilton
equations and a scalar evolution equation which we obtained by incorporat-
ing the Hamilton condition into the right-hand side of the second Hamilton
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equations and we quantized this evolution equation in fiber bundle E with
base space Sy and fibers

(2.24) F(z) € T9*(Sy),  Va € So,

cf. (2.9).
The quantization of the scalar evolution equation then yielded the follow-
ing hyperbolic equation in £

(2.25) —Au— (n—1)pAu — "T*%(R —2/A)u =0,

cf. [10, equ. (4.51)] or [11, equ. (1.4.88)]. where the embellished Laplacian
Aw is the Laplacian in the base space Sp with respect to the metric g;; if the
function

(2.26) u e CP(E,C)
is evaluated at
(2.27) (2, 9i5(a) € .
Let us recall that the time function ¢ in (2.17) is defined by
(2.28) =

and that ¢ is independent of z, cf. [10, Lemma 4.1, p. 726], and, furthermore,
that the fiber elements g;;(x) can be expressed as

(2.29) gij () = tr oy (w),

where the metrics 0;;(x) are elements of the fibers of the subbundle
(2.30) E,={t=1}CFE

with fibers

(2.31) M(z) C F(x) Vz e

consisting of metrics o;;(z) satisfying
(2.32) det o;;(x) = det p;;(x) VreS.

Now, combining (2.29), the definition of the fiber metric (2.16) and the
relation between the scalar curvatures of conformal metrics the hyperbolic
equation (2.25) can be expressed in the form

n —m O /. Ou
e ()

_n -2
16(n—1) ot Ay
+ t2*%{—(n —1)Ayu — nT_2RJu} + nT_2t2Au =0,

(2.33)

where the index ¢ indicates that the corresponding geometric quantities are
defined with respect to the metric o;.

In the following sections we shall solve equation (2.33) by employing sep-
aration of variables to obtain corresponding spatial and temporal eigenfunc-
tions or eigendistributions.
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3. SPATIAL EIGENFUNCTIONS

Let us first look for spatial eigenfunctions of the operators

(3.1) “Au
and
(3.2) —(n—-1)A, - ”;QRU.

In case of the Laplacian in (3.1) we would want to use the fact that each
Cauchy hypersurface M (z) is isometric to the symmetric space

(3.3) SL(n,R)/SO(n) =G/K
provided
(3.4) det p;j(x) = 1.

In our former papers [12] and [13] we had chosen Sp = R™ and
(3.5) pij = 0ij,

i.e., the condition (3.4) had been automatically satisfied by choosing Eu-
clidean coordinates. However, for the quantization of black holes this choice
will not be possible since Sy will then be the event horizon equipped with a
non-flat metric.

To overcome this difficulty we need the following lemma:

Lemma 3.1. Let Sy be a Riemannian manifold of dimension n > 2 and
of class C* for 0 < k € N and 0 < a < 1, wheree C** are the usual Holder
spaces, and let p;; be a metric of class ke in Sy, then there exists an atlas
{(z5,Ug)} of C**12 charts such that the metric p;j expressed in an arbitrary
chart (z3,Up) satisfies

(3.6) det p;;(z) =1 Vo exg(Ug) CR™
Proof. We first prove (3.6) locally. Let p;; be a local expression of p in

coordinates = (x%) and let & = () be a coordinate transformation and
Pkl be the corresponding expression for the metric p, then

Ozt Oz7

(3.7 PRl = Pij aor o1
and
(3.8) det s = dt pis| 22|
oz
where
ox ox’
(3.9) 3| = det 55k

the Jacobi determinant.
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Let the coordinates z = (z') be defined in an open set 2 C R" with
boundary 92 € C*T1¢ then, due to a result of Dacorogna and Moser, there
exists a diffeomorphism y = y(z), y € C*+1%(2,R™) such that

oy .
(3.10) ‘&v = Ay/det p;; in §2,
y(z) == in 042,
where
d
(3.11) A Jod

- Jo \/det p; da’
cf. [3, Theorem 1’ & Remark, p. 4].
Hence, the diffeomorphism

(3.12)

2

I

e
<

satisfies
0%
(3.13) 92l = v det p;j,
X

or equivalently,
2

ox _1

o
where py; are the coordinate expressions of p in the coordinates z.

From the local result we easily infer the existence of an atlas consisting of
local charts with that property. O

(3.14) det pry = det p;;

Thus, we are able to identify the fiber M (x) with the symmetric space
G/K in (3.3) and we may choose the elements of the Fourier kernel ey, as
eigenfunctions of —Aj, such that

(3.15) —Anrens, = (AP + [p1*)er s,
see [15, Chapter III] and [12, Section 5| for details, where
1
1 P=_—(n-1)
(3.16) > = 50— 1%,

cf. [12, equ. (5.40)]. Here, X is an abbreviation for Aa, where a € (R"~1)* is
a character representing an elementary graviton and A € R, . There are

a;, 1<i<n-1
(3.17) a=<" -
a;5, 1<i<j<n
special characters. These characters are normalized to have ||| = 1. They

correspond to the degrees of freedom in choosing the entries of a metric g;;
satisfying
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Remark 3.2. Due to the scalar curvature term R, in equation (3.2) it is
evident that spatial eigenfunctions for this operator cannot be defined on the
full subbundle Ey, cf. (2.30) on page 13, but only for a fixed metric o;; € M,
if R, = const maybe for that class of metrics. However, in general, we cannot
assume that the scalar curvature is constant, since we shall have to pick a
metric x;; that is a natural metric determined by the underlying spacetime
which has been quantized. In case of a black hole x;; will be a metric on
the event horizon. Now, let us recall that x;; should belong to fibers of the
subbundle E;, hence, we have to choose p;;, which is still arbitrary but fixed,
to be equal to x;;

