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Abstract. We quantize the Hamilton equations instead of the Hamil-
ton condition. The resulting equation has the simple form −∆u = 0
in a fiber bundle, where the Laplacian is the Laplacian of the Wheeler-
DeWitt metric provided n 6= 4. Using then separation of variables
the solutions u can be expressed as products of temporal and spatial
eigenfunctions, where the spatial eigenfunctions are eigenfunctions of
the Laplacian in the symmetric space SL(n,R)/SO(n). Since one can
define a Schwartz space and tempered distributions in SL(n,R)/SO(n)
as well as a Fourier transform, Fourier quantization can be applied such
that the spatial eigenfunctions are transformed to Dirac measures and
the spatial Laplacian to a multiplication operator.
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1. Introduction

General relativity is a Lagrangian theory, i.e., the Einstein equations are
derived as the Euler-Lagrange equation of the Einstein-Hilbert functional

(1.1)
∫
N

(R̄− 2Λ),
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where N = Nn+1, n ≥ 3, is a globally hyperbolic Lorentzian manifold,
R̄ the scalar curvature and Λ a cosmological constant. We also omitted
the integration density in the integral. In order to apply a Hamiltonian
description of general relativity, one usually defines a time function x0 and
considers the foliation of N given by the slices

(1.2) M(t) = {x0 = t}.
We may, without loss of generality, assume that the spacetime metric splits

(1.3) ds̄2 = −w2(dx0)2 + gij(x
0, x)dxidxj ,

cf. [6, Theorem 3.2]. Then, the Einstein equations also split into a tangential
part

(1.4) Gij + Λgij = 0

and a normal part

(1.5) Gαβν
ανβ − Λ = 0,

where the naming refers to the given foliation. For the tangential Einstein
equations one can define equivalent Hamilton equations due to the ground-
breaking paper by Arnowitt, Deser and Misner [1]. The normal Einstein
equations can be expressed by the so-called Hamilton condition

(1.6) H = 0,

where H is the Hamiltonian used in defining the Hamilton equations. In the
canonical quantization of gravity the Hamiltonian is transformed to a partial
differential operator of hyperbolic type Ĥ and the possible quantum solutions
of gravity are supposed to satisfy the so-called Wheeler-DeWitt equation

(1.7) Ĥu = 0

in an appropriate setting, i.e., only the Hamilton condition (1.6) has been
quantized, or equivalently, the normal Einstein equation, while the tangential
Einstein equations have been ignored.

In [6] we solved the equation (1.7) in a fiber bundle E with base space S0,
(1.8) S0 = {x0 = 0} ≡M(0),

and fibers F (x), x ∈ S0,
(1.9) F (x) ⊂ T 0,2

x (S0),

the elements of which are the positive definite symmetric tensors of order two,
the Riemannian metrics in S0. The hyperbolic operator Ĥ is then expressed
in the form

(1.10) Ĥ = −∆− (R− 2Λ)ϕ,

where ∆ is the Laplacian of the Wheeler-DeWitt metric given in the fibers,
R the scalar curvature of the metrics gij(x) ∈ F (x), and ϕ is defined by

(1.11) ϕ2 =
det gij
detχij

,
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where χij is a fixed metric in S0 such that instead of densities we are con-
sidering functions. The Wheeler-DeWitt equation could be solved in E but
only as an abstract hyperbolic equation. The solutions could not be split in
corresponding spatial and temporal eigenfunctions.

Therefore, we discarded the Wheeler-DeWitt equation in [7], see also [8,
Chapter 1], and looked at the evolution equations given by the second Hamil-
ton equation. The left-hand side, a time derivative, we replaced with the help
of the Poisson brackets. On the right-hand side we implemented the Hamilton
condition, equation (1.6). After canonical quantization the Poisson brackets
became a commutator and we applied both sides of the equation to smooth
functions with compact support defined in the fiber bundle. The resulting
equation we evaluated for a particular metric which we considered important
to the problem and then obtained a hyperbolic equation in the base space,
which happened to be identical to the Wheeler-DeWitt equation obtained as
a result of a canonical quantization of a Friedman universe, if we only looked
at functions that did not depend on x but only on the scale factor, which
now acted as a time variable. Evidently, this result can not be regarded as
the solution to the problem of quantizing gravity in a general setting.

The underlying mathematical reason for the difficulty was the presence
of the term R in the quantized equation, which prevents the application of
separation of variables, since the metrics gij are the spatial variables. In
this paper we overcome this difficulty by quantizing the Hamilton equations
without alterations, i.e., we completely discard the Hamilton condition. From
a logical point of view this approach is as justified as the prior procedure by
quantizing only the normal Einstein equation and discarding the tangential
Einstein equations—despite the fact that the tangential Einstein equations
are equivalent to the Hamilton equations. This equivalence is considered to be
an essential prerequisite for canonical quantization, which is the quantization
of the Hamilton equations.

During quantization the transformed Hamiltonian is acting on smooth
functions u which are only defined in the fibers, i.e., they only depend on the
metrics gij and not explicitly on x ∈ S0. As result we obtain the equation

(1.12) −∆u = 0

in E, where the Laplacian is the Laplacian in (1.10). The lower order terms
of Ĥ

(1.13) (R− 2Λ)ϕ

present on both sides of the equation cancel each other. However, the equa-
tion (1.12) is only valid provided n 6= 4, since the resulting equation actually
looks like

(1.14) − (
n

2
− 2)∆u = 0.

This restriction seems to be acceptable, since n is the dimension of the base
space S0 which, by general consent, is assumed to be n = 3. The fibers add
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additional dimensions to the quantized problem, namely,

(1.15) dimF =
n(n+ 1)

2
≡ m+ 1.

The fiber metric, the Wheeler-DeWitt metric, which is responsible for the
Laplacian in (1.12) can be expressed in the form

(1.16) ds2 = −16(n− 1)

n
dt2 + ϕGABdξ

AdξB ,

where the coordinate system is

(1.17) (ξa) = (ξ0, ξA) ≡ (t, ξA).

The (ξA), 1 ≤ A ≤ m, are coordinates for the hypersurface

(1.18) M ≡M(x) = {(gij) : t4 = det gij(x) = 1,∀x ∈ S0}.

We also assume that S0 = Rn and that the metric χij in (1.11) is the Eu-
clidean metric δij . It is well-known that M is a symmetric space

(1.19) M = SL(n,R)/SO(n) ≡ G/K.

It is also easily verified that the induced metric of M in E is identical to the
Riemannian metric of the coset space G/K.

Now, we are in a position to use separation of variables, namely, we write
a solution of (1.12) in the form

(1.20) u = w(t)v(ξA),

where v is a spatial eigenfunction of the induced Laplacian of M

(1.21) −∆Mv ≡ −∆v = (|λ|2 + |ρ|2)v

and w is a temporal eigenfunction satisfying the ODE

(1.22) ẅ +mt−1ẇ + µ0t
−2w = 0

with

(1.23) µ0 =
16(n− 1)

n
(|λ|2 + |ρ|2).

The eigenfunctions of the Laplacian in G/K are well-known and we choose
the kernel of the Fourier transform in G/K in order to define the eigenfunc-
tions. This choice also allows us to use Fourier quantization similar to the
Euclidean case such that the eigenfunctions are transformed to Dirac mea-
sures and the Laplacian to a multiplication operator in Fourier space.

Here is a more detailed overview of the main results. Let NAK be an
Iwasawa decomposition of G and

(1.24) g = n + a + k

be the corresponding direct sum of the Lie algebras. Let a∗ be the dual space
of a, then the Fourier kernel is defined by the eigenfunctions

(1.25) eλ,b(x) = e(iλ+ρ) logA(x,b)
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with λ ∈ a∗, x = gK ∈ G/K, and b ∈ B, where B is the Furstenberg bound-
ary, see Section 5 and Section 6 for detailed definitions and references. We
then pick a particular b0 ∈ B and use eλ,b0 as eigenfunctions of −∆

(1.26) −∆eλ,b0 = (|λ|2 + |ρ|2)eλ,b0 .

