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Abstract. We consider inverse curvature flows in Hn+1 with star-
shaped initial hypersurfaces and prove that the flows exist for all time,

and that the leaves converge to infinity, become strongly convex ex-

ponentially fast and also more and more totally umbilic. After an
appropriate rescaling the leaves converge in C∞ to a sphere.
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1. Introduction

Curvature flows (driven by extrinsic curvatures) of compact hypersurfaces
in a Riemannian space generally exist only for a finite time and then develop
a singularity provided the flow is a pure curvature flow without an additional
force term. This phenomenon occurs in the case of direct flows, which can
also be characterized as contracting flows, cf. [9], as well as for inverse flows,
which can also be characterized as expanding flows, see [10].

In non-compact spaces of constant curvature we can expect that the in-
verse flows behave differently than the direct flows, since the inverse flows
of geodesic spheres exist for all time. In [3] we proved that inverse curva-
ture flows of star-shaped hypersurfaces in Euclidean space exist for all time,
converge to infinity and, after rescaling, converge to spheres.

In this paper we want to prove a similar result in hyperbolic space Hn+1,
n ≥ 2. The initial hypersurfaceM0 is supposed to be star-shaped with respect
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to a given point p ∈ Hn+1, i.e., after introducing geodesic polar coordinates
with center p, M0 can be written as a graph over a geodesic sphere with
center p which we identify topologically with the standard sphere Sn. Let
F be a smooth curvature function, homogeneous of degree 1, monotone, and
concave, defined in a symmetric, convex, open cone Γ ⊂ Rn, such that

(1.1) F |Γ > 0 ∧ F |∂Γ = 0.

Then we consider the curvature flow

(1.2) ẋ = −Φν

with initial hypersurface M0, the principal curvatures of which are supposed
to lie in the cone Γ ; such a hypersurface is called admissible. Here, the
function Φ is defined by

(1.3) Φ = Φ(r) = −r−1, r > 0,

and Φν stands for

(1.4) Φ(F )ν,

i.e., the flow equation is

(1.5) ẋ =
1

F
ν,

where ν is outward normal.
However, to simplify comparisons with former results and formulas, and

also to make a generalization to more general flows easier, most results in
this paper are formulated, and some are also proved, for a general smooth
real valued function Φ defined on the positive real axis satisfying

(1.6) Φ̇ > 0 ∧ Φ̈ ≤ 0.

We shall normalize F such that

(1.7) F (1, . . . , 1) = n

and shall also use the same notation F when we assume F to depend on the
second fundamental form hij instead of the principal curvatures. Sometimes

we also use the notation h̆ij for the second fundamental form of a hypersurface

embedded in Hn+1 to distinguish it from the second fundamental form hij of

the same hypersurface viewed as being embedded in Rn+1, which will happen
when we parameterize Hn+1 over the open ball B2(0) ⊂ Rn+1.

We can now state our first result.

1.1. Theorem. The flow (1.5) with a smooth and admissible initial hy-
persurface M0 exists for all time. The flow hypersurfaces in hyperbolic space
converge to infinity, become strongly convex exponentially fast and also more
and more totally umbilic. In fact there holds

(1.8) |h̆ij − δij | ≤ ce−
t
n ,

i.e., the principal curvatures are uniformly bounded and converge exponen-
tially fast to 1.
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For a more detailed analysis of the asymptotic behaviour we have to pa-
rameterize Hn+1 over B2(0) ⊂ Rn+1 such that the metric can be expressed
in the form

(1.9)

ds̆2 =
1

(1− 1
4 |x|2)2

dx2

=
1

(1− 1
4r

2)2
{dr2 + r2σijdx

idxj}.

The flow hypersurfaces M(t) can now also be viewed as graphs

(1.10) M(t) = graphu(t, ·)
over Sn in Euclidean space, such that 0 < u < 2, and convergence to infinity
is tantamount to u → 2. The second fundamental form in Rn+1 is denoted
by hij , or simply by A, where we omit the tensor indices. Then, we can prove:

1.2. Theorem. Let M(t) = graphu(t) be the leaves of the inverse curva-
ture flow, where F and the initial hypersurface are smooth, then the estimate

(1.11) ‖DmA‖ ≤ cme−
t
n ∀m ≥ 1

is valid and the function

(1.12) (u− 2)e
t
n

converges in C∞(Sn) to a strictly negative function.

1.3. Remark. After publishing a first version of the paper in the arXiv
we learnt that Qi Ding in [1] published a similar result for the inverse mean
curvature flow in Hn+1 even claiming that the rescaled flow hypersurfaces
would converge to a sphere. However, he used a somewhat crude rescaling,
namely,

(1.13)
ŭ

t

and not the finer

(1.14) ŭ− t

n

which we consider.
The fact that the functions in (1.13) converge to 1

n follows immediately
from the estimate (3.19) on page 7.

2. Definitions and Conventions

The main objective of this section is to state the equations of Gauß, Co-
dazzi, and Weingarten for hypersurfaces. For greater generality we shall
formulate the governing equations of a hypersurface M in a semi-riemannian
(n+1)-dimensional manifold N , which is either Riemannian or Lorentzian.
Geometric quantities in N will be denoted by (ḡαβ), (R̄αβγδ), etc., and those
in M by (gij), (Rijkl), etc. Greek indices range from 0 to n and Latin from 1
to n; the summation convention is always used. Generic coordinate systems
in N resp. M will be denoted by (xα) resp. (ξi). Covariant differentiation
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will simply be indicated by indices, only in case of possible ambiguity they
will be preceded by a semicolon, i.e., for a function u in N , (uα) will be
the gradient and (uαβ) the Hessian, but e.g., the covariant derivative of the
curvature tensor will be abbreviated by R̄αβγδ;ε. We also point out that

(2.1) R̄αβγδ;i = R̄αβγδ;εx
ε
i

with obvious generalizations to other quantities.
Let M be a spacelike hypersurface, i.e., the induced metric is Riemannian,

with a differentiable normal ν. We define the signature of ν, σ = σ(ν), by

(2.2) σ = ḡαβν
ανβ = 〈ν, ν〉.

In case N is Lorentzian, σ = −1, and ν is time-like.
In local coordinates, (xα) and (ξi), the geometric quantities of the spacelike

hypersurface M are connected through the following equations

(2.3) xαij = −σhijνα

the so-called Gauß formula. Here, and also in the sequel, a covariant deriva-
tive is always a full tensor, i.e.,

(2.4) xαij = xα,ij − Γ kijxαk + Γ̄αβγx
β
i x

γ
j .

The comma indicates ordinary partial derivatives.
In this implicit definition the second fundamental form (hij) is taken with

respect to −σν.
The second equation is the Weingarten equation

(2.5) ναi = hki x
α
k ,

where we remember that ναi is a full tensor.
Finally, we have the Codazzi equation

(2.6) hij;k − hik;j = R̄αβγδν
αxβi x

γ
j x

δ
k

and the Gauß equation

(2.7) Rijkl = σ{hikhjl − hilhjk}+ R̄αβγδx
α
i x

β
j x

γ
kx

δ
l .