(3.19) Pij = Xij-

Thus, we evaluate the spatial eigenfunctions at
(3.20) (x, xij () Ve Sy,
especially also ey p,, i.e.,
(3.21) exbo (Xij (%))
may not depend on x explicitly. Now, it is well known that
(3.22) ex b (0ij(z)) =1 Ve

and the Laplacian Ay, is invariant under the action of G on M. The action
of g € M on o € M is defined by

(3.23) l9lo = gog”,
where ¢g* is the transposed matrix. Since every o € M is also an element of
G we conclude, by choosing

(3.24) 9=90=Vx""
that

(3.25) [90]x = id = (6;5),
and, furthermore, that the function

(3.26) v = exp, © [90]

is an eigenfunction of —Aj; satisfying

(3.27) —Auv = (A2 + o)
and

(3.28) v(x(z)) =1 Vo eSp.

Let us summarize these results in

Theorem 3.3. Let ey, be an eigenfunction of —Aps as in (3.15) and let
go be defined as in (3.24), then

(3.29) v = e, © [90]
is an eigenfunction of —Ap; satisfying (3.27) as well as (3.28).
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Next, let us consider the operator in (3.2) with o = x. We furthermore
assume that Sy is a direct product,

(3.30) So = R™ x My,

where My is a smooth, compact and connected manifold of dimension n—ny,
(3.31) dim My = n — ny = ng.

The metric x;; is then supposed to be a metric product,

(3.32) X=0R®0,

where 6 is the Euclidean metric in R™ and & a Riemannian metric in M.
In case of a black hole n; will be equal to 1.

Since the scalar curvature of the product metric x is equal to the scalar
curvature of &,

(333) RX = R&?
the operator in (3.2) can be expressed in the form
n—2

(3.34) —(n-1)A4As —(n—1)A; — TR,—,.

Hence, the corresponding eigenfunctions can be written as a product
(3.35) Cp,

where ( is defined in R™,

(3.36) Cy) = gyeR™,

such that

(3.37) —As¢ = €%,

while p € C°°(My) is an eigenfunction of the operator

(3.38) A=—(n—1)As — ";2R5.

Since My is compact it is well-known that A is self-adjoint with countably
many eigenvalues i, k¥ € N, which are ordered

(3-39) fio < fir < fig < -+

satisfying

(3.40) lim fig = oo.
k—o0

The corresponding eigenfunctions ¢ are smooth and the eigenspaces finite
dimensional. The eigenspace belonging to fig is one dimensional and g never
vanishes, i.e., if we consider ¢y to be real valued it will either be strictly
positive or negative.

Let us summarize the results we proved so far in the following theorem:
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Theorem 3.4. Assume that Sy is a direct product as in (3.30) endowed
with the metric x in (3.32). Then, a solution u = u(zx,t,0;;) of the hyperbolic
equation (2.33) on page 13 can be expressed as a product of spatial eigenfunc-
tions v = v(0s5), ¢ = C(y), vr = vr(x), k € N, and temporal eigenfunctions
w=w(t); u is evaluated at o;; = X;;, where

(3.41) u = wu(pg.
The temporal eigenfunction w is a solution of the ODE

n 0 ow
——t T (") + (AP + pHw
(3.42) 16(n—1) at* ot

~2
275 {(n — D€ + fin}w + "th/lw =0
m 0 <t < oo.

In the next sections we shall solve the ODE and shall also show that for
large n, n > 17, and negative A w can be chosen to be an eigenfunction of
a self-adjoint operator where the cosmological constant plays the role of an
implicit eigenvalue.

4. TEMPORAL EIGENFUNCTIONS: THE CASE 3 <n <16

Let us first divide the equation (3.42) by Tom—T) to obtain what we con-
sider to be a normal form

tfmﬁ (tmaﬂ) +472 16(n — 1)

2t 16(n — 1)
n

(AP + p*)w

((n = DleP + oo+ 2D 20— 0

Using the abbreviations

(1.2 po =D a4 ),
(4.9 my = =D 012 4 )
and

(4.4) - 8(n — 1T)L(n —2)

we can rewrite the equation (4.1) in the form

0 0
(4.5) t—ma(tma—qf) 2 pow + 2 T maw + t2ma Aw = 0.
We shall use two different approaches in solving this ODE depending on the
sign of
m —1)2
(4.6) po — A
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Let us recall that

(n—1)(n+2)
4. fr— _—
(47) m !
and

—1)%n
4. 2_
(4.8) p D
One can easily check that
(4.9) 16(n—1) , (m—=1?> _|>1, 3<n<16,
‘ n_ ’ 4 T < -238, 17<n.