The Fourier transform of eλ,b0 is

(1.27) êλ,b0 = δλ ⊗ δb0
and of −∆f

(1.28) F(−∆f) = (|λ|2 + |ρ|2)f̂ , λ ∈ a∗, f ∈ S (G/K).

The elementary gravitons correspond to special characters in a∗, namely,

(1.29) αij , 1 ≤ i < j ≤ n,

for the off-diagonal gravitons and

(1.30) αi, 1 ≤ i ≤ n− 1

for the diagonal gravitons. Note, that only (n− 1) diagonal elements gii can
be freely chosen because of the condition (1.18).

To define the temporal eigenfunctions, we shall here only consider the case
3 ≤ n ≤ 16, then all temporal eigenfunctions are generated by the two real
eigenfunctions contained in

(1.31) w(t) = t−
m−1

2 eiµ log t,

where µ > 0 is chosen appropriately. These eigenfunctions become un-
bounded if the big bang (t=0) is approached and they vanish if t goes to
infinity.

2. Definitions and notations

The main objective of this section is to state the equations of Gauß,
Codazzi, and Weingarten for spacelike hypersurfaces M in a (n+1)-dimen-
sional Lorentzian manifold N . Geometric quantities in N will be denoted
by (ḡαβ), (R̄αβγδ), etc., and those in M by (gij), (Rijkl), etc.. Greek indices
range from 0 to n and Latin from 1 to n; the summation convention is always
used. Generic coordinate systems in N resp. M will be denoted by (xα)
resp. (ξi). Covariant differentiation will simply be indicated by indices, only
in case of possible ambiguity they will be preceded by a semicolon, i.e., for a
function u in N , (uα) will be the gradient and (uαβ) the Hessian, but e.g., the
covariant derivative of the curvature tensor will be abbreviated by R̄αβγδ;ε.
We also point out that

(2.1) R̄αβγδ;i = R̄αβγδ;εx
ε
i

with obvious generalizations to other quantities.
LetM be a spacelike hypersurface, i.e., the induced metric is Riemannian,

with a differentiable normal ν which is timelike.
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In local coordinates, (xα) and (ξi), the geometric quantities of the spacelike
hypersurface M are connected through the following equations

(2.2) xαij = hijν
α

the so-called Gauß formula. Here, and also in the sequel, a covariant deriva-
tive is always a full tensor, i.e.

(2.3) xαij = xα,ij − Γ kijxαk + Γ̄αβγx
β
i x

γ
j .

The comma indicates ordinary partial derivatives.
In this implicit definition the second fundamental form (hij) is taken with

respect to ν.
The second equation is the Weingarten equation

(2.4) ναi = hki x
α
k ,

where we remember that ναi is a full tensor.
Finally, we have the Codazzi equation

(2.5) hij;k − hik;j = R̄αβγδν
αxβi x

γ
j x

δ
k

and the Gauß equation

(2.6) Rijkl = −{hikhjl − hilhjk}+ R̄αβγδx
α
i x

β
j x

γ
kx

δ
l .

Now, let us assume that N is a globally hyperbolic Lorentzian manifold
with a Cauchy surface. N is then a topological product I × S0, where I is
an open interval, S0 is a Riemannian manifold, and there exists a Gaussian
coordinate system (xα), such that the metric in N has the form

(2.7) ds̄2N = e2ψ{−dx02 + σij(x
0, x)dxidxj},

where σij is a Riemannian metric, ψ a function on N , and x an abbreviation
for the spacelike components (xi). We also assume that the coordinate system
is future oriented, i.e., the time coordinate x0 increases on future directed
curves. Hence, the contravariant timelike vector (ξα) = (1, 0, . . . , 0) is future
directed as is its covariant version (ξα) = e2ψ(−1, 0, . . . , 0).

Let M = graphu|S0 be a spacelike hypersurface

(2.8) M = { (x0, x) : x0 = u(x), x ∈ S0 },

then the induced metric has the form

(2.9) gij = e2ψ{−uiuj + σij}

where σij is evaluated at (u, x), and its inverse (gij) = (gij)
−1 can be ex-

pressed as

(2.10) gij = e−2ψ{σij +
ui

v

uj

v
},
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where (σij) = (σij)
−1 and

(2.11)
ui = σijuj

v2 = 1− σijuiuj ≡ 1− |Du|2.
Hence, graphu is spacelike if and only if |Du| < 1.

The covariant form of a normal vector of a graph looks like

(2.12) (να) = ±v−1eψ(1,−ui).
and the contravariant version is

(2.13) (να) = ∓v−1e−ψ(1, ui).

Thus, we have

Remark 2.1. Let M be spacelike graph in a future oriented coordinate
system. Then the contravariant future directed normal vector has the form

(2.14) (να) = v−1e−ψ(1, ui)

and the past directed

(2.15) (να) = −v−1e−ψ(1, ui).

In the Gauß formula (2.2) we are free to choose the future or past directed
normal, but we stipulate that we always use the past directed normal. Look
at the component α = 0 in (2.2) and obtain in view of (2.15)

(2.16) e−ψv−1hij = −uij − Γ̄ 0
00uiuj − Γ̄ 0

0jui − Γ̄ 0
0iuj − Γ̄ 0

ij .

Here, the covariant derivatives are taken with respect to the induced metric
of M , and

(2.17) − Γ̄ 0
ij = e−ψh̄ij ,

where (h̄ij) is the second fundamental form of the hypersurfaces {x0 = const}.
An easy calculation shows

(2.18) h̄ije
−ψ = − 1

2 σ̇ij − ψ̇σij ,
where the dot indicates differentiation with respect to x0.

3. The Hamiltonian approach to general relativity

The Einstein equations with a cosmological constant Λ in a Lorentzian
manifold N = Nn=1, n ≥ 3, with metric ḡαβ , 0 ≤ α, β ≤ n, are the Euler-
Lagrange equations of the functional

(3.1) J =

∫
N

(R̄− 2Λ),

where R̄ is the scalar curvature of the metric and where we omitted the
density

√
|ḡ|. The Euler-Lagrange equations are

(3.2) Gαβ + Λḡαβ = 0,
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where Gαβ is the Einstein tensor. We proved in [6, Theorem 3.2], see also
[8, Theorem 1.3.2], that it suffices to consider only metrics that split, i.e.,
metrics that are of the form

(3.3) ds̄2 = −w2(dx0)2 + gij(x
0, x)dxidxj ,

where (xi) are spatial coordinates, x0 is a time coordinate, gij are Riemannian
metrics defined on the slices

(3.4) M(t) = {x0 = t}, t ∈ (a, b)

and

(3.5) 0 < w = w(x0, x)

is an arbitrary smooth function in N .
A stationary metric in that restricted class is also stationary with respect

to arbitrary compact variations and, hence, satisfies the full Einstein equa-
tions.

Following Arnowitt, Deser and Misner [1] the functional in (3.1) can be
expressed in the form

(3.6) J =

∫ b

a

∫
Ω

{|A|2 −H2 +R− 2Λ}w√g,

cf. [8, equ. (1.3.37)], where

(3.7) |A|2 = hijhij

is the square of the second fundamental form of the slices M(t)

(3.8) hij = − 1
2w
−1ġij ,

H2 is the square of the mean curvature

(3.9) H = gijhij ,

R the scalar curvature of the slices M(t), the interval (a, b) is compactly
contained in

(3.10) I = x0(N)

and Ω is a bounded open subset of the fixed slice

(3.11) S0 ≡M(0),

where we assume

(3.12) 0 ∈ I.