Here, the signature of ν comes into play.
Now, let us assume that N is a topological product R ×S0, where S0 is a

compact Riemannian manifold, and that there exists a Gaussian coordinate
system (xα), such that the metric in N has the form

(2.8) ds̄2N = e2ψ{σdx02 + σij(x
0, x)dxidxj},

where σij is a Riemannian metric, ψ a function on N , and x an abbreviation
for the spacelike components (xi),

We also assume that the coordinate system is future oriented, i.e., the time
coordinate x0 increases on future directed curves. Hence, the contravariant
time-like vector (ξα) = (1, 0, . . . , 0) is future directed as is its covariant ver-
sion (ξα) = e2ψ(σ, 0, . . . , 0).

Let M = graphu|S0
be a spacelike hypersurface

(2.9) M = { (x0, x) : x0 = u(x), x ∈ S0 },



INVERSE CURVATURE FLOWS IN HYPERBOLIC SPACE 5

then the induced metric has the form

(2.10) gij = e2ψ{σuiuj + σij}
where σij is evaluated at (u, x), and its inverse (gij) = (gij)

−1 can be ex-
pressed as

(2.11) gij = e−2ψ{σij − σu
i

v

uj

v
},

where (σij) = (σij)
−1 and

(2.12)
ui = σijuj

v2 = 1 + σσijuiuj ≡ 1 + σ|Du|2.
The covariant form of a normal vector of a graph looks like

(2.13) (να) = ±v−1eψ(1,−ui).
and the contravariant version is

(2.14) (να) = ±v−1e−ψ(σ,−ui).
In the Gauß formula (2.3) we are free to choose any of two normals, but

we stipulate that in general we use

(2.15) (να) = v−1e−ψ(σ,−ui).
as normal vector.

Look at the component α = 0 in (2.3), then we obtain

(2.16) e−ψv−1hij = −uij − Γ̄ 0
00uiuj − Γ̄ 0

0iuj − Γ̄ 0
0jui − Γ̄ 0

ij .

Here, the covariant derivatives a taken with respect to the induced metric of
M , and

(2.17) − Γ̄ 0
ij = e−ψh̄ij ,

where (h̄ij) is the second fundamental form of the hypersurfaces {x0 = const}.

3. First Estimates

Let F ∈ Cm,α(Γ ), m ≥ 4, be a monotone and concave curvature function,
homogeneous of degree 1, and normalized such that

(3.1) F (1, . . . , 1) = n.

We first look at the flow of a geodesic sphere Sr0 . Fix a point p0 ∈ Hn+1

and consider geodesic polar coordinates centered at p0. Then the hyperbolic
metric can be expressed as

(3.2) ds̄2 = dr2 + sinh2 rσij dx
idxj ,

where σij is the canonical metric of Sn.
Geodesic spheres Sr with center in p0 are umbilic and their second funda-

mental form is given by

(3.3) h̄ij = coth rḡij ,

where

(3.4) ḡij = sinh2 rσij .
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Hence, if we consider an inverse curvature flow (ICF) with initial hypersurface
Sr0 , then the flow hypersurfaces M(t) will be spheres with radii r(t) satisfying
the scalar curvature flow equation

(3.5) ṙ =
1

F
=

1

n coth r
,

and we deduce further, from

(3.6) coth r dr =
1

n
dt,

(3.7) log sinh r − log sinh r0 =
t

n
,

or equivalently,

(3.8) sinh r = sinh r0e
t
n .

Let us now consider the inverse curvature flow of a star-shaped hypersur-
face M0 which is given as a graph over Sn

(3.9) M0 = graphu0|Sn .

The flow exists on a maximal time interval [0, T ∗), 0 < T ∗ ≤ ∞, and its
leaves are also graphs

(3.10) M(t) = graphu(t)|Sn ,

which satisfy, besides the original flow equation,

(3.11) ẋ = −Φν =
1

F
ν,

the scalar flow equation

(3.12) u̇ =
ṽ

F
,

where

(3.13) ṽ = v−1, v2 = 1 + |Du|2 = 1 +
1

sinh2 u
σijuiuj ,

where the dot indicates a total time derivative. If we instead consider a
partial time derivate, then we get

(3.14) u̇ ≡ ∂u

∂t
=

v

F
,

cf. [6, p. 98].
Let Sri , i = 1, 2, be geodesic spheres satisfying

(3.15) r1 < u0 < r2,

and let ui, i = 1, 2, be the solutions to the corresponding inverse curvature
flows, then this inequality will also be valid for t > 0, i.e.,

(3.16) u1(t) < u(t) < u2(t) ∀ t ∈ [0, T ∗),

in view of the maximum principle, and we conclude:
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3.1. Lemma. The solutions M(t) = graphu(t) of the ICF satisfy the
estimates

(3.17) sinh r1 < sinhu(t)e−
t
n < sinh r2 ∀ t ∈ [0, T ∗),

and there exist constants ci, i = 1, 2, such that the function

(3.18) ũ = u− t

n
is uniformly bounded by

(3.19) c1 < ũ(t) < c2 ∀ t ∈ [0, T ∗).

Proof. The inequality (3.17) follows from (3.8) and the parabolic maximum
principle, while (3.19) is due to the trivial estimate

(3.20) 0 < c̃1 ≤ sinh r e−r ≤ c̃2 ∀ 0 < r0 ≤ r
with appropriate constants c̃i. �

Next, we want to derive an a priori estimate for v, or equivalently, for

(3.21) |Du|2 =
1

sinh2 u
σijuiuj .

Let us write the metric (3.2) in a more general form

(3.22) ds̄2 = dr2 + ϑ2(r)σijdx
idxj .

The second fundamental form of graphu can then be expressed as

(3.23)
hijv

−1 = −uij + h̄ij

= −uij + ϑ̇ϑσij .

Define the metric

(3.24) σ̃ij = ϑ2(u)σij ,

and denote covariant differentiation with respect to this metric by a semi-
colon, then

(3.25) hijv
−1 = −v−2u;ij + ϑ̇ϑσij ,

cf. [6, Lemma 2.7.6], and we conclude further

(3.26)
hij = gikhkj

= v−1ϑ−1{−(σik − v−2ϕiϕk)ϕjk + ϑ̇δij},

where σij is the inverse of σij ,

(3.27) ϕ =

∫ u

r0

ϑ−1,

(3.28) ϕi = σikϕk,

and ϕjk are the second covariant derivatives of ϕ with respect to the metric
σij .

Thus, the scalar curvature equation (3.14) can now be expressed as

(3.29) u̇ =
v

F (hij)
,
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or equivalently,

(3.30) ϕ̇ = ϑ−1u̇ =
1

F (ϑv−1hij)
≡ 1

F (h̃ij)
,

where

(3.31) h̃ij = v−2{−(σik − v−2ϕiϕk)ϕjk + ϑ̇δij}.
Let

(3.32) g̃ij = ϕiϕj + σij ,

then we consider the eigenvalues of

(3.33) h̃ij = g̃ikh̃
k
j

with respect to this metric and we define F ij resp. F ij accordingly

(3.34) F ij =
∂F

∂h̃ij

and

(3.35) F ij =
∂F

∂h̃ji
= g̃jkF

ik.

Note that h̃ij is symmetric, since hij and g̃ij can be diagonalized simultane-
ously. We also emphasize that

(3.36) |Du|2 = σijϕiϕj ≡ |Dϕ|2.