Hence, in case 3 < n < 16 the term in (4.6) will be strictly larger than 1 for
all values of |A| and in case n > 17 strictly negative for small values of |\|, or
more precisely, for all

(4.10)

16(n — 1
16 = 1) )2 < 238,
n

Let us first consider the case 3 < n < 16 and let us rewrite equation (4.5)
in the form
(4.11) 4+ mt w4t o + mat* T +mg Aty w =0 Vi > 0.
Then we look at the more general equation
(4.12) W+ mt w4t (o + qo(t)w =0 Vt>0,
for which we proved in [14, Theorem 1.1] the following theorem

Theorem 4.1. Let us assume that the constants m, ug and the real func-
tion qo € C1(R4) have the properties

(4.13) m>1,
—1)2
(4.14) 1<u0—%51+% v >0,
and
(4.15) }51(1) qo(t) =0.

Then any non-trivial solution w of (4.12) satisfies

: 2 420502y _
(4.16) }gr(l)(|w| +t*|w]?) = oo
as well as

(4.17) lim sup|w|? = oo.
t—0
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We also described the oscillation behaviour of w near ¢ = 0, which can be
considered to be a big bang of the solutions, as to be asymptotically equal
to the oscillations of the solutions of the ODE

(4.18) W+ mt T w + pot 2w =0 Vit >0,

cf. [14, Theorem 3.2]. The solutions of the above equation are

_(m-1)

(4.19) w(t) =t = eHlst >0,
where

m—1)2
(4.20) = po — %,

see [12, equ. (273)].

5. TEMPORAL EIGENFUNCTIONS: THE CASE n > 17

5.1. Treating A as an eigenvalue. Now, let us consider the case n > 17
assuming in addition that (4.10) on page 19 is satisfied such that

—1)2
(5.1) ﬁzyo—%<o
and also that
(5.2) A <0.

The last two assumptions shall allow us to consider (4.5) on page 18 as an
implicit eigenvalue equation where A plays the role of the eigenvalue. We
shall prove that the corresponding operator is self-adjoint with a pure point
spectrum provided the constant m; in (4.5), which is defined by (4.3), is
strictly positive. This can easily be arranged by choosing |£| large enough.
Notice also that at most finitely many eigenvalues i, are negative.
The equation (4.5) can be written in the equivalent form
m OW

%( E) - t*2/¢ow — ?moAw = tzfﬁmlw Vit >0.
We have a similar equation, or, since the constants, m1, ms, are not specified
and their actual positive values are irrelevant, an identical equation already
solved by spectral analysis in [5, Section 4 & Section 6]. Therefore, we shall
only outline the proof by giving the necessary definitions and stating the
results but referring the actual proofs to the old paper.

Closely related to equation (5.3) is the following equation
0, 0u

(5.4) —t o () —t R — Pma Au = 2=vmu V>0,

where [1 is defined in (5.1). If w € C*(R?) is a solution of (5.3) then

(5.3) —t™

m—1

(5.5) u=1t72 w
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is a solution of (5.4) and vice versa, as can be easily checked. The operator

g, 0u
_ 19 0uy o
(5.6) Bu = —t T (tat) t~

is known as a Bessel operator.

Definition 5.2. Let I = (0,00) and let ¢ € R. Then we define
(5.7) L*(I,q) ={ue L} (I,R): /17~q|u|2 < oo}
L?(I,q) is a Hilbert space with scalar product
(5.8) (u1,uz)q = /ITqu1U2,

but let us emphasize that we shall apply this definition only for ¢ # 2. The
scalar product (-, -)o will be defined differently.

We consider real valued functions for simplicity but we could just as well
allow complex valued functions with the standard scalar product, or more
precisely, sesquilinear form.

Definition 5.3. For functions w,u € C2°(I) define the operators

(5.9) Ajw = —t_m% (tm%) —t 2 pow — t*moAw
and
(5.10) Aju = —t_lg (t%) — 2 fiu — t*ma Au,

as well as the scalar product

(5.11) <U1,UQ>2 = <Bu1 + t2m2u1,uQ>1 Vuy,us € CSO(I)
The right-hand side of (5.11) is an integral. Integrating by parts we deduce
(512) <U1, U2>2 = /(ﬁllﬂg — ﬂt71U1U2 + t?’mzuluz),
I

i.e., the scalar product is indeed positive definite because of the assumption
(5.1). Let us define the norm
(5.13) lull3 = (u,u)2 Vue CF(I)
and the Hilbert space Ha = Ha(I) as the closure of C°(I) with respect to
the norm ||-||2.

Proposition 5.4. The functions u € Ho have the properties
(5.14) u € C°([0, 00)),

(5.15) () < clull.  Vtel,
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where ¢ = ¢(fi, ma, |A)),

(5.16) tlgr(l)u(t) =0
and
(5.17) lu(t)| < cfjul|2t™* Vtel,

where ¢ is a different constant depending on i, mg and |A|.

Proof. Let us first assume u € C2°(I) and let § > 0, then

(5.18) _2/ uu</ tlu|? + /t—1|u|2.

This estimate is also valid for any u € Hs by approximation which in turn im-
plies the relations (5.15), (5.16) and also (5.14) since w is certainly continuous
in 1.

It remains to prove (5.17). Let u € Hy and define v = v(7) by

(5.19) o(1) = u(r™h),

where 7 = ¢t~! for all t > 0. Applying simple calculus arguments we then
obtain

(5.20) / (/2 = i ol? + mar ol hdr = [|ul2
as well as
(5.21) /0 {T|v’|2—ﬂ7_1\v|2}d7:/0 (taf2 — it~ Jul2}dt.