Here, we also assume N to be globally hyperbolic such that there exists a
global time function and N can be written as a topological product

(3.13) N = I × S0.

Let F = F (hij) be the scalar curvature operator

(3.14) F = 1
2 (H2 − |A|2)
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and let

(3.15) F ij,kl = gijgkl − 1
2{g

ikgjl + gilgjk}
be its Hessian, then

(3.16) F ij,klhijhkl = 2F = H2 − |A|2

and

(3.17) F ij = F ij,klhkl = Hgij − hij .
In physics

(3.18) Gij,kl = −F ij,kl

is known as the DeWitt metric, or more precisely, a conformal metric, where
the conformal factor is even a density, is known as the DeWitt metric, but
we prefer the above definition.

Combining (3.8) and (3.16) J can be expressed in the form

(3.19) J =

∫ b

a

∫
Ω

{ 14G
ij,klġij ġklw

−2 + (R− 2Λ)}w√g.

The Lagrangian density L is a regular Lagrangian with respect to the vari-
ables gij . Define the conjugate momenta

(3.20)
πij =

∂L
∂ġij

= 1
2G

ij,klġklw
−1√g

= −Gij,klhkl
√
g

and the Hamiltonian density

(3.21)
H = πij ġij − L

=
1
√
g
wGij,klπ

ijπkl − (R− 2Λ)w
√
g,

where

(3.22) Gij,kl = 1
2{gikgjk + gilgjk} − 1

n−1gijgkl

is the inverse of Gij,kl.
Since the Lagrangian is regular with respect to the variables gij , the tan-

gential Einstein equations

(3.23) Gij + Λgij = 0

are equivalent to the Hamilton equations

(3.24) ġij =
δH
δπij

and

(3.25) π̇ij = − δH
δgij

,

where the differentials on the right-hand side of these equations are varia-
tional or functional derivatives.
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The mixed Einstein equations vanish

(3.26) G0j + Λḡ0j = 0, 1 ≤ j ≤ n,

and the normal equation

(3.27) Gαβν
ανβ − Λ = 0

is equivalent to

(3.28) |A|2 −H2 = R− 2Λ,

cf. [5, equ. 1.1.43], which in turn is equivalent to

(3.29) H = 0,

which is also known as the Hamilton condition.
We define the Poisson brackets

(3.30) {u, v} =
δu

δgkl

δv

δπkl
− δu

δπkl
δv

δgkl

and obtain

(3.31) {gij , πkl} = δklij ,

where

(3.32) δklij = 1
2{δ

k
i δ
l
j + δliδ

k
j }.

Then, the second Hamilton equation can also be expressed as

(3.33) π̇ij = {πij ,H}.

In the next section we want to quantize the Hamilton equations or, more
precisely,

(3.34)

gij{πij ,H} = −gij
δH
δgij

= (
n

2
− 2)(|A|2 −H2)w

√
g +

n

2
(R− 2Λ)w

√
g

−Rw√g − (n− 1)∆̃w
√
g,

cf. [8, equ. (1.3.64), (1.3.65)], where ∆̃ is the Laplacian with respect to the
metric gij(t, ·).

4. The quantization

For the quantization of the Hamiltonian setting we first replace all densities
by tensors by choosing a fixed Riemannian metric in S0
(4.1) χ = (χij(x)),

and, for a given metric g = (gij(t, x)), we define

(4.2) ϕ = ϕ(x, gij) =
( det gij

detχij

) 1
2
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such that the Einstein-Hilbert functional J in (3.19) on page 9 can be written
in the form

(4.3) J =

∫ b

a

∫
Ω

{1

4
Gij,klġij ġklw

−2 + (R− 2Λ)}wϕ√χ.

The Hamilton density H is then replaced by the function

(4.4) H = {ϕ−1Gij,klπijπkl − (R− 2Λ)ϕ}w,

where now

(4.5) πij = −ϕGij,klhkl
and

(4.6) hij = −ϕ−1Gij,klπkl.

The effective Hamiltonian is of course

(4.7) w−1H.

Fortunately, we can, at least locally, assume

(4.8) w = 1

by choosing an appropriate coordinate system: Let (t0, x0) ∈ N be an arbi-
trary point, then consider the Cauchy hypersurface

(4.9) M(t0) = {t0} × S0
and look at a tubular neighbourhood ofM(t0), i.e., we define new coordinates
(t, xi), where (xi) are coordinate for S0 near x0 and t is the signed Lorentzian
distance to M(t0) such that the points

(4.10) (0, xi) ∈M(t0).

The Lorentzian metric of the ambient space then has the form

(4.11) ds̄2 = −dt2 + gijdx
idxj .

Secondly, we use the same model as in [6, Section 3]: The Riemannian
metrics gij(t, ·) are elements of the bundle T 0,2(S0). Denote by E the fiber
bundle with base S0 where the fibers consist of the Riemannian metrics (gij).
We shall consider each fiber to be a Lorentzian manifold equipped with the
DeWitt metric. Each fiber F has dimension

(4.12) dimF =
n(n+ 1)

2
≡ m+ 1.

Let (ξa), 0 ≤ a ≤ m, be coordinates for a local trivialization such that

(4.13) gij(x, ξ
a)

is a local embedding. The DeWitt metric is then expressed as

(4.14) Gab = Gij,klgij,agkl,b,
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where a comma indicates partial differentiation. In the new coordinate system
the curves

(4.15) t→ gij(t, x)

can be written in the form

(4.16) t→ ξa(t, x)

and we infer

(4.17) Gij,klġij ġkl = Gabξ̇
aξ̇b.

Hence, we can express (3.6) as

(4.18) J =

∫ b

a

∫
Ω

{ 14Gabξ̇
aξ̇bϕ+ (R− 2Λ)ϕ},

where we now refrain from writing down the density √χ explicitly, since it
does not depend on (gij) and therefore should not be part of the Legendre
transformation. We also emphasize that we are now working in the gauge
w = 1. Denoting the Lagrangian function in (4.18) by L, we define

(4.19) πa =
∂L

∂ξ̇a
= ϕGab

1

2
ξ̇b

and we obtain for the Hamiltonian function H

(4.20)

H = ξ̇a
∂L

∂ξ̇a
− L

= ϕGab
(1

2
ξ̇a
)(1

2
ξ̇b
)
− (R− 2Λ)ϕ

= ϕ−1Gabπaπb − (R− 2Λ)ϕ,

where Gab is the inverse metric.
The fibers equipped with the metric

(4.21) (ϕGab)

are then globally hyperbolic Lorentzian manifolds as we proved in [8, Theo-
rem 1.4.2]. In the fibers we can introduce new coordinates (ξa) = (ξ0, ξA),
0 ≤ a ≤ m, and 1 ≤ A ≤ m, such that

(4.22) τ ≡ ξ0 = logϕ

and (ξA) are coordinates for the hypersurface

(4.23) M = {ϕ = 1} = {τ = 0}.

The Lorentzian metric in the fibers can then be expressed in the form

(4.24) ds2 = −4(n− 1)

n
ϕdτ2 + ϕGABdξ

AdξB ,
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cf. [8, equ. (1.4.28], where we note that in that reference is a misprint, namely,
the spatial part of the metric has an additional factor 4(n−1)

n which should
be omitted. Defining a new time variable ξ0 = t by setting

(4.25) ϕ = t2,

we infer

(4.26) ds2 = −16(n− 1)

n
dt2 + ϕGABdξ

AdξB .

The new metric GAB is independent of t. When we work in a local trivial-
ization of the bundle E the coordinates ξA are independent of x as well as
the time coordinate t, cf. [8, Lemma 1.4.4].