3.2. Lemma. Let u be solution of the scalar curvature equation

(3.37) u̇ =
v

F (hij)
,

then

(3.38) |Du|2 ≤ c.
Moreover, if F is bounded from above

(3.39) F ≤ c0,
then there exists 0 < λ = λ(c0) such that

(3.40) |Du|2 ≤ ce−λt ∀ t ∈ [0, T ∗).

Proof.
”
(3.38)“ In view of (3.36), we may estimate

(3.41) w = 1
2 |Dϕ|

2.

Differentiating equation (3.30) covariantly with respect to

(3.42) ϕkDk

we deduce

(3.43)

ẇ = F−2{2v−2Fwiϕi + v−2F kl g̃
lrwkr − v−2F kl g̃lrϕikϕir

+ v−2F kl g̃
lr
;iϕ

iϕkr + v−2F kl g̃
lrϕrϕk − v−2F kl g̃lrσkr|Dϕ|2

− 2v−2F kk ϑ̈ϑw},
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where covariant derivatives with respect to the metric σij are simply denoted
by indices, if no ambiguities are possible, and by a semi-colon otherwise.
In deriving the previous equation we also used the Ricci identities and the
properties of the Riemann curvature tensor of Sn.

Now, let 0 < T < T ∗ and suppose that

(3.44) sup
QT

w, QT = [0, T ]× Sn,

is attained at (t0, x0) with t0 > 0. Then the maximum principle implies

(3.45)
0 ≤ v−2{−F kl g̃lrϕikϕir + (F kl g̃

lrϕrϕk − F kl g̃lrσkr|Dϕ|2)

− 2F kk sinh2 uw}.

The right-hand side, however, is strictly negative, if w > 0, hence t0 > 0 is
not possible, since we didn’t assume M0 to be a sphere, and we conclude

(3.46) w ≤ sup
Sn

w(0).

”
(3.40)“ Now, assume that the original curvature function is uniformly

bounded

(3.47) F (hij) ≤ c0,

and let 0 < λ be a constant, then

(3.48) w̃ = weλt

satisfies the same equation as w with an additional term

(3.49) λw̃

at the right-hand side.
Applying the maximum principle as before, we deduce, that at a point

(t0, x0), t0 > 0, where w̃ attains a positive maximum, there holds instead of
(3.45)

(3.50) 0 < −2F kk sinh2 u w̃ + λv2F 2(h̃ij)w̃,

but

(3.51) vF (h̃ij) = sinhuF (hij) ≤ sinhu c0,

and hence

(3.52) weλt ≤ sup
Sn

w(0)

for all

(3.53) 0 < λ ≤ 2nc−20 ,

since

(3.54) F kk ≥ n.

�
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4. C2-estimates and existence for all time

To prove estimates for hij , we first need an a priori bound for F .

4.1. Lemma. Let M(t) be the leaves of the ICF

(4.1) ẋ = −Φν,
then there exists a positive constant c1 such that

(4.2) 0 < c1 ≤ F ∀ t ∈ [0, T ∗).

Proof. The function Φ, or equivalently −Φ, satisfies the linear parabolic equa-
tion

(4.3) Φ′ − Φ̇F ijΦij = Φ̇F ijhikh
k
jΦ+KN Φ̇F

ijgijΦ,

when the ambient Riemannian space N is a space of constant curvature KN ,
cf. [4, Corollary 3.5].

Another very useful equation is satisfied by a quantity χ which is defined
by

(4.4) χ = vη,

where 0 < η = η(r) is a solution of

(4.5) η̇ = −H̄
n
η;

here r is the radial distance to the center of geodesic polar coordinates in a
spaceform N , and H̄ = H̄(r) is the mean curvature of Sr.

When N = Hn+1, η is given by

(4.6) η =
1

sinh r
,

and

(4.7) χ = vη(u)

then satisfies

(4.8) χ̇− Φ̇F ijχ
ij

= −Φ̇F ijhikhkj − 2χ−1Φ̇F ijχ
i
χ
j

+ {Φ̇F + Φ}H̄
n
vχ

for a general function Φ. In case of the inverse curvature, the term in the
braces on the right-hand side vanishes.

In view of Lemma 3.1, the function

(4.9) χ̃ = χe
t
n

is uniformly bounded,

(4.10) 0 < c1 ≤ χ̃ ≤ c2 ∀ t ∈ [0, T ∗),

and

(4.11) ˙̃χ− Φ̇F ijχ̃
ij

= −Φ̇F ijhikhkj χ̃− 2χ̃−1Φ̇F ijχ̃
i
χ̃
j

+ 1
n χ̃,

when we consider an ICF.
We claim that

(4.12) w = log(−Φ) + log χ̃ ≤ const
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during the evolution, which in turn would prove (4.2).
To derive (4.12) we first fix 0 < T < T ∗ and let

(4.13) (t0, ξ0) ∈ QT = [0, T ]× Sn, t0 > 0,

be such that

(4.14) w(t0, ξ0) = sup
QT

w.

The equations (4.3), (4.11) and the maximum principle then yield in
(t0, ξ0)

(4.15) 0 ≤ −Φ̇F ijgij + 1
n ,

which can only hold, if

(4.16) n ≤ F (t0, ξ0);

hence w is uniformly bounded from above. �

4.2. Lemma. During the evolution F is uniformly bounded from above.

Proof. The function u satisfies the parabolic equation

(4.17)
u̇− Φ̇F ijuij = −Φv−1 + Φ̇Fv−1 − Φ̇F ij h̄ij

= 2Φ̇Fv−1 − Φ̇F ij h̄ij ,

cf. [6, Lemma 3.3.2], and the rescaled function

(4.18) ũ = u− t

n

is uniformly bounded, cf. Lemma 3.1, and there holds

(4.19) ˙̃u− Φ̇F ij ũij = 2Φ̇Fv−1 − Φ̇F ij h̄ij − 1
n .

The lemma will be proved, if we can show

(4.20) w = − log(−Φ) + ũ = logF + ũ ≤ const

during the evolution.
Applying the maximum principle as before, we conclude

(4.21) 0 ≤ 2F−1v−1 − 1
n ,

hence, F has to be bounded, proving the claim. �

As an immediate corollary we deduce, in view of Lemma 3.2:

4.3. Remark. |Du|2 satisfies the estimate (3.40), i.e., it decays exponen-
tially, if T ∗ =∞.

We are now ready to prove a priori estimates for the principal curvatures
κi. The proof will be similar to a corresponding proof in [7, Theorem 1.4]
valid in arbitrary Riemannian spaces. Our former result cannot be applied
directly, since we assumed that the flow stays in a compact subset and also
considered a contracting flow not an expanding one as we do now.
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4.4. Lemma. The principal curvatures of the flow hypersurfaces are uni-
formly bounded from above

(4.22) κi ≤ const ∀ 1 ≤ i ≤ n,
and hence, are compactly contained in Γ, in view of the estimate (4.2).

Proof. In a Riemannian space of constant curvature the second fundamental
forms hij of the flow hypersurfaces M(t) satisfy the evolution equation

(4.23)
ḣij − Φ̇F klhij;kl = Φ̇F klhkrh

r
kh

i
j + (Φ− Φ̇F )hki hkj + Φ̈FjF

i

Φ̇F kl,rshkl;ih
i

rs; +KN{(Φ+ Φ̇F )δij − Φ̇F klgklhij}
cf. [6, Lemma 2.4.3].