Moreover, first assuming, as before, that v and hence v are test functions we
argue as in (5.18) that for any 6 > 0

V2(8) = 2/051/11 < 2</057'|v’|2> : </0571|v2>;
o[ ([

< cfful30?

where we used (5.20) for the last inequality and where ¢ = ¢(fi, m2). Setting
§ = t! for arbitrary ¢ > 0 we have proved the estimate (5.17) for test
functions and hence for arbitrary u € Hs. O

We are now ready to solve the equation (5.4) as an implicit eigenvalue
equation. First, we need

Lemma 5.5. Let K be the quadratic form

(5.23) K(u)=m /t3_%u2,
I
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then K is compact in Hs, i.e.,

(5.24) Ui u = K(u;) — K(u),

2
and positive definite, i.e.,
(5.25) K(u) >0 Vu # 0.
For a proof we refer to [5, Lemma 6.8]. Then, we look at the eigenvalue
problem for v € Hso
(5.26) Bu + mat®u = Amyt?
or equivalently,
(5.27) B(u,v) = (Bu + mat?u,v); = AK (u,v) Yv € Ha,
where K (u,v) is the bilinear form associated with K.

Theorem 5.6. The eigenvalue problem (5.27) has countably many solu-
tions (Ai, U;), U; € Ha, with the properties

(5.28) PYRS )\i+1 VieN,
(5.29) lim A; = oo,
3
(5.30) K (g, t7) = 045
The pairs (N\;,@;) are recursively defined by the variational problems
. . . [ B(u
(5.31) )\OZB(U0>=1Hf{K((u))507éU€H2}
and for i >0
- . B(u) o
(5.32) \; = B(@;) = inf ) :0#u e Hy, K(u,u;) =0,0<j5<i—1,.

The (@;) form a Hilbert space basis in Ha and in L?(1,3— %), the eigenvalues
are strictly positive and the eigenspaces are one dimensional.

Proof. This theorem is well-known and goes back to the book of Courant-
Hilbert [2], though in a general separable Hilbert space the eigenvalues are
not all positive and the eigenspaces are only finite dimensional . For a proof
in the general case we refer to [6, Theorem 1.6.3, p. 37].

The positivity of the eigenvalues in the above theorem is obvious and
the fact that the eigenspaces are one dimensional is proved by contradiction.
Thus, suppose there exist an eigenvalue A = \; and two corresponding linearly
independent eigenfunctions ui,us € He. Then, for any ty > 0 there would
exist an eigenfunction u € Ho with eigenvalue A satisfying v(¢p) = 0 and the
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equation (5.26). Multiplying this equation by w and integrating the result in
the interval (0,%p) with respect to the measure ¢ dt we obtain

to 4_4 to
(5.33) / —at e <t / Amat~ 2,
0 0

where we used

t
(5.34) 1< ?0 Vi e (0,tg),
yielding a contradiction if tq is sufficiently small. O

The functions

5.35 wi(t) = a;(\, U
( i
then satisfy the equation
5.36 Bu; + mz/\fﬁﬁui = mltg_%ui
( :

and they are mutually orthogonal with respect to the bilinear form

(5.37) / t3uw,
I

as one easily checks. Furthermore, the following lemma is valid:

Lemma 5.7. Let (A, u) € R x Hy, be a solution of
(5.38) Bu 4 mpA 1 20 = myt? v,
then there exists © such that
(5.39) X=X A uwe (u).
Proof. Define
(5.40) a(t) = w(ATE-1 1),
then the pair (A, @) is a solution of the equation (5.26), hence the result. O

Thus we have proved

Theorem 5.8. There are countably many solutions (A;, u;) of the implicit
eigenvalue problem

(5.41) Bui — mg/litzui = mth_%ui
with eigenfunctions u; € Hy such that

(542) Al < Ai+1 <0 Vie N,
(5.43) lim A; =0,

and their multiplicities are one. The transformed eigenfunctions

(5.44) @i(t) = w(AT ),
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where

n—1

(5.45) Ai = (=A)7
form a basis of Ha and also of L*(I,1).

Remark 5.9. The eigenfunctions g resp. ug corresponding to the small-
est eigenvalues \g resp. Ay do not change sign in I, since

(5.46) B(ju) < Bu)  Yu e Ho,

in view of (5.6), and hence we deduce that || is also an eigenfunction with
eigenvalue \g, i.e., we may assume g > 0. But if 4y would vanish in a ¢ty > 0
then its derivative @, would also vanish in tg yielding %y would completely
vanish, a contradiction.

In Definition 5.3 we defined the operators A; and A;. The operator A;
can be expressed with the help of the Bessel operator B as

(5.47) Aju = Bu — ?*myAu.
Let us express Ay similarly as
(5.48) Ajw = Bw — *msy Aw,
where

- 1o} ow
5.49 Bw = —t""— (t"==) — t 2 pow.
(5:49) v " 5p) Hotw

We claim that B and B are unitarily equivalent.

Lemma 5.10. Let  be the linear map from L?(I,m) to L*(1,1) defined

by

(5.50) pw)=u= T w.

Then @ is unitary and, if B resp. B are defined in C°(I), the relation
(5.51) B=y'oBogp

1s valid.

Since we assume for simplicity the Hilbert spaces to be real Hilbert spaces
it would be better to call the map ¢ orthogonal but the result would be same
if we would consider complex valued functions and the corresponding scalar
products.