We can now quantize the Hamiltonian setting using the original variables
gij and πij . We consider the bundle E equipped with the metric (4.24), or
equivalently,

(4.27) (ϕGij,kl),

which is the covariant form, in the fibers and with the Riemannian metric χ
in S0. Furthermore, let

(4.28) C∞c (E)

be the space of real valued smooth functions with compact support in E.
In the quantization process, where we choose ~ = 1, the variables gij and

πij are then replaced by operators ĝij and π̂ij acting in C∞c (E) satisfying the
commutation relations

(4.29) [ĝij , π̂
kl] = iδklij ,

while all the other commutators vanish. These operators are realized by
defining ĝij to be the multiplication operator

(4.30) ĝiju = giju

and π̂ij to be the functional differentiation

(4.31) π̂ij =
1

i

δ

δgij
,

i.e., if u ∈ C∞c (E), then

(4.32)
δu

δgij

is the Euler-Lagrange operator of the functional

(4.33)
∫
S0
u
√
χ ≡

∫
S0
u.

Hence, if u only depends on (x, gij) and not on derivatives of the metric, then

(4.34)
δu

δgij
=

∂u

∂gij
.
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Therefore, the transformed Hamiltonian Ĥ can be looked at as the hyperbolic
differential operator

(4.35) Ĥ = −∆− (R− 2Λ)ϕ,

where ∆ is the Laplacian of the metric in (4.27) acting on functions

(4.36) u = u(x, gij).

We used this approach in [6] to transform the Hamilton constraint to the
Wheeler-DeWitt equation

(4.37) Ĥu = 0 in E

which can be solved with suitable Cauchy conditions. However, the above
hyperbolic equation can only be solved abstractly because of the scalar cur-
vature term R, which makes any attempt to apply separation of variables
techniques impossible. Therefore, we discard the Wheeler-DeWitt equation
by ignoring the Hamilton constraint and quantize the Hamilton equations in-
stead. This approach is certainly as justified as quantizing the Hamilton con-
straint, which takes only the normal Einstein equations into account, whereas
the Hamilton equations are equivalent to the tangential Einstein equations.
Furthermore, the resulting hyperbolic equation will be independent of R and
we can apply separation of variables.

Following Dirac the Poisson brackets in (3.33) on page 10 are replaced by
1
i times the commutators in the quantization process since ~ = 1, i.e., we
obtain

(4.38) {πij , H} → i[Ĥ, π̂ij ].

Dropping the hats in the following to improve the readability equation (3.34)
is then transformed to

(4.39) igij [H,π
ij ] = (

n

2
− 2)(|A|2 −H2)ϕ+

n

2
(R− 2Λ)ϕ−Rϕ,

where we note that now w = 1. We have

(4.40)
i[H,πij ] = [H,

δ

δgij
]

= [−∆, δ

δgij
]− [(R− 2Λ)ϕ,

δ

δgij
],

cf. (4.35). We apply both sides to functions u ∈ C∞c (E), where we addition-
ally require

(4.41) u = u(gij),

i.e., u does not explicitly depend on x ∈ S0. Hence, we deduce

(4.42) [−∆, δ

δgij
]u = [−∆, ∂

∂gij
]u = −Rij,klu

kl,

because of the Ricci identities, where

(4.43) Rij,kl
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is the Ricci tensor of the fiber metric (4.27) and

(4.44) ukl =
∂u

∂gkl

is the gradient of u.
For the second commutator on the right-hand side of (4.40) we obtain

(4.45) −[(R− 2Λ)ϕ,
δ

δgij
]u = −(R− 2Λ)ϕ

∂u

∂gij
+

δ

δgij
{(R− 2Λ)uϕ},

where the last term is the Euler-Lagrange operator of the functional

(4.46)

∫
S0

(R− 2Λ)uϕ ≡
∫
S0

(R− 2Λ)uϕ
√
χ

=

∫
S0

(R− 2Λ)u
√
g

with respect to the variable gij , since the scalar curvature R depends on the
derivatives of gij . In view of [8, equ. (1.4.84)] we have

(4.47)

δ

δgij
{(R− 2Λ)uϕ} =

1

2
(R− 2Λ)gijuϕ−Rijuϕ

+ ϕ{u ij; − ∆̃ugij}+ (R− 2Λ)ϕ
∂u

∂gij
,

where the semicolon indicates covariant differentiation in S0 with respect to
the metric gij , ∆̃ is the corresponding Laplacian. We also note that

(4.48)
Dku =

∂u

∂xk
+

∂u

∂gij

∂gij
∂xk

=
∂u

∂xk
= 0.

in Riemannian normal coordinates. Hence, we conclude that the operator on
the left hand-side of equation (4.39) applied to u is equal to

(4.49)
n

2
(R− 2Λ)ϕu−Rϕu

in E, since

(4.50) gijR
ij
,kl = 0,

cf. [8, equ. (1.4.89)]. On the other hand, applying the right-hand side of
(4.39) to u we obtain

(4.51) − (
n

2
− 2)∆u+

n

2
(R− 2Λ)ϕu−Rϕu,

where the Laplacian is the Laplacian in the fibers, since

(4.52) (|A|2 −H2)ϕ = ϕ−1Gij,klπ
ijπkl → −∆.

Thus, we conclude

(4.53) − (
n

2
− 2)∆u = 0
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in E, and we have proved the following theorem:

Theorem 4.1. The quantization of equation (3.34) on page 10 leads to
the hyperbolic equation

(4.54) −∆u = 0

in E provided n 6= 4 and u ∈ C∞c (E) only depends on the fiber elements gij.

To solve the equation (4.54) we first choose the Gaussian coordinate system
(ξa) = (t, ξA) such that the metric has form as in (4.26). Then, the hyperbolic
equation can be expressed as

(4.55)
n

16(n− 1)
t−m

∂

∂t
(tm

∂u

∂t
)− t−2∆̄u = 0,

where ∆̄ is the Laplacian of the hypersurface

(4.56) M = {t = 1}.

We shall try to use separation of variables by considering solutions u which
are products

(4.57) u(t, ξA) = w(t)v(ξA),

where v is a spatial eigenfunction, or eigendistribution, of the Laplacian ∆̄

(4.58) − ∆̄v = λv

and w a temporal eigenfunction satisfying the ODE

(4.59)
n

16(n− 1)
t−m

∂

∂t
(tm

∂w

∂t
) + λt−2w = 0

which can be looked at as an implicit eigenvalue equation. The function u in
(4.57) will then be a solution of (4.54).

In the next sections we shall determine spatial and temporal eigendistri-
butions by assuming

(4.60) S0 = Rn

equipped with the Euclidean metric. The dimension n is then merely sup-
posed to satisfy n ≥ 3, though, of course, the equation (4.54) additionally
requires n 6= 4.

5. Spatial eigenfunctions in M

The hypersurface

(5.1) M = {ϕ = 1}

can be considered to be a sub bundle of E, where each fiber M(x) is a
hypersurface in the fiber F (x) of E. We shall use the same notation M for
the sub bundle as well as for the hypersurface and in general we shall omit
the reference to the base point x ∈ S0. Furthermore, we specify the metric



QUANTIZATION OF THE HAMILTON EQUATIONS 17

χij ∈ T 0,2(S0), which we used to define ϕ, to be equal to the Euclidean metric
such that in Euclidean coordinates

(5.2) ϕ2 =
det gij
det δij

= det gij .