Here, the flow is given as an embedding

(4.24) x = x(t, ξ), (t, ξ) ∈ [0, T ∗)× Sn,
and

(4.25) Fi =
∂F

∂ξi
= F klhkl;i.

By assumption, F is monotone and concave. Thus, choosing, in a given
point, coordinates (ξi) such that

(4.26) gij = δij ∧ hij = κiδij ,

and labelling the κi such that

(4.27) κ1 ≤ · · · ≤ κn,
then

(4.28)

F kl,rsηklηrs ≤
∑
k 6=l

F kk − F ll

κk − κl
(ηkl)

2

≤ 2

κn − κ1

n∑
k=1

(Fnn − F kk)(ηnk)2,

and

(4.29) Fnn ≤ · · · ≤ F 11.

For a proof of (4.28) see [7, Lemma 1.1] and of (4.29) [2, Lemma 2].
Let χ̃ be the rescaled function in (4.9) and define

(4.30) χ̂ = χ̃−1,

then there exists a constant θ > 0 such that

(4.31) 2θ ≤ χ̂.
Next, let ζ, ϕ and w be defined by

(4.32) ζ = sup{hijηiηj : ‖η‖ = 1 },

(4.33) ϕ = − log(χ̂− θ)
and

(4.34) w = log ζ + ϕ+ λũ,
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where ũ is the function in (3.18) on page 7 and λ > 0 is supposed to be large.
We claim that w is bounded, if λ is chosen sufficiently large.

Let 0 < T < T ∗, and x0 = x0(t0, ξ0), with 0 < t0 ≤ T , be a point in M(t0)
such that

(4.35) sup
M0

w < sup{ sup
M(t)

w : 0 < t ≤ T } = w(x0).

We then introduce a Riemannian normal coordinate system (ξi) at x0 ∈
M(t0) such that at x0 = x(t0, ξ0) we have

(4.36) gij = δij and ζ = hnn.

Let η̃ = (η̃i) be the contravariant vector field defined by

(4.37) η̃ = (0, . . . , 0, 1),

and set

(4.38) ζ̃ =
hij η̃

iη̃j

gij η̃iη̃j
.

ζ̃ is well defined in neighbourhood of (t0, ξ0).

Now, define w̃ by replacing ζ by ζ̃ in (4.32); then, w̃ assumes its maximum
at (t0, ξ0). Moreover, at (t0, ξ0) we have

(4.39)
˙̃
ζ = ḣnn,

and the spatial derivatives do also coincide; in short, at (t0, ξ0) ζ̃ satisfies the
same differential equation (4.23) as hnn. For the sake of greater clarity, let us
therefore treat hnn like a scalar and pretend that w is defined by

(4.40) w = log hnn + ϕ+ λũ.

From equations (4.23), (4.28), (4.11) and (4.19) we infer that in (t0, ξ0)

(4.41)

0 ≤ −Φ̇F ijhikhkj
θ

χ̂− θ
+ (Φ− Φ̇F )hnn − (Φ+ Φ̇F )(hnn)−1

+ Φ̇FF klgkl + (Φ+ Φ̇F )
H̄

n
v

χ̂

χ̂− θ
+

1

n

χ̂

χ̂− θ

+ λ(−Φ+ Φ̇F )v−1 − λΦ̇F ij h̄ij −
λ

n

+ Φ̇F ij(log hnn)i(log hnn)j − Φ̇F ijϕiϕj

+
2

κn − κ1
Φ̇

n∑
i=1

(Fnn − F ii)(h n
ni; )2(hnn)−1.

There holds

(4.42) F ij h̄ij ≥ c0F ijgij , c0 > 0;

moreover,

(4.43) hni;n = hnn;i,

and

(4.44) Φ+ Φ̇F = 0,
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though

(4.45) Φ ≤ 0 ∧ |Φ| ≤ cΦ̇F

would suffice.
We then distinguish two cases.

Case 1. Suppose that

(4.46) κ1 < −ε1κn,

where ε1 > 0 is small, note that the principal curvatures are labelled accord-
ing to (4.27). Then, we infer from [5, Lemma 8.3]

(4.47) F ijhkih
k
j ≥ 1

nF
ijgijε

2
1κ

2
n,

and

(4.48) F ijgij ≥ F (1, . . . , 1),

for a proof see e.g., [6, Lemma 2.2.19].
Since Dw = 0,

(4.49) D log hnn = −Dϕ− λDũ,

we obtain

(4.50) Φ̇F ij(log hnn)i(log hnn)j = Φ̇F ijϕiϕj + 2λΦ̇F ijϕiũj + λ2Φ̇F ij ũiũj ,

where

(4.51) |ϕi| ≤ c|κi|‖Du‖+ c‖Du‖,

as one easily checks.
Hence, we conclude that κn is a priori bounded in this case for any choice

of λ > 0, if we use

(4.52) F ≤ const,

or for λ > 2 otherwise.
Let us remark that

(4.53)
χ̂

χ̂− θ
≤ 2

and

(4.54) F ≤ F (1, . . . , 1)κn = nκn.

Case 2. Suppose that

(4.55) κ1 ≥ −ε1κn,

then the last term in inequality (4.41) can be estimated from above by

(4.56)
2

1 + ε1
Φ̇

n∑
i=1

(Fnn − F ii)(log hnn;i)
2.
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The terms in (4.41) containing derivatives of hnn can therefore be estimated
from above by

(4.57)

− 1− ε1
1 + ε1

Φ̇F ij(log hnn)i(log hnn)j +
1

1 + ε1
Φ̇Fnn

n∑
i=1

(log hnn;i)
2

≤ Φ̇Fnn
n∑
i=1

(log hnn;i)
2

= Φ̇Fnn‖Dϕ+ λDũ‖2

= Φ̇Fnn{‖Dϕ‖2 + λ2‖Dũ‖2 + 2λ〈Dϕ,Dũ〉}.

Hence, we finally deduce

(4.58)
0 ≤ −Φ̇Fnnκ2n

θ

χ̂− θ
− Φ̇Fκn + Φ̇F klgkl(1− λc0) + c

+ λcΦ̇F − λ

n
+ λ2cΦ̇Fnn(1 + κn).

Thus, we obtain an a priori estimate

(4.59) κn ≤ const,

if λ is chosen large enough. Note that ε1 is only subject to the requirement

(4.60) 0 < ε1 < 1.

�

As a corollary we can state:

4.5. Corollary. Let the initial hypersurface M0 ∈ Cm+2,α, 4 ≤ m ≤ ∞,
0 < α < 1, then the solution of the curvature flow

(4.61) ẋ = −Φν

exists for all time and belongs to the parabolic Hölder space

(4.62) Hm+α,m+α
2 (Q),

while the solution u of the scalar flow belongs to

(4.63) Hm+2+α,m+2+α
2 (Q),

where

(4.64) Q = [0,∞)× Sn.

The norm will still depend on t however due to the present coordinate system.