For the simple proof of the lemma we refer to [5, Lemma 4.1]. Moreover,
for any measurable function f = f(t) we have

(5.52) (fo(w), o)1 = (fw,v)m  Yv,w e CZ().
Hence, we infer
(p(w), p(v))2 = (Bp(w) + t*map(w), p(v))1

(5.53) )
= (Bw + t“maw, V), Yo, we C°(I),
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(5.54) (Bw,v)m = (Bo(w), p(v)
and we deduce, by setting u = p(w) = i w, that

(5.55) (Bw, w)m = (Bu,u); = /(t|u|2 — atHul?) >0,

or equivalently, '

(5.56) /tmw - /(t|u|2 — ) + uo/tm_2|w|2 Vw e C(I),
Let us relcall that & <IO and po > 0. '

Remark 5.11. Defining the Hilbert space ’}:lg by

(5.57) Ho={w=t""TuiuecHs}
with norm
(5.58) lwll2 = {[ull2

and the quadratic form K by
(5.59)  K(w) = (mit> ww,w)m = (mit> wu,u)y = K(u)  VYwe Hy
it is fairly easy to verify that all results in Theorem 5.6 remain valid if

B,B,K , Ho are replaced by B,B,K,H;. The eigenvalues \; are identical
and the eigenfunctions are related by

m—1

(5.60) i =t i,
ie.,

(5.61) Bi; + 2mapt>h; = Aymat®™ v ;.

Similarly, the transformed eigenfunctions u; in Theorem 5.8 correspond to
(5.62) wi =t~ T

satisfying

(5.63) Bw; — maoAit?u; = mth_%wi,

which is the original ODE (4.5) on page 18 with A = A;.
For completeness let us restate Theorem 5.8 in the new setting

Theorem 5.12. There are countably many solutions (A;,w;) of the im-
plicit eigenvalue problem

(564) sz — mgAitQIUZ‘ = m1t27%wi
with eigenfunctions w; € Ho such that

(565) Ai < A¢+1 <0 Vie N,

(5.66) lim A; = 0,
K3
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and their multiplicities are one. The transformed eigenfunctions

(5.67) Bi(t) = wi( AT ),
where
(5.68) A= (—A) "5,

form a basis of Hs and also of L2(I,m).

Finally, let us show how the eigenvalue equations (5.26) resp. (5.61) can be
considered to be eigenvalue equations of an essentially self-adjoint operator in
an appropriate Hilbert space. We shall first demonstrate it for the equation

(5.26).
Let oo (t) be defined by
(5.69) Qo(t) =mt>~ % Vtel
and define the Hilbert space H as L%(I,du) with respect to the measure
(5.70) dp = odt.

Moreover, denote the scalar product in H by (-,-) and the corresponding
norm by [|-||. Note that, in view of (5.23),

(5.71) (u,v) = K(u,v).
The operator

3 ou 1- 3 o
(5.72) Au = ¢y { (t—) —t i+ Pmou} Vue Cr(I)

is densely defined and symmetrlc in ‘H such that
(5.73) (Au,v) = (u,v)q Yu,v e CP(I)

The above relation is also valid for all u,v € Hg by partial integration. Hence
the domain D(A) of A is contained in Hs. In view of equation (5.26) we infer

i.e., 1; is an eigenfunction of A in the classical sense. Since A is symmetric
A is closable. Let A be the closure of A. If A is surjective

(5.75) R(A) =H,

then A is self-adjoint and A essentially self-adjoint. These are well-known
facts. Let us prove (5.75) for convenience.

Lemma 5.13. A is surjective.

Proof. First we observe that R(A) is dense in A because of (5.74). Indeed
the eigenfunctions (@;),7 € N, are complete and the eigenvalues are strictly
positive, cf. Theorem 5.6.

Next, let v € H be arbitrary and let u; € D(A) be a sequence such that

(5.76) Au; — v,
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then

(5.77) Nollui = ugl|* = Mofui — wj,ui —ug) < (Alui —wi),ui —uy)
< [JACus = ug) [ lui — uyll,

where 0 < )\g is the smallest eigenvalue, cf. (5.31). Hence
(5.78) Aollui — usl] < [|A(wi —uy)),

i.e., (u;) is a Cauchy sequence which implies v € R(A), completing the proof
of the lemma. O

In case of equation (5.61) we define ¢o(¢) by
(5.79) Go(t) =myt™t2 % Vtel

and define the Hilbert space H as L2 (I,dfp) with respect to the measure

(5.80) dji = Godt.

Moreover, denote the scalar product in H by ({-,+)) and the corresponding
norm by || - [|- Note that, in view of (5.59),

(5.81) ((w,v)) = K (w,v)

The operator

1 ~— 0 ma m— m 0o
(5.82) Aw:gool{—(a(t a—qf)—t Zpow+t"Pmow}  Vw € C(I)

is densely defined and symmetric in # such that

(583) ((flwl,w2>) = <AU1,U2> = <U1,UQ>2 Ywy,wy € Cso(l),
where
(5.84) w = p(w;) =t w;, =12,

cf. the definition of ¢ in Lemma 5.10 and also the equation (5.53). If equation
(5.83) would be valid for all wy,ws € D(A) then A and A would be unitarily
equivalent, since ¢ is obviously a unitary (orthogonal) map between H and
H.