Then, it is well-known that each M(x) with the induced metric (GAB) is a
symmetric space, namely, it is isometric to the coset space

(5.3) G/K = SL(n,R)/SO(n),

cf. [2, equ.(5.17), p. 1123] and [15, p. 3]. The eigenfunctions in symmetric
spaces, and especially of the coset space in (5.3), are well-known, they are the
so-called spherical functions. One can also define a Fourier transformation
for functions in L2(G/K) and prove a Plancherel formula, similar to the
Euclidean case, cf. [14, Chapter III]. Also similar to the Euclidean case we
shall use the Fourier kernel to define the eigenfunctions, or eigendistributions,
since the spherical functions, because of their symmetry properties, are not
specific enough to represent the elementary gravitons corresponding to the
diagonal metric variables gii, 1 ≤ i ≤ n− 1. Recall that from the n diagonal
coefficients of a metric only n−1 are independent because of the assumption

(5.4) det gij = 1

which has to be satisfied by the elements of M .
But before we can define the eigenfunctions and analyze their properties,

we have to recall some basic definitions and results of the theory of symmetric
spaces. We shall mainly consider the coset space in (5.3) which will be the
relevant space for our purpose. Its so-called quadratic model, the naming
of which will be obvious in the following, is the space of symmetric positive
definite matrices in Rn with determinant equal to 1, i.e., the quadratic model
of G/K is identical to an arbitrary fiber M(x) of the sub bundle M of E.
Since the symmetric space G/K, as a Riemannian space, is isometric to its
quadratic model, the eigenfunctions of the Laplacian in the respective spaces
can be identified via the isometry.

Unless otherwise noted the symbol X should denote the coset space G/K,
where G is the Lie group SL(n,R) and K = SO(n). The elements of G will
be referred to by g, h, . . ., we shall also express the elements in X by x, y, . . .,
and by a slight abuse of notation the elements of M will also occasionally be
referred to by the symbol g, but always in the form gij .

The canonical isometry between the quadratic model M and X is given
by the map

(5.5)
π : G/K →M

x = gk ∈ gK → π(x) = gk(gk)∗ = gg∗,

where the star denotes the transpose, hence, the name quadratic model. For
fixed (gij) ∈M , the action

(5.6) [g](gij) = g(gij)g
∗, g ∈ G,
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is an isometry in M , where M is equipped with the metric

(5.7) G̃ij,kl =
1

2
{gikgjl + gilgjk},

and where

(5.8) (gij) = (gij)
−1,

cf. [8, equ. (1.4.46), p. 22].
Let

(5.9) G = NAK

be an Iwasawa decomposition of G, where N is the subgroup of unit upper
triangle matrices, A the abelian subgroup of diagonal matrices with strictly
positive diagonal components and K = SO(n). The corresponding Lie alge-
bras are denoted by

(5.10) g, n, a and k.

Here,

(5.11)

g = real matrices with zero trace
n = subspace of strictly upper triangle matrices with zero diagonal
a = subspace of diagonal matrices with zero trace
k = subspace of skew-symmetric matrices.

The Iwasawa decomposition is unique. When

(5.12) g = nak

we define the maps n,A, k by

(5.13) g = n(g)A(g)k(g).

We also use the expression logA(g), where log is the matrix logarithm. In
case of diagonal matrices

(5.14) a = diag(a1, . . . , an)

with positive entries

(5.15) log a = diag(log ai),

hence

(5.16) A(g) = elogA(g).

Helgason uses the symbol A(g) if G decomposed as in (5.9) but uses the
symbol H(g) if

(5.17) G = KAN

which can be obtained by applying the isomorphism

(5.18) g → g−1.

Because of the uniqueness

(5.19) H(g) = A(g)−1,



QUANTIZATION OF THE HAMILTON EQUATIONS 19

hence

(5.20) logH(g) = − logA(g),

cf. [14, equs. (2),(3), p 198].
Note that the functions we define in G should also be defined in G/K, i.e.,

we would want that

(5.21) A(g) = A(gK),

which is indeed the case. If we used the Iwasawa decomposition G = KAN ,
then

(5.22) H(g) = H(Kg)

would be valid which would be useful if we considered the right coset space
K\G.

Remark 5.1. (i) The Lie algebra a is a (n-1)-dimensional real algebra,
which, as a vector space, is equipped with a natural real, symmetric scalar
product, namely, the trace form

(5.23) 〈H1, H2〉 = tr(H1H2), Hi ∈ a.

(ii) Let a∗ be the dual space of a. Its elements will be denoted by Greek
symbols, some of which have a special meaning in the literature. The linear
forms are also called additive characters.

(iii) Let λ ∈ a∗, then there exists a unique matrix Hλ ∈ a such that

(5.24) λ(H) = 〈Hλ, H〉 ∀H ∈ a.

This definition allows to define a dual trace form in a∗ by setting for λ, µ ∈ a∗

(5.25) 〈λ, µ〉 = 〈Hλ, Hµ〉.

(iv) The Lie algebra g is a direct sum

(5.26) g = n + a + k.

Let Eij , 1 ≤ i < j ≤ n, be the matrices with component 1 in the entry (i, j)
and other components zero, then these matrices form a basis of n. For H ∈ a,
H = diag(xi), the Lie bracket in g, which is simply the commutator, applied
to H and Eij yields

(5.27) [H,Eij ] = (xi − xj)Eij ∀H ∈ a.

Hence, the Eij are the eigenvectors for the characters αij ∈ a∗ defined by

(5.28) αij(H) = xi − xj .
Here, Eij is said to be an eigenvector of αij , if

(5.29) [H,Eij ] = αij(H)Eij ∀H ∈ a.

The eigenspace of αij is one-dimensional. The characters αij are called the
relevant characters, or the (a, n) characters. They are also called the positive
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restricted roots. The set of these characters will be denoted by Σ+. We
define

(5.30) τ =
∑
α∈Σ+

α

and

(5.31) ρ =
1

2
τ.

Lemma 5.2. Let H = diag(xi) ∈ a and define

(5.32) λi(H) =

i∑
k=1

xk, for 1 ≤ i ≤ n− 1,

then

(5.33) ρ =

n−1∑
i=1

λi.

Furthermore,

(5.34) 〈ρ, ρ〉 =
1

12
(n− 1)2n.

Proof. „(5.33)“ Follows from the definition of ρ and τ . For details see [15,
p. 84].

„(5.34)“ From (5.25) we obtain

(5.35) 〈ρ, ρ〉 = 〈Hρ, Hρ〉
and the definition of ρ implies

(5.36) Hρ =
1

2
Hτ .

on the other hand,

(5.37) Hτ =

n−1∑
i=1

Ci,

where Ci ∈ a has 1 in the first i entries of the diagonal, −i in the (i+ 1)-th
entry and zero in the other entries. Furthermore,

(5.38) 〈Ci, Cj〉 = 0, i 6= j,

and

(5.39) 〈Ci, Ci〉 = i2 + i,

cf. [15, p. 266]. Hence, we conclude

(5.40) 〈ρ, ρ〉 =
1

4

n−1∑
i=1

(i2 + i) =
1

12
(n− 1)2n.

�
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Remark 5.3. The eigenfunctions of the Laplacian will depend on the
additive characters. The above characters αij , 1 ≤ i < j ≤ n, will represent
the elementary gravitons stemming from the degrees of freedom in choosing
the coordinates

(5.41) gij , 1 ≤ i < j ≤ n,

of a metric tensor. The diagonal elements offer in general additional n degrees
of freedom, but in our case, where we consider metrics satisfying

(5.42) det gij = 1,

only (n− 1) diagonal components can be freely chosen, and we shall choose
the first (n− 1) entries, namely,

(5.43) gii, 1 ≤ i ≤ n− 1.

The corresponding additive characters are named αi, 1 ≤ i ≤ n− 1, and are
defined by

(5.44) αi(H) = hi,

if

(5.45) H = diag(h1, . . . , hn).