Proof. Let us look at the scalar flow equation (3.14) on page 6. In view of
the previous estimates the nonlinear operator is uniformly elliptic and by
assumption also concave, hence we may apply the Krylov-Safonov estimates
yielding uniform Hölder estimates for u̇ and D2u estimates. Now, the linear
theory and the parabolic Schauder estimates can be applied; for details see
e.g. [6, Chapter 2.6] and [8, Section 6]. �
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5. The conformally flat parametrization

Hyperbolic space is conformally flat such that

(5.1)

ds̄2 =
1

(1− 1
4 |x|2)2

dx2

=
1

(1− 1
4r

2)2
{dr2 + r2σijdx

idxj}

≡ e2ψ{dr2 + r2σijdx
idxj}

after introducing polar coordinates.
Define the variable τ by

(5.2) dτ =
1

1− 1
4r

2
dr

such that

(5.3) τ = log(2 + r)− log(2− r),
then

(5.4) sinh2 τ =
r2

(1− 1
4r

2)2
,

and we see that τ is the radial distance in hyperbolic space from the origin
of the euclidean ball B2(0).

A star-shaped hypersurface M ⊂ Hn+1 is also star-shaped in Rn+1 under
this correspondence.

Let us distinguish geometric quantities in Hn+1 by an additional breve

from the corresponding quantities in Rn+1, e.g., ğαβ , ğij , M = graph ŭ, h̆ij ,
ν̆, etc.

Consider a hypersurface

(5.5) M = graph ŭ = graphu,

then

(5.6) ŭ = log(2 + u)− log(2− u)

and

(5.7) ŭi =
1

1− 1
4u

2
ui

and |Dŭ|2 as defined in (3.21) on page 7 can be expressed as

(5.8) |Dŭ|2 = u−2σijuiuj ≡ |Du|2,
hence the term v is identical in both coordinate systems which is also evident
from the invariant definition of v by

(5.9) v−1 = 〈η, ν〉,
where

(5.10) η = Dd

and d is the distance function in hyperbolic space from the origin.
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The second fundamental forms are connected through the relation

(5.11)
eψh̆ij = hij + ψαν

αδij

≡ hij + v−1ϑ̃δij ,

where

(5.12) ϑ̃ = 1
2

r

1− 1
4r

2
.

Let

(5.13) ȟij = hij + v−1ϑ̃gij ,

(5.14) gij = uiuj + u2σij ,

then the curvature flow in Hn+1

(5.15) ẋ = F−1ν̆

can also be viewed as a curvature flow in Rn+1

(5.16) ẋ = F−1ν,

where now F depends on the eigenvalues of ȟij with respect to the metric gij

(5.17) F = F (ȟij) = F (ȟij).

For the rest of this paper we shall mainly consider the curvature flow
(5.16).

Let us quickly summarize the most important flow equations.
Writing (5.16) slightly more general

(5.18) ẋ = −Φ(F )ν ≡ −Φν

there holds

(5.19) ḣji = Φji + Φhki h
j
k,

cf. [6, Lemma 2.3.3], which will be the main ingredient to derive the subse-
quent modified flow equations:

(5.20)
Φ′ − Φ̇F ijΦij = Φ̇F ijhkih

k
jΦ− Φ̇F ijgijrαβνανβϑ̃Φ

− Φ̇F ijgij ˙̃
ϑv−2Φ+ Φ̇F ijgij ϑ̃Φku

k,

(5.21) u̇− Φ̇F ijuij = 2v−1F−1 − Φ̇F ijgij ϑ̃v−2 − Φ̇F ij h̄ij ,

where we used that

(5.22) Φ(t) = −t−1, t > 0,

here t is just a symbol for a real variable, and where

(5.23) h̄ij = u−1ḡij = uσij

is the second fundamental form of the slices {x0 = u}, i.e., of spheres in Rn+1

with center in the origin and radius r = u.
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The evolution equation for the second fundamental form looks like

(5.24)

ḣji − Φ̇F
klhji;kl = Φ̇F klhkrh

r
l h
j
i + (Φ− Φ̇F )hikh

kj

+ Φ̈FiF
j + Φ̇F kl,rsȟkl;iȟ

j
rs;

+ Φ̇F klgkl{−ϑ̃v−1hrihjr − v−2
˙̃
ϑhji + v−1

˙̃
ϑh̄ikg

kj

− rαβνανβϑ̃hji + ϑ̃urh
r j
i; +

˙̃
ϑhriuru

j +
˙̃
ϑhrjurui

+ rαβx
α
kx

βjhki ϑ̃+ v−1
¨̃
ϑuiu

j + rαβγν
αxβi x

γ
j ϑ̃

+ rαβν
αxβi

˙̃
ϑuj + rαβν

αxβj
˙̃
ϑui}.

The function χ is now defined by

(5.25) χ = vu−1

and there holds:

5.1. Lemma. χ satisfies the evolution equation

(5.26)
χ̇− Φ̇F ijχij = −Φ̇F ijhki hkjχ− 2χ−1Φ̇F ijχiχj + {Φ̇F + Φ}χ2

+ Φ̇F ijgij{−ϑ̃χ2 + χku
kuθ − χθ̇‖Du‖2u},

where

(5.27) θ(r) = r−1ϑ̃ = 1
2

1

1− 1
4r

2
.

Proof. We consider a general Φ in the curvature flow in Rn+1

(5.28) ẋ = −Φν,
where

(5.29) F = F (ȟij)

and ȟij is defined by (5.13).
For the above flow the normal evolves according to

(5.30) ν̇ = Φkxk,

cf. [6, Lemma 2.3.2].
Using an euclidean coordinate system (xα) in Rn+1 it follows immediately

that χ can be expressed as

(5.31) χ = 〈x, ν〉−1,
and hence

(5.32)

χ̇ = −χ2〈ẋ, ν〉 − χ2〈x, ν̇〉

= Φχ2 − χ2Φkuku

= Φχ2 − χ2Φ̇F ij ȟ k
ij; uku

= Φχ2 − χ2Φ̇F ij{h k
ij; uku+ (χ−1θ)ku

kugij}

= Φχ2 − χ2Φ̇F ijh k
ij; uku

+ Φ̇F ijgij{χkukuθ − χθ̇‖Du‖2u}.
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Differentiating χ covariantly with respect to ξ = (ξi) we obtain

(5.33) χi = −χ2hki 〈xk, x〉,

(5.34) χij = 2χ−1χiχj − χ2hki;j〈xk, x〉+ hki hkjχ− χ2hij .

Combining (5.32) and (5.34) the result follows immediately due to the
homogeneity of F . �

We want to prove that hij is uniformly bounded. However, this result can
only be achieved in several steps.

We observe that in view of the relation (5.11) and the boundedness of h̆ij

(5.35) hij(1− 1
4u

2)

is uniformly bounded, or equivalently,

(5.36) |hij |e−
t
n ≤ const,

because of (5.4) and (3.17) on page 7.
As a first new step we shall improve (5.36) slightly:

5.2. Lemma. Define λε by

(5.37) λε = 1
n − ε, ε > 0,

where ε is small. Then the principal curvatures κi of the flow hypersurfaces
can be estimated from above by

(5.38) κi ≤ ceλεt,
if ε > 0 is small

(5.39) 0 < ε < ε0.