This is indeed the case as one can easily infer from Remark 5.11, hence

(5.85) Ay = My,
where
(5.86) W =t

and @; an eigenfunction A with eigenvalue \;. The domain of A satisfies

(5.87) D(4) = o~ (D(A)).
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5.2. Treating /A as a fixed cosmological constant. If we want to define
a partition function and entropy for our quantum system we have to consider
A to be a fixed cosmological constant and not a parameter which can also
play the role of an implicit eigenvalue. Our approach to solve the ODE (4.5)
on page 18 then is similar but different. First, let us express equation (4.5)
in the equivalent form

0 0
@01{ _ 7<t7n7w) _ tm—2’u0w _ tm+2m2/lw}

(5.88) ot ot

102D (0 1)jef 4w =0,
where
(5.89) Bo(t) =t
and where we used the definition (4.3) on page 18 of my. The term
(5.90) (n— DI +

is an eigenvalue of the operator in (3.34) on page 17. |£|? with £ € R™ is
a continuous eigenvalue while the sequence fig, k € N, satisfies the relations
(3.39) and (3.40). The operator

0, ., 0w
_ = (t e

ot ot
is identical to the operator A defined in (5.82) if A = —1. The properties we
proved for A are also valid for Hy by simply replacing —msA by a positive
constant mj,. Thus, we know that Hj is essentially self-adjoint in the Hilbert
space H = L2(I,dj1), cf. (5.80) with a complete system of eigenfunctions w;,
i € N, and corresponding eigenvalues

(5.92) D<A <A <A<---

(5.91) How = 4,2251{ ) =t pgw — tm+2m2/1w}

The eigenspaces are all one dimensional and the ground state wy does not
change sign, cf. Remark 5.9 on page 25.

Note that we denote the eigenfunctions by w; and not by w; since they will
not be transformed to obtain the final solutions of the ODE. Instead they
will be the solutions of the ODE satisfying

(5.93) How; = \w; ~ VieN.

But w; is a solution of the ODE (5.88) if and only if there exist j and £ such
that

16(n — 1)

(5.94) A= = 0= 1)JEP + )

Obviously, the previous equation can only be satisfied for all \; iff
16(n — 1

(5.95) Ao = %ﬂo-

In [11, Lemma 6.4.9, p. 172] we proved the following lemma:
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Lemma 5.14. Let A; be the temporal eigenvalues depending on A <0 and
let \; be the corresponding eigenvalues for

(5.96) A=—1,
then
(5.97) N = ;\i\/l

n—1
n

Thus, we deduce

Corollary 5.15. Suppose that fig > 0 and define Ag < 0 by

n— - 16 n — 1 _
(5.98) Ao+ = )‘ol(T>NO7

then, the inequality (5.95) is satisfied provided
(5.99) [A] > | Aol

The inequality (5.95) is always satisfied if fig < 0.

The eigenvalues on the right-hand side of equation (5.94), i.e., the sum
inside the braces, are the eigenvalues of the operator defined in (3.34) on
page 17 which can be written as the sum

(5.100) —(n—1)A5 + A,

where A is a uniformly elliptic operator on a compact Riemannian manifold,
cf. equation (3.38) on page 17. Hence, we can interpret the right-hand side
of (5.94) as eigenvalues of the operator

_16(n — 1) 16(n — 1)A

(5.101) H, = As +

To facilitate a comparison with former results in [11, Sections 6.4 & 6.5] let
us define

(5.102) g1y
n
and
~ 16(n—1) _
(5.103) Hy = %Nyﬁ

then A has the same eigenfunctions as A with eigenvalues fi; instead of fi;
and the condition (5.94) can be rephrased in the form

_ 16(n—1)

2
(5.104) A €2 + iy

and the inequality (5.95) can now be expressed as
(5.105) Ao > fio.

In [11, equ. (6.4.67), p.166] we considered an operator Hy which was similarly
defined as the operator in (5.101), the only difference was that the Laplacian
As was defined in R, i.e., the dimension n; was equal to one. In this case it
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is fairly simple to determine the tempered eigendistributions ¢, in #’(R)
satisfying

(5.106) (i =whiGie, k=12,

where

(5.107) Giji(T) = \/12?62'“)”7

and

(5.108) Cijo(T) = ! e T
\/ﬂ

where

(5.109) wij >0

is defined by the relation

(5.110) M= iy 4 26017 1)2w3j.

n
In the higher dimensional case, n; > 1, we have a whole continuum of vec-
tors £ € R™ satisfying (5.104), and hence, a whole continuum of eigendis-
tributions which we cannot handle—neither physically nor mathematically.
Therefore, let us pick a finite numbers of unit vectors & € R™, 1 < k < kq
which are fixed. Then the eigendistributions are defined by

(5.111) Gr(y) = (2m) " Fewa&w 1 <k <k,
where

_16(n—1)?
(5.112) N = fij + Tu}?j

if fi; < A;. We consider the eigendistributions (;;x to be mutually orthogonal
since their Fourier transforms

(5.113) Cijk = Ouiyes

which are Dirac measurers, have disjoint supports.
Now, we are able to define the eigenfunctions of the operator H; in (5.101).

Definition 5.16. Let ¢; € L?(M) be the mutually orthogonal unit eigen-
vectors of A with corresponding eigenvalues ft; and assume either that fig <0
or that A satisfies the condition (5.99) in Corollary 5.15. Then, for any eigen-
value \;, we define

and w;;; > 0 such that
16(n — 1)?

provided fi; < A;. If fi; = A;, then we choose w;j; = 0 and the multiplicity
will be only the multiplicity of fi;.
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Note that
(5.116) 0eN; VieN,
since
(5.117) fio < Mo,
For j € N; define the eigenfunctions v, of H; by
(5.118) Vijk = CijkPs)
where this distinction only occurs if
(5.119) g < gy
such that
(5.120) Hyviji = \ivijig.