The characters αi, 1 ≤ i ≤ n − 1, and αij 1 ≤ i < j ≤ n, will represent the
(n+2)(n−1)

2 elementary gravitons at the character level. We shall normalize
the characters by defining

(5.46) α̃i = ‖Hαi‖−1αi
and

(5.47) α̃ij = ‖Hαij‖−1αij
such that the normalized characters have unit norm, cf. (5.25).

Definition 5.4. Let λ ∈ a∗, then we define the spherical function

(5.48) ϕλ(g) =

∫
K

e(iλ+ρ) logA(kg)dk, g ∈ G,

where the Haar measure dk is normalized such that K has measure 1, and
where G = NAK.

Observe, that

(5.49) ϕλ(g) = ϕλ(gK),

i.e., ϕλ can be lifted to X = G/K.
The Weyl chambers are the connected components of the set

(5.50) a \
⋃

1≤i<j≤n

α−1ij (0).
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They consist of diagonal matrices having distinct eigenvalues. The Weyl
chamber a+, defined by

(5.51) a+ = {H ∈ a : αij(h) > 0, 1 ≤ i < j ≤ n },

is called the positive Weyl chamber and the elements H ∈ a+, H = diag(hi),
satisfy

(5.52) h1 > h2 > · · · > hn.

Let M resp. M ′ be the centralizer resp. normalizer of a in K, then

(5.53) W = M ′/M

is the Weyl group which acts simply transitive on the Weyl chambers. The
Weyl group can be identified with the group Sn of permutations in our case,
i.e., if s ∈W and H = diag(hi) ∈ a, then

(5.54) s ·H = diag(hs(i)).

The subgroup M consists of the diagonal matrices diag(εi) with |εi| = 1.
Let B be the homogeneous space

(5.55) B = K/M,

then B is a compact Riemannian space with a K-invariant Riemannian met-
ric, cf. [16, Theorem 3.5, p. 203]. B is known as the Furstenberg boundary
of X and the map

(5.56)
ϕ : B ×A→ X

(kM, a)→ kaK

is a differentiable, surjective map, while the restriction of ϕ to

(5.57) B ×A+, A+ = exp a+,

is a diffeomorphism with an open, dense image; also,

(5.58) X = KA+eK

cf. [14, Prop. 1.4, p. 62]. If x = gK, b = kM and G = NAK we define

(5.59) A(x, b) = A(gK, kM) = A(k−1g),

cf. (5.13).
We are now ready to describe the Fourier theory and Plancherel formula,

due to Harish-Chandra forK-bi-invariant functions, cf. [9, 10] and [11, p. 48],
and by Helgason for arbitrary functions in L1(X) and L2(X), cf. [12] and [13,
Theorem 2.6]. The extension of the Fourier transform to the Schwartz space
S (X) and its inversion is due to Eguchi and Okamato [4], this paper is only
an announcement without proofs; the proofs are given in [3]. We follow the
presentation in Helgason’s book [14, Chapter III].

To simplify the expressions in the coming formulas the measures are
normalized such that the total measures of compact spaces are 1 and the
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Lebesgue measure in Euclidean space is normalized such that the Fourier
transform and its inverse can be expressed by the simple formulas

(5.60) f̂(ξ) =

∫
Rn
f(x)e−i〈ξ,x〉dx

and

(5.61) f(x) =

∫
Rn
f̂(ξ)ei〈ξ,x〉dξ.

The Fourier transform for functions f ∈ C∞c (X,C) is then defined by

(5.62) f̂(λ, b) =

∫
X

f(x)e(−iλ+ρ) logA(x,b)dx

for λ ∈ a and b ∈ B, or, if we define

(5.63) eλ,b(x) = e(iλ+ρ) logA(x,b),

by

(5.64) f̂(λ, b) =

∫
X

f(x)eλ,b(x)dx.

The functions eλ,b are real analytic in x and are eigenfunctions of the Lapla-
cian, cf. [14, Prop. 3.14, p. 99],

(5.65) −∆eλ,b = (|λ|2 + |ρ|2)eλ,b,

where

(5.66) |λ|2 = 〈λ, λ〉,

cf. (5.25), and similarly for |ρ|2. We also denote the Fourier transform by F
such that

(5.67) F(f) = f̂ .

Its inverse F−1 is defined in R(F) by

(5.68) f(x) =
1

|W |

∫
B

∫
a∗
f̂(λ, b)|c(λ)|−2dλdb,

where c(λ) is Harish-Chandra’s c-function and

(5.69) |W | = cardW,

the number of elements in W , in our case |W | = n!.
As in the Euclidean case a Plancherel formula is valid, namely, citing from

[14, Theorem 1.5, p. 202]:

Theorem 5.5. The Fourier transform f(x)→ f̂(λ, b), defined by (5.62),
extends to an isometry of L2(X) onto L2(a∗+×B) (with measure |c(λ)|−2dλdb
on a∗+ ×B). Moreover

(5.70)
∫
X

f1(x)f̄2(x)dx =
1

|W |

∫
a∗×B

f̂1(λ, b)f̂2(λ, b)|c(λ)|−2dλdb.
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We shall consider the eigenfunctions eλ,b as tempered distributions of the
Schwartz space S (X) and shall use their Fourier transforms

(5.71) êλ,b = δ(λ,b) = δλ ⊗ δb
as the spatial eigenfunctions of

(5.72) F(−∆) = m(µ) = (|µ|2 + |ρ|2),

which is a multiplication operator, in the next section.

6. Fourier quantization

The Fourier theory in X = G/K which we described at the end of the
preceding section uses the eigenfunctions

(6.1) eλ,b(x) = e(iλ+ρ) logA(x,b), (λ, b) ∈ a∗ ×B,
as the Fourier kernel. The Fourier quantization in Euclidean space uses
the Fourier transform of the Hamilton operator, or only the spatial part of
Hamilton operator, which in our case is

(6.2) −∆ = −∆M = −∆X ,

and the Fourier transforms of the corresponding physically relevant eigen-
functions. If the Hamilton operator is the Euclidean Laplacian in Rn, then
the spatial eigenfunctions would be

(6.3) ei〈ξ,x〉.

Therefore, we consider the eigenfunctions eλ,b as a starting point. As in the
Euclidean case the eλ,b are tempered distributions. We first need to extend
the Fourier theory to the corresponding Schwartz space S (X) and its dual
space S ′(X), the space of tempered distributions.

Let D(G) be the algebra of left invariant differential operators in G and
D̄(G) be the algebra of right invariant differential operators. Furthermore,
let

(6.4) ϕ0 = ϕλ|λ=0

be the spherical function with parameter λ = 0. Then, ϕ0 satisfies the
following estimates

(6.5) 0 < ϕ0(a) ≤ ϕ0(e) = 1 ∀ a ∈ A,
and

(6.6) ϕ0(a) ≤ c(1 + |a|)de−ρ log a, a ∈ A+,

where

(6.7) d = cardΣ+

the cardinality of the set of positive restricted roots. Here, we used the
following definitions, for g = k1ak2 (a ∈ A, k1, k2 ∈ K), cf. (5.58) on page 22,

(6.8) |g| = |a| = |log a|,
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and c is a positive constant.
The Schwartz space S (X) is then defined by

Definition 6.1. The Schwartz space S (G) is defined as the subspace of
C∞(G,C) the topology of which is given by the semi-norms

(6.9) pl,D,E(f) = sup
g∈G

(1 + |g|)lϕ0(g)−1|(DEf)(g)| <∞

for arbitrary l ∈ N, D ∈ D(G) and E ∈ D̄(G). The Schwartz space S (X)
consists of those functions in S (G) which are right invariant under K.

The Fourier transform for f ∈ S (X) is then well defined

(6.10) f̂(λ, b) =

∫
X

f(x)eλ,b(x)dx.