Proof. Define ζ as in (4.32) on page 12 and let

(5.40) ζ̃ = ζe−λet,

then we claim that

(5.41) w = log ζ̃ + logχ

is uniformly bounded from above, if ε is sufficiently small.
Let 0 < T <∞ be large and assume that

(5.42) sup
QT

w = w(t0, ξ0)

with

(5.43) 0 < t0 ≤ T.
Arguing as in the proof of Lemma 4.4 on page 12, we may assume that κn

is the largest principal curvature and that w is defined by

(5.44) w = log h̃nn + logχ,

where

(5.45) h̃nn = hnne
−λεt.
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We shall suppose that

(5.46) h̃nn(t0, ξ0) >> 1.

Applying the maximum principle we then infer from (5.24) and (5.26)

(5.47)

0 ≤ Φ̇F klgkl{−ϑ̃v−1eλεth̃nn − v−2
˙̃
ϑ+ c

˙̃
ϑe−λεt(h̃nn)−1 + cϑ̃

+ c
˙̃
ϑ‖Du‖2 + c

¨̃
ϑ‖Du‖2e−λεt(h̃nn)−1

+ ϑ̃uk(log h̃nn)k + uθuk(logχ)k},
where we used the concavity of F , the properties of Φ and at one point the
vanishing of Dw in (t0, ξ0).

Our assumption that h̃nn is very large implies that t = t0 is very large and,
hence, powers of et will be the dominating terms.

In view of (3.17) on page 7 and (5.4) we have

(5.48) ϑ̃ ∼ ce tn ∧ ˙̃
ϑ ∼ ce 2t

n ∧ ¨̃
ϑ ∼ ce 3t

n ,

while

(5.49) ‖Du‖ ≤ ce−λ0t

for some 0 < λ0, cf. the estimate (3.40) on page 8.
The best term inside the braces on the right-hand side of (5.47) is

(5.50) − v−2 ˙̃
ϑ ∼ −ce 2t

n

and the worst is

(5.51) c
¨̃
ϑ‖Du‖2e−λet(h̃nn)−1 ∼ c(h̃nn)−1e

t
n (2+nε−2nλ0),

hence, choosing

(5.52) ε = 2λ0

we obtain an a priori estimate for h̃nn, since the terms in (5.47) involving the

derivatives of log h̃nn and logχ vanish, for

(5.53) uθ = ϑ̃ ∧ Dw = 0.

�

As a corollary we deduce:

5.3. Corollary. The quantity F = F (ȟij) can be estimated from above by

(5.54) F ≤ nv−1ϑ̃(1 + ce−2λ0t) ∀ 0 ≤ t <∞.

Proof. This follows at once from (5.13), (5.38), (5.52) and the normalization
(3.1) on page 5. �

We are now able to improve the decay rate of |Du|.

5.4. Lemma. |Du| satisfies the estimate

(5.55) |Du| ≤ ce− t
n ∀ 0 ≤ t <∞.
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Proof. We look at the scalar flow equation

(5.56) u̇ =
∂u

∂t
=

v

F
,

where F = F (ȟij). Let

(5.57) ϕ = log u,

then

(5.58) hij = gikhkj = v−1u−1{−(σik − v−2ϕiϕk)ϕjk + δij},
where all space derivatives are covariant derivatives with respect to σij , cf.
(3.26) on page 7, but now we are in euclidean space, i.e., the factor ϑ in (3.22)
is equal to

(5.59) ϑ(r) = r.

Hence, we infer from (5.56)

(5.60) ϕ̇ =
1

F (h̃ij)
,

where

(5.61) h̃ij = v−2{−(σik − v−2ϕiϕk)ϕjk + ϑδij},
and ϑ is defined by

(5.62) ϑ = ϑ(r) = rϑ̃.

The term

(5.63) w = 1
2 |Dϕ|

2

then satisfies

(5.64)

ẇ = F−2{2v−2Fwiϕi + v−2F kl g̃
lrwkr − v−2F kl g̃lrϕikϕir

+ v−2F kl g̃
lr
;iϕ

iϕkr + v−2F kl g̃
lrϕrϕk − v−2F kl g̃lrσkr|Dϕ|2

− 2v−2F kk ϑ̇e
ϕw},

cf. (3.43) on page 8 observing that now ϑ is defined differently and

(5.65) ϑiϕ
i = ϑ̇eϕ|Dϕ|2 = 2ϑ̇eϕw.

The metric g̃ij is defined by

(5.66) g̃ij = ϕiϕj + σij ,

and g̃ij is its inverse.
Let

(5.67) 0 < λ ≤ 2
n

be arbitrary and define

(5.68) w̃ = weλt ∧ ϕ̃i = ϕie
λt
2 .

Now choose 0 < T <∞ and suppose that

(5.69) sup
QT

w, QT = [0, T ]× Sn,
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is attained at (t0, x0) with t0 > 0. Then the maximum principle implies

(5.70) 0 ≤ F−2{F kl g̃lrϕ̃rϕ̃k − F kl g̃lrσkr|Dϕ̃|2 − 2F kk ϑ̇e
ϕw̃ + λv2F 2w̃}.

By definition

(5.71) h̃ij = v−1u−1ȟij ,

and thus

(5.72) v2F (h̃ij) ≤ u2F 2(ȟij) ≤ u2n2v−2ϑ̃2(1 + ce−2λ0t)2.

On the other hand,

(5.73) 2nϑ̇u = 8nϑ̃2

hence, we obtain an a priori estimate for w̃ provided

(5.74) 0 < λ < 2
n .

To derive an a priori estimate in the limit case

(5.75) λ = 2
n

we define, with a slight abuse of notation,

(5.76) w = w(t) = sup
Sn

w(t, ·) ∧ w̃ = weλt

with λ = 2t
n ; w is Lipschitz continuous and the maximum principle then

yields, instead of (5.70),

(5.77) ˙̃w ≤ F−2{−2F kk ϑ̇e
ϕw̃ + λv2F 2w̃}

for almost every t > 0. Because of the relations (5.72), (5.73) and the previous
estimates for w we then conclude

(5.78) ˙̃w ≤ ce−δt

for a.e. t > 0 with some δ > 0, completing the proof of the lemma. �

As a corollary we deduce:

5.5. Corollary. The principal curvatures κi of the flow hypersurfaces are
uniformly bounded from above

(5.79) κi ≤ c ∀ 0 ≤ t <∞.

Proof. Choosing in the proof of Lemma 5.2 λε = 0 and applying the maxi-
mum principle we obtain the inequality (5.47) with λε replaced by 0. In view
of the estimate (5.55) we then infer an a priori estimate for κn. �

An estimate from below for the κi is much more difficult and requires two
steps.
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5.6. Lemma. Let κi, 1 ≤ i ≤ n, be the principal curvatures of the flow
hypersurfaces

(5.80) κ1 ≤ · · · ≤ κn,
and let

(5.81) κ̃i(t) = inf
Sn
κi(t, ξ)(2− u(t, ξ)),

then

(5.82) lim inf
t→∞

κ̃1(t) = 0.

Proof. We argue by contradiction. Suppose that

(5.83) lim inf
t→∞

κ̃1(t) < 0.

Let ϕ be defined by

(5.84)
ϕ = F (2− u) = F (hij + v−1ϑ̃δij)(2− u)

= F (hijvϑ̃
−1 + δij)v

−1ϑ̃(2− u),

then

(5.85) lim
t→∞

|v−1ϑ̃(2− u)|0,Sn = 1

and (5.83) is equivalent to

(5.86) lim inf
t→∞

inf
Sn
F (2− u) = F (1 + κ̃1, . . . , 1 + κ̃n) < F (1, . . . , 1) = n,

since the non-negative κi are uniformly bounded and F is strictly monotone.
Thus, (5.83) implies

(5.87) lim inf
t→∞

inf
Sn
w < log n,

where

(5.88)
w = logϕ− logχ− log 2

= − log(−Φ) + log(2− u)− logχ− log 2,

since

(5.89) lim
t→∞

|− logχ− log 2|0,Sn = 0.