Remark 5.17. H; has the same eigenvalues \; as I:IO but with finite
multiplicities m()\;) in general different from one which can be estimated
from above by

Recall that we labelled the eigenvalues ji; by including their multiplicities,
cf. (3.39) on page 17. Hence, if

(5.122) iy < A VjeN;
then

Let us now define a separable Hilbert space H such that H; is essentially
self-adjoint in H and its eigenvectors with eigenvalues \; form an ONB, an
orthonormal basis.

First we declare the countable eigenvectors in (5.120) to be mutually or-
thogonal unit vectors and we consider them to be the Hamel basis of the
complex vector space H'. Since the basis vectors are mutually orthogonal
unit vectors they also define a unique hermitian scalar product in H'. Let
H be the completion of H’ with respect to that scalar product. Since the
eigenvalues \; are positive and bounded from below by Ay, we could proved
in [11, Lemma 6.5.1, p. 174] the following lemma:

Lemma 5.18. The linear operator Hy with domain H' is essentially self-
adjoint in H. Let Hy be its closure, then the only eigenvectors of Hyi are
those of Hi.

Remark 5.19. In the following we shall write H; instead of H; and we
also let \; be a relabelling of the eigenvalues A\; of H; to include the multi-
plicities.

In [11, Lemma 6.5.3, p. 175] we also proved
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Lemma 5.20. For any 8 > 0 the operator
(5.124) e~ P

is of trace class in H, i.e.,

(5.125) tr(e”PH1) = Z e PN < oo,
i=0

Let

(5.126) F = F(H)

be the symmetric Fock space generated by H and let
(5.127) H =dI'(Hy)

be the canonical extension of Hy to % . Then
(5.128) e PH

is also of trace class in F

oo

(5.129) tr(e PH) = H(l - 6755\1')71 < 00,

=0

where \; is a relabelling of the eigenvalues \; to include the multiplicities.
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The proof relies on the fact that a temporal Hamiltonian Hy, which is

similarly defined as the operator Hy in (5.91), has these properties.

For the present operator Hy it is also valid that e #Ho is of trace class
and the proof of this property is very similar to the proof we gave in [11,
Theorem 6.2.8, p. 148|, however, the structure of the operator in (5.91) is
slightly different so that we cannot simply refer to the previous result. We

shall give a proof in the next section instead.

Remark 5.21. In [11, Chapter 6.5] we used these results to define the

partition function Z by

(5.130) Z =tr(e PH) = H(l _ e—ﬁii)—l
i=0

and the density operator p in % by

(5.131) p=27Zte P

such that

(5.132) trp=1.



34 CLAUS GERHARDT

The von Neumann entropy S is then defined by
S = —tr(plogp)
=log Z + BZ ' tr(He PH)

(5.133) dlog Z
=logZ - PR

=logZ + BE,

where E is the average energy
(5.134) E =tr(Hp).

E can be expressed in the form

5.135 E =
(5139 >
Here, we also set the Boltzmann constant
(5.136) kg = 1.

The parameter § is supposed to be the inverse of the absolute temperature
T

(5.137) =171
For a more detailed analysis and especially for the dependence on A we refer
to [11, Chapter 6.5].

6. TRACE CLASS ESTIMATES FOR e~ #Ho

Let us first consider the operator
3 du 1 3 00
(6.1)  Hou= 5" {— (t—) — 7w+ P ma|Alu} Yue CX(I)

which is unitarily equlvalent to the operator in (5.91) on page 29. Hj is
essentially self-adjoint in

(6.2) H= LR, dp),
where

(6.3) dp = @odt
with

(6.4) po(t) =127

We shall use the same symbol for its closure, i.e., we shall assume that Hj is
self-adjoint in H with eigenvectors u; € Ha, cf. the remarks following (5.74)
on page 27, and with eigenvalues \; satisfying the statements in Theorem 5.6
on page 23, where now we denote the eigenvectors by u;, since they will not
be transformed.
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Remark 6.1. The norm
(6.5) (Hou, u)

is equivalent to the norm ||ul|z in Ha, cf. (5.12) and (5.13) on page 21.
Let us also assume that all Hilbert spaces are complex vector spaces with
a positive definite sesquilinear form (hermitian scalar product).

Nl

We shall now prove that
(6.6) e PHo B3>,
is of trace class in H. The proof is essentially the proof given in [11, Chapter
6.2] with the necessary modifications due to the different structure of the

operator.
First, we need two lemmata:

Lemma 6.2. The embedding

(6.7) j:H2<—>H0:L2(R+,dﬂ),
where
(6.8) dip = (1 +t)"2dt,

is Hilbert-Schmidt, i.e., for any ONB (e;) in Ho the sum
(6.9) > _llienl§ < oo
i=0

is finite, where ||-||o is the norm in Ho. The square root of the left-hand side
of (6.9) is known as the Hilbert-Schmidt norm |j| of j and it is independent
of the ONB.