Integrating over B we obtain

(6.11)

F (λ) =

∫
B

f̂(λ, b)db

=

∫
X

f(x)

∫
B

e(−iλ+ρ) logA(x,b)dbdx

=

∫
X

f(x)ϕ−λ(x)dx,

cf. [17, equ. (1.8)] for the last inequality. Hence, we deduce

Lemma 6.2. F (λ) satisfies

(6.12) F (s · λ) = F (λ) ∀ s ∈W.

Proof. The spherical function ϕλ has this property, cf. [15, Theorem 5.2,
p. 100]. �

Next, we define the Schwartz space S (a∗×B). Note that a∗ is a Euclidean
space, in our case a∗ = Rn−1, and B = K/M is a compact Riemannian space.
Hence, we define the Schwartz space S (a∗ × B) as follows, cf. [4, Def. 2,
p. 240]:

Definition 6.3. Let S (a∗ × B) denote the set of all functions F ∈
C∞(a∗×B,C) which satisfy the following condition: for any natural numbers
l,m, q

(6.13) pl,m,q(F ) = sup
(λ,b)∈a∗×B

(1 + |λ|2)l
∑
|α|≤m

|(−∆B + 1)qDαF | <∞,

where α = (α1, . . . , αr), r = dim a∗, is a multi-index

(6.14) DαF = Dα1
1 · · ·Dαr

r F

are partial derivatives with respect to λ ∈ a∗, and ∆B is the Laplacian in B.



QUANTIZATION OF THE HAMILTON EQUATIONS 26

The semi-norms pl,m,q define a topology on S (a∗ × B) with respect to
which it is a Fréchet space.

Theorem 6.4. The Fourier transform F
(6.15) F : S (X)→ S (a∗ ×B)

is continuous and if we define

(6.16) Ŝ (a∗×B) = {F ∈ S (a∗×B) : F (λ) =

∫
B

F (λ, b)db satisfies (6.12)},

then

(6.17) F : S (X)→ Ŝ (a∗ ×B)

is a linear topological isomorphism.

Proof. Confer [4, Theorem 4] and [3, Lemma 4.8.2 & Theorem 4.8.3, p. 212]
�

Remark 6.5. Note that the measure in Ŝ (a∗ ×B) is defined by

(6.18) dµ(λ, b) =
1

|W |
|c(λ)|−2dλdb

and that the function

(6.19) λ→ |c(λ)|−1

has slow growth, cf. [14, Lemma 3.5, p. 91].

We can now define the Fourier quantization. Let S ′(X) resp. Ŝ ′(a∗×B)
be the dual spaces of tempered distributions, then

(6.20) F−1 : Ŝ (a∗ ×B)→ S (X)

is continuous. Let (F−1)
∗ be the dual operator

(6.21) (F−1)
∗

: S ′(X)→ Ŝ ′(a∗ ×B)

defined by

(6.22) 〈ω,F−1(F (λ, b))〉 = 〈(F−1)
∗
ω, F (λ, b)〉

for ω ∈ S ′(X) and F ∈ Ŝ (a∗ ×B). Let

(6.23) F (λ, b) = f̂(λ, b), f ∈ S(X),

then

(6.24) 〈ω, f〉 = 〈(F−1)
∗
ω, f̂〉.

Now, choose ω = eλ,b, where (λ, b) ∈ a∗ ×B is arbitrary but fixed, then

(6.25) 〈ω, f〉 =

∫
X

f(x)eλ,b(x)dx = f̂(λ, b).

Hence, we deduce

(6.26) (F−1)
∗
ω = δ(λ,b) = δλ ⊗ δb.
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Lemma 6.6. Let ω ∈ S ′(X) then we may call (F−1)
∗
ω to be the Fourier

transform of ω

(6.27) (F−1)
∗
ω = ω̂.

Proof. S(X) can be embedded in S ′(X) be defining for ω ∈ S (X)

(6.28) 〈ω, f〉 =

∫
X

fω̄dx, ∀ f ∈ S (X).

ω is obviously an element of S ′(X) and the embedding is antilinear. On the
other hand, in view of the Plancherel formula, we have

(6.29)
∫
X

fω̄dx =

∫
a∗×B

f̂(λ, b)ω̂(λ, b)dµ(λ, b)

and thus, because of (6.24),

(6.30) 〈(F−1)
∗
ω, f̂〉 =

∫
a∗×B

f̂ ω̂dµ(λ, b).

�

Looking at the Fourier transformed eigenfunctions

(6.31) êλ,b = δλ ⊗ δb
it is obvious that the dependence on b has to be eliminated, since there is
neither a physical nor a mathematical motivation to distinguish between eλ,b
and eλ,b′ . The first ansatz would be to integrate over B, i.e., we would
consider the Fourier transform of

(6.32)
∫
B

eλ,bdb = ϕλ

which is equal to the Fourier transform of the spherical function ϕλ, i.e.,

(6.33) ϕ̂λ = δλ

and it would act on the functions

(6.34) F (µ) =

∫
B

f̂(µ, b)db, f ∈ S (X).

These functions satisfy the relation (6.12) which in turn implies

(6.35) s · δλ = δs−1·λ = δλ ∀ s ∈W

if λ was allowed to range in all of a∗. Hence, we would have to restrict λ to
the positive Weyl chamber a∗+, but then, we would not be able to define the
eigenfunctions corresponding to the elementary gravitons gii, 2 ≤ i ≤ n− 1,
since the corresponding λ belong to different Weyl chambers, cf. Remark 5.3
on page 20.

Therefore, we pick a distinguished b ∈ B, namely,

(6.36) b0 = eM, e = id ∈ K,
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and only consider the eigenfunctions eλ,b0 with corresponding Fourier trans-
forms

(6.37) δλ ≡ δλ ⊗ δb0 = êλ,b0 , λ ∈ a∗.

Then we can prove:

Lemma 6.7. Let δλ be defined as above, then for any s ∈ W satisfying
s · λ 6= λ, there exists F ∈ Ŝ (a∗ ×B) such that

(6.38) 〈δλ, F 〉 = F (λ, b0) 6= F (s · λ, b0) = 〈δs·λ, F 〉.

Proof. Let ψ ∈ C∞c (a∗) be a function satisfying

(6.39) ψ(λ) 6= ψ(s · λ)

and choose η ∈ C∞(B) with the properties

(6.40) η(b0) = 1

and

(6.41)
∫
B

ηdb = 0,

then

(6.42) F = ψη ∈ Ŝ (a∗ ×B)

and satisfies (6.38). �

The Fourier transform of the Laplacian is a multiplication operator similar
to the Euclidean case.

Lemma 6.8. (i) Let f ∈ S (X), then

(6.43) F(−∆f) = m(λ)f̂(λ, b) ∈ Ŝ (a∗ ×B),

where

(6.44) m(λ) = |λ|2 + |ρ|2, λ ∈ a∗.

(ii) Let ω ∈ S ′(X), then −∆ω is defined as usual

(6.45) 〈−∆ω, f〉 = 〈ω,−∆f〉

and

(6.46) F(−∆ω) = m(λ)ω̂ ∈ Ŝ ′(a∗ ×B),

where

(6.47) 〈m(λ)ω̂, F (λ, b)〉 = 〈ω̂,m(λ)F (λ, b)〉 ∀F ∈ Ŝ (a∗ ×B).
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Proof. „(i)“ The result follows immediately by partial integration.
„(ii)“ From (6.24) and (6.45) we deduce

(6.48)

〈−∆ω, f〉 = 〈ω̂,F(−∆f)〉

= 〈ω̂,m(λ)f̂(λ, b)〉

= 〈m(λ)ω̂, f̂(λ, b)〉

= 〈F(−∆ω), f̂(λ, b)〉.