Let ε > 0 be so small such that

(5.90) lim inf
t→∞

inf
Sn
w < (1− 2ε) log n

and let τ be so large such that

(5.91) t ≥ τ ∧ inf
Sn
w(t, ξ) = w(t, ξ0) < (1− ε) log n

implies

(5.92) κ̃1(t) < −ε0 ∧ κ1ϑ̃
−1(t, ξ0) < −ε0

for a fixed 0 < ε0 = ε0(ε). The existence of τ follows from the relations (5.89)
and (5.90).

Define the set

(5.93) Λ = { t : t ≥ τ ∧ inf
Sn
w(t, ·) < (1− ε) log n },
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then Λ 6= ∅, since it contains a sequence tk →∞.
We shall now prove

(5.94) Λ = [τ,∞),

and

(5.95) w̃(t) = inf
Sn
w(t, ·)

is (weakly) monotone increasing in [τ,∞), i.e.,

(5.96) w̃(t1) ≤ w̃(t2) ∀ τ ≤ t1 < t2 <∞.
Let T , τ < T <∞, be arbitrary but so large such that

(5.97) Λ ∩ [τ, T ] 6= ∅,
and suppose that

(5.98) inf{w(t, ξ) : τ ≤ t ≤ T, ξ ∈ Sn } = w(t0, ξ0)

with t0 > τ .
w satisfies the evolution equation

(5.99)

ẇ − Φ̇F ijwij =

Φ̇F ijgijrαβν
ανβϑ̃+ Φ̇F ijgij

˙̃
ϑv−2 − Φ̇F ijgij(log(−Φ))ku

kϑ̃

− Φ̇F ij(log(−Φ))i(log(−Φ))j + Φ̇F ij(log(2− u))i(log(2− u))j

+ Φ̇F ij(logχ)i(logχ)j

+ Φ̇F ijgij ϑ̃v
−2(2− u)−1 + Φ̇F ij h̄ij(2− u)−1 − 2v−1ϕ−1

+ Φ̇F ijgij{ϑ̃χ− (logχ)ku
kuθ + θ̇‖Du‖2u}.

At the point (t0, ξ0) Dw = 0, hence the terms in line two and three on the
right-hand side of (5.99) add up to

(5.100) 2Φ̇F ij(logχ)i(log(2− u))j ,

which in turn is equal to

(5.101) 2Φ̇F ijhiku
kuj(2− u)−1χ−1 ≥ −cΦ̇,

due to the estimates (5.55), (5.36), (5.4) and (3.17) on page 7.
Analogously, we conclude

(5.102)
Φ̇F ijgij{−(log(−Φ))ku

kuθ − (logχ)ku
kϑ̃} =

Φ̇F ijgij(− log(2− u))ku
k)ϑ̃ ≥ 0,

where we also used

(5.103) uθ = ϑ̃.

Hence, applying the maximum principle we infer from (5.99)

(5.104)
0 ≥ Φ̇F ijgij ˙̃

ϑv−2 + Φ̇F ijgij ϑ̃v
−2(2− u)−1 − 2v−1ϕ−1 − cΦ̇

≥ 2δ − ce− 2t
n ≥ δ,

if τ is large enough, with some uniform δ = δ(ε0) > 0; a contradiction.
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Thus, we have proved that t0 = τ and therefore

(5.105) w̃(τ) ≤ w̃(t) ∀ τ ≤ t ≤ T.
Since we can replace τ by any t1 ∈ [τ, T ) we conclude

(5.106) w̃(t1) ≤ w̃(t2) ∀ τ ≤ t1 ≤ t2 ≤ T,
and we have proved (5.94) as well as (5.96), since τ < T <∞ is arbitrary.

However, the arguments we used to derive the contradiction in inequality
(5.104) yield

(5.107) ẇ(t, ξt) ≥ δ > 0 ∀ τ ≤ t <∞,
where

(5.108) inf{w(t, ξ) : ξ ∈ Sn } = w(t, ξt),

in view of (5.94) and the definition of Λ. The left-hand side of the preceding
equation is the definition of w̃(t), which is Lipschitz continuous and satisfies
for a.e. t > τ

(5.109) ˙̃w(t) = ẇ(t, ξt).

Hence, we deduce

(5.110) ˙̃w(t) ≥ δ
for a.e. t > τ , which is a contradiction, since w̃ is uniformly bounded, com-
pleting the proof of the lemma. �

Now, we can prove that the principal curvatures are uniformly bounded.

5.7. Lemma. The principal curvatures κi, 1 ≤ i ≤ n, are uniformly
bounded during the evolution

(5.111) |κi| ≤ c.

Proof. We shall estimate

(5.112) ϕ = 1
2 |A|

2 = 1
2hijh

ij ,

which satisfies the evolution equation

(5.113) ϕ̇− Φ̇F ijϕij = −Φ̇F klhij;khij;l + {ḣji − Φ̇F
klhji;kl}h

i
j .

Looking at (5.24) and observing that, in view of the previous estimates,

(5.114) lim
t→∞
|A|e− t

n = 0

uniformly in ξ ∈ Sn, and, because of the homogeneity of F ,

(5.115) F−1 + |F kl,rs| ≤ ce− t
n ,

we deduce that the terms

(5.116) − Φ̇F klhij;khij;l − Φ̇F
klgklv

−2 ˙̃
ϑ2ϕ,

which are either explicitly or implicitly contained in the right-hand side of
(5.113), are dominating; they can absorb any bad term such that an appli-
cation of the maximum principle gives an a priori estimate for ϕ. �
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As a corollary we obtain:

5.8. Theorem. The flow hypersurfaces in hyperbolic space become strongly
convex exponentially fast and also more and more totally umbilic. In fact
there holds

(5.117) |h̆ij − δij | ≤ ce−
t
n .

Proof. We infer from (5.11) on page 17

(5.118)
h̆ij − δij = h̆ij −

u

2v
δij + (

u

2v
− 1)δij

= hij
u

2ϑ̃
+ (

u

2v
− 1)δij ,

from which the estimate (5.117) immediately follows, in view of (5.111),
(5.55), (5.4), and (3.17) on page 7. �

6. Higher order estimate

Assuming the curvature function F to be smooth, we want to prove higher
order estimates for hij , or equivalently, for u. Since we already know that
hij is uniformly bounded,

(6.1) ġij = −2Φhij

as well as the Riemannian curvature tensor of the induced metric then are
also uniformly bounded.

Let A represent the second fundamental form, where we omit the tensor
indices, then we want to prove

(6.2) ‖DmA‖ ≤ cme−
t
n ∀m ≥ 1.