Proof. Let w € Ho, then, assuming w is real valued,

t 00 o]
lw(t)|? :2/ wwg/ t|w\2+/ t~Hwl|?
(610) 0 o 0

< cf|wlf3

for all t > 0, where ||-||2 is the norm in H5. To derive the last inequality in
(6.10) we used (5.12) and (5.1) on page 20. The estimate

(6.11) )| < cllwls  VE>0

is of course also valid for complex valued functions from which infer that, for
any t > 0, the linear form

(6.12) w — w(t), w € Ha,
is continuous, hence it can be expressed as

(6.13) wlt) = (i, w),
where

(6.14) ¢t € Ho
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and

(6.15) leills < e
Now, let

(6.16) € € Ha

be an ONB, then

oo o0
(6.17) Dole® =D lenenl® = lletll3 < .
=0 =0

Integrating this inequality over R with respect to dji we infer

— 006, 245 < 2
(6.18) > / le3(t) [2dfi <

completing the proof of the lemma. ([l

Lemma 6.3. Let u; be the eigenfunctions of Hy, then there exist positive
constants ¢ and vy such that

(6.19) luill2 < e[l + X [Juillo  VieN,
where ||||o is the norm in Hop.

Proof. We have

(620) <H0’LLZ', 'LLZ'> = )\Z<’U,1,’U,2>

and hence, in view of Remark 6.1,

oo
uil2 < e / oDl
0

1 [e%e) 4
S Cl/\i{/ (po(t)‘uiP—FCQ/ t3n|ui2}.
0 1

To estimate the second integral in the braces let us define p = 3 and observe
that

(6.21)

4
n n
and hence,
(6.23) B <R VE> 1

Then, choosing small positive constants § and €, we apply Young’s inequality,
with
D 1

24 — _
(6.24) 1= 5=1.%

and

(6.25) ¢ =061
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to estimate the integral from above by
Ly [Tz 2_psya), |2
—ef {tPm (1 +t)» P} |y
q 1
1 _ (= —(2—pd)q’ 2
Foet [
1

Choosing, now, 0 so small such that

(6.26)

(6.27) (2 —ps)st>2
n

the preceding integrals can be estimated from above by

1 > 1 _ [
(6.28) feq/ (L+t)P|u? + =€ 1 / (1 + )2 |uy)?

q 1 q 0
which in turn can be estimated by

1 s 1 _ 9

(6.29) 56q6\|uillg e w6,

in view of Remark 6.1.
The first integral in the braces on the right-hand side of (6.21) can be
estimated by

0
1 o0
(6.30) + 7672/ (1+ )il
2 0
~ 2 2, 1 2
< a3 + e 2l
Choosing now €, and ¢ appropriately the result follows. O

We are now ready to prove:

Theorem 6.4. Let 5 > 0, then the operator

(6.31) e~PHo

1s of trace class in H, i.e.,

(6.32) tr(e PHo) = Zefﬁ)‘i =¢(B) < 0.
i=0

Proof. In view of Lemma 6.2 the embedding
(6.33) Jj:He = Ho
is Hilbert-Schmidt. Let

(6.34) u; € H
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be an ONB of eigenfunctions, then
N = PN s < A il

< e PN el + 1P 3,

(6.35)

in view of (6.19), but

(6.36) luilld = lluall3 1a:)13 < eXallas3,
where
(6.37) iy = wgllwill3 !
is an ONB in Hs, yielding
(6.38) > e <epy Jla§ < oo,
i=0 i=0
since j is Hilbert-Schmidt. Here we also used that Ag > 0. |

Since the operator in (5.91) on page 29 has the same eigenvalues as the
operator in (6.1) we have also proved:

Theorem 6.5. The operator Hy in (5.91), which is self-adjoint in the
Hilbert space H, has the property that

(6.39) eBHo g5,

is of trace class in H.

7. CONCLUSIONS

We quantized the full Einstein equations and found solutions to the re-
sulting hyperbolic equation in a fiber bundle E which can be expressed as
a product of spatial eigenfunctions (eigendistributions) and temporal eigen-
functions. The spatial eigenfunctions form a basis in an appropriate Hilbert
space while the temporal eigenfunctions are solutions to a second order ODE
inR,.

The base space Sy with dimension n > 3 is a Cauchy hypersurface of the
quantized spacetime N. The solutions u of the hyperbolic equation in E are
evaluated at (t,z, x(z)), where x is the metric of the Cauchy hypersurface.
The main assumptions for proving the existence of spatial eigenfunctions that
also form a basis of a Hilbert space is that Sy is a metric product as described
in (3.30) and (3.32) on page 17, where the compact part My of the product
might in general be hidden from observations. In case of Schwarzschild and
Kerr-AdS black holes being considered in [8] and [9] these assumptions are
satisfied.

For large n, n > 17, and negative A the temporal eigenfunctions are also
the eigenfunctions of a self-adjoint operator, the eigenvalues are countable and
either A plays the role of an implicit eigenvalue, cf. Theorem 5.12 on page 26,
or A < 0 is considered to be a fixed cosmological constant in which case
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the temporal eigenfunctions are eigenfunctions of a self-adjoint operator H,
and a subset of the spatial eigenfunctions are eigenfunctions of a self-adjoint
operator Hy acting in Sy such that I:Io and Hi have the same eigenvalues but
with different multiplicities. The operators

(7.1) e~ AHo A e PH1

are of trace class in their respective Hilbert spaces and also in the corre-
sponding symmetric Fock spaces. The latter result allows to define a parti-
tion function Z, a density operator p, the von Neumann entropy S and the
average energy E of the quantum system, cf. Lemma 5.20 on page 33 and
[11, Chapter 6.5].
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