�

Now, choosing

(6.49) ω = eλ,b0 ,

where λ ∈ a∗ is fixed, then

(6.50) F(−∆ω) = m(µ)ω̂ = m(µ)δλ = m(λ)δλ,

since

(6.51) 〈m(µ)δλ, F (µ, b)〉 = 〈δλ,m(µ)F (µ, b)〉 = m(λ)F (λ, b0).

In Remark 5.3 on page 20 we already identified the additive characters cor-
responding to the elementary gravitons, namely, the characters

(6.52) αij , 1 ≤ i < j ≤ n

and

(6.53) αi, 1 ≤ i ≤ n− 1.

We shall now define the corresponding forms in a∗ with arbitrary energy
levels:

Definition 6.9. Let λ ∈ R+ be arbitrary. Then we consider the characters

(6.54) λα̃i ∧ λα̃ij ,

where we recall that the terms embellished by a tilde refer to the corre-
sponding unit vectors. Then the eigenfunctions representing the elementary
gravitons are eλα̃i,b0 and eλα̃ij ,b0 .

The corresponding eigenvalue with respect to −∆ is |λ|2 + |ρ|2, where by
a slight abuse of notation |λ|2 = λ2 and |ρ|2 = 〈ρ, ρ〉. Note that |ρ|2 is always
strictly positive, indeed

(6.55) |ρ(n)|2 ≥ |ρ(3)|2 = 1,

if X = SL(n,R)/SO(n) and n ≥ 3, cf. (5.40) on page 20.
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7. Temporal eigenfunctions

The temporal eigenfunctions w = w(t) have to satisfy the ODE (4.59) on
page 16. or equivalently,

(7.1) ẅ +mt−1ẇ + µ0t
−2w = 0,

where µ0 should be equal to

(7.2) µ0 =
16(n− 1)

n
(|λ|2 + |ρ|2),

and where (|λ|2 + |ρ|2) is the eigenvalue of a spatial eigenfunction.
To solve (7.1) we make the ansatz

(7.3) w(t) = t−
(m−1)

2 eiµ log t, µ > 0,

to obtain

(7.4) ẅ +mt−1ẇ + µ0t
−2w = {− (m− 1)2

4
+ µ0 − µ2}w.

In order to choose µ such that the term in the braces vanishes, we have to
ensure that

(7.5) µ0 −
(m− 1)2

4
> 0.

Now, the estimate

(7.6) µ0 −
(m− 1)2

4
≥ 16(n− 1)

n
ρ2 − (m− 1)2

4

is valid, where

(7.7) ρ2 =
(n− 1)2n

12

and

(7.8) m =
(n− 1)(n+ 2)

2
.

One can easily check that

(7.9)
16(n− 1)

n
ρ2 − (m− 1)2

4
=

{
> 0, 3 ≤ n ≤ 16,

< 0, 17 ≤ n.

In case n ≥ 17 and

(7.10) µ0 −
(m− 1)2

4
< 0,

we obtain the solution

(7.11) w = c1t
−m−1

2 +

√
(m−1)2

4 −µ0 + c2t
−m−1

2 −
√

(m−1)2

4 −µ0 ,

while for

(7.12) µ0 −
(m− 1)2

4
= 0,
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we get

(7.13) w = c1t
−m−1

2 + c2t
−m−1

2 log t.

Remark 7.1. In all three cases (7.5), (7.10) and (7.12) we obtain two real
independent solutions, which become unbounded, if the big bang (t = 0) is
approached and vanish, if t goes to infinity. The two real solutions contained
in (7.3), which generate all possible temporal eigenfunctions, if 3 ≤ n ≤ 16,
seem to be the physically relevant solutions.

8. Conclusions

Quantizing the Hamilton equations instead of the Hamilton constraint we
obtained the simple equation

(8.1) −∆u = 0

in the fiber bundle E provided n 6= 4, where the Laplacian is the Laplacian
of the Wheeler-DeWitt metric in the fibers and where u is a smooth function
which is only defined in the fibers of E

(8.2) u = u(gij(x)), x ∈ S0 = Rn.

Expressing then the fiber metric as in (4.26) on page 12 we can use separation
of variables and write the solutions u as products

(8.3) u = w(t)v(gij(x, ξ
A)),

where gij(x, ξA) is a local trivialization of the sub bundle M the fibers of
which consists of the metrics gij with unit determinant, or more precisely,

(8.4)
det gij(x)

det δij(x)
= 1,

where δij is the Euclidean metric. Using Euclidean coordinates in S0 we can
identify the fibers M(x) with the symmetric space

(8.5) G/K = SL(n,Rn)/SO(n).

The Riemannian metric in G/K is identical to the induced fiber metric of
M(x) such that the spatial eigenfunctions of the corresponding (spatial)
Laplacians can also be identified. Due to the well-known Fourier theory
in G/K we choose the Fourier kernel elements

(8.6) eλ,b0(y) = e(iλ+ρ) logA(y,b0), λ ∈ a∗,

where we used the Iwasawa decomposition G = NAK and where b0 is the
distinguished point specified in (6.36) on page 27. These smooth functions
are tempered distributions and are eigenfunctions of the Laplacian

(8.7) −∆eλ,b0 = (|λ|2 + |ρ|2)eλ,b0 ,

their Fourier transforms are Dirac measures

(8.8) êλ,b0 = δλ ⊗ δb0 .
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In Fourier space the Laplacian is a multiplication operator

(8.9) F(−∆f) = (|λ|2 + |ρ|2)f̂(λ, b) ∀ f ∈ S (G/K),

where λ ranges in a∗ and b in the Furstenberg boundary B.
Let

(8.10) π : G/K →M

be the canonical isometry defined in (5.5) on page 17, then the eigenfunctions
f in G/K can be transformed to be eigenfunctions in the fibers of the sub
bundle M by defining

(8.11) v(gij(x, ξ
A)) = f(π−1(gij(x, ξ

A)),

i.e.,

(8.12) eλ,b0 ◦ π−1 ◦ gij(x, ξA), λ ∈ a∗,

are the spatial eigenfunctions with eigenvalues (|λ|2 + |ρ|2). The eigenfunc-
tions corresponding to the elementary gravitons we defined in Definition 6.9
on page 29. They are characterized by special characters αi, 1 ≤ i ≤ n−1, for
the diagonal gravitons and αij , 1 ≤ i < j ≤ n, for the off-diagonal gravitons.

The temporal eigenfunctions w(t), which we defined in the previous sec-
tion, have the properties that they become unbounded if t → 0 and they
vanish, together with all derivatives, if t→∞.

Furthermore, if we consider t < 0, then the functions

(8.13) w̃(t) = w(−t), t < 0,

also satisfy the ODE (7.1) on page 29 for t < 0, i.e., they are also temporal
eigenfunctions if the light cone in E is flipped.

Thus, we conclude

Theorem 8.1. The quantum model we derived for gravity can be de-
scribed by products of spatial and temporal eigenfunctions of corresponding
self-adjoint operators with a continuous spectrum. The spatial eigenfunctions
can be expressed as Dirac measures in Fourier space and the spatial Laplacian
as a multiplication operator. The spatial eigenvalues are strictly positive

(8.14) |λ|2 + |ρ|2 ≥ |ρ|2 ≥ |ρ(3)|2 = 1.

Choosing λ = 0 we have a common ground state with smallest eigenvalue |ρ|2
which could be considered to be the source of the dark energy.

Furthermore, we have a big bang singularity in t = 0. Since the same
quantum model is also valid by switching from t > 0 to t < 0, with appropriate
changes to the temporal eigenfunctions, one could argue that at the big bang
two universes with different time orientations could have been created such
that, in view of the CPT theorem, one was filled with matter and the other
with anti-matter.
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