This estimate will immediately imply a corresponding estimate

(6.3) ‖Dmu‖ ≤ cme−
t
n ∀m ≥ 1,

in view of the relation

(6.4) hijv
−1 = −uij + h̄ij

and the estimate (5.55) on page 20.
To obtain an estimate for D2u we have to apply the following interpolation

lemma:

6.1. Lemma. Let M = Mn be a compact Riemannian manifold of class
Cm, m ≥ 2, and u ∈ C2(M), then

(6.5) ‖Du‖0,M ≤ c|u|
1
2

2,M |u|
1
2

0,M ,

where c = c(M) and

(6.6) |u|2,M = |u|0,M + ‖Du‖0,M + ‖D2u‖0,M
and the norms on the right-hand side are supremum norms.
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Proof. Using a partition of unity we may assume that u has support in a
coordinate chart and hence we may assume that

(6.7) u ∈ C2
c (Rn),

where Rn is equipped with the Euclidean metric. Moreover, we may assume
n = 1.

Let x ∈ R, ε > 0 be arbitrary, and choose x1, x2 ∈ R such that

(6.8) x2 − x1 = ε ∧ x ∈ (x1, x2).

Then we deduce

(6.9) u(x2)− u(x1) = Du(ξ)(x2 − x1), ξ ∈ (x1, x2),

(6.10) Du(x) = Du(ξ) +

∫ x

ξ

D2u,

and hence,

(6.11) |Du(x)| ≤ 2ε−1|u|0 + ε|D2u|0 ≡ ϕ(ε),

where we assume without loss of generality that

(6.12) |D2u|0 > 0,

otherwise, we replace |D2u|0 by |D2u|0 + δ, δ > 0.
Minimizing ϕ by solving

(6.13) ϕ̇(ε) = −2ε−2|u|0 + |D2u|0 = 0,

we conclude

(6.14) ε =
√

2|u|
1
2
0 |D2u|−

1
2

0 ,

and thus,

(6.15) |Du| ≤ 2
√

2|u|
1
2
0 |D2u|

1
2
0 .

�

6.2. Corollary. Let M = Mn be a compact Riemannian manifold of class
Cm, m ≥ 2, and u ∈ Cm(M), then

(6.16) ‖Dm−1u‖0,M ≤ c|u|
1
2

m−2,M |u|
1
2

m,M ,

where c = c(m,M).

We shall apply the corollary to the function (u− 2) using either M = Sn
or M = graphu.

The starting point for deriving the estimate (6.2) is equation (5.24) on
page 18 which will be differentiated covariantly. However, we first have to
derive some preparatory lemmata.
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6.3. Lemma. Let ϕ be defined by

(6.17) ϕ = (u− 2)−1

and assume

(6.18) m ≥ 2 ∧ ‖DkA‖ ≤ cλe−λt ∀ 1 ≤ k ≤ m− 1,

and for all 0 < λ < 1
n , then

(6.19) ‖Dm+1ϕ‖ ≤ cεe(
1
n+ε)t ∀ 0 < ε.

The estimate

(6.20) ‖Dϕ‖ ≤ ce tn

has already been proved.

Proof. Set

(6.21) ũ = (u− 2)e
t
n ,

then ũ satisfies

(6.22) − c1 ≤ ũ ≤ −c2 ∀ 0 ≤ t <∞,

and

(6.23) ϕ = ũ−1e
t
n .

Let α ∈ Nn be a multi-index of order m+1, m ≥ 2, then Dαϕ can be written
as

(6.24) Dαϕ =
∑

|β1|+···+|βm+1|=m+1

cβ1,...,βm+1
Dβ1 ũ · · ·Dβm+1 ũe

t
n ,

where the coefficients cβ1,...,βm+1
depend smoothly on ũ, and, if we allow

some of the coefficients to vanish, the sum is taken over all multi-indices βi,
1 ≤ i ≤ m+ 1, satisfying

(6.25)

m+1∑
i=1

|βi| = m+ 1.

The estimate (6.20) is trivial in view of (5.55) on page 20. �

6.4. Lemma. Let f = f(u,Du, ũ,Dũ) be any smooth function and assume
that the conditions (6.18) are valid, then, for any ε > 0, there holds

(6.26) ‖Dm(fϑ̃)‖ ≤ cεe(
1
n+ε)t,

(6.27) ‖Dm(f
˙̃
ϑui)‖ ≤ cεe(

1
n+ε)t, ∀ 1 ≤ i ≤ n,

(6.28) ‖Dm(f
¨̃
ϑuiuj)‖ ≤ cεe(

1
n+ε)t, ∀ 1 ≤ i, j ≤ n.
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Proof. Let us only prove (6.26), since we can write

(6.29)

˙̃
ϑui =

˙̃
ϑ(u− 2)(u− 2)−1ui

=
˙̃
ϑũ−1ũi

≡ fϑ̃

with some smooth function f = f(u,Du, ũ,Dũ), and similarly

(6.30)
¨̃
ϑuiuj ≡ fϑ̃.

”
(6.26)“ Define θ̃ by

(6.31) θ̃ = −ϑ̃(u− 2),

then θ̃ is smooth and

(6.32) fϑ̃ = −fθ̃ϕ.

The estimate then follows by applying the general Leibniz rule and (6.19)
observing that ε > 0 is assumed to be arbitrary. �

Let Ǎ be a symbol for ȟij , then

(6.33) Ǎ = A+ v−1ϑ̃δij

and we deduce from (6.26), if the assumptions (6.18) are satisfied,

(6.34) ‖DmǍ‖ ≤ ‖DmA‖+ cεe
( 1
n+ε)t

for any ε > 0, where cε also depends on m. Here, we also used the relation

(6.35) v−2 = 1− ‖Du‖2.

We also note that in case m = 1 the relation (6.34) is valid for ε = 0.
Inside the braces of the right-hand side of equation (5.24) on page 18 there

is the crucial term

(6.36) − v−2 ˙̃
ϑhji + v−1

˙̃
ϑh̄ikg

kj ,

which is equal to

(6.37) v−1
˙̃
ϑ{−v−1hji + h̄ikg

kj} = v−1
˙̃
ϑuji ,

in view of (6.4).
Differentiating (6.36) covariantly with respect to a multi-index α, |α| = m,

m ≥ 1, we therefore obtain

(6.38)

∑
β≤α

(
α

β

)
Dα−β(v−1

˙̃
ϑ)Dβ{−v−1hji + h̄ikg

kj}

= v−1
˙̃
ϑDα{−v−1hji + h̄ikg

kj}+
∑
β<α

(
α

β

)
Dα−β(v−1

˙̃
ϑ)Dβuji .

Furthermore, there holds

(6.39) v−1
˙̃
ϑ = f(u,Du, ũ)ϑ̃e

t
n ,
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and hence,

(6.40) Dα−β(v−1
˙̃
ϑ)Dβuji = Dα−β(fϑ̃)Dβ ũji

and we conclude

(6.41) ‖
∑
β<α

(
α

β

)
Dα−β(v−1

˙̃
ϑ)Dβuji‖ ≤ cεe

( 1
n+ε)t ∀ ε > 0,

provided (6.18) is valid, in view of (6.26), (6.24) and (6.19), since

(6.42) β < α =⇒ |β|+ 2 ≤ m+ 1.

In case m = 1 we have

(6.43) ‖D(v−1
˙̃
ϑ)uji‖ ≤ ce

2
n t‖D2u‖.

Hence we obtain:

6.5. Lemma. Let α be a multi-index of order m ≥ 2 and suppose that
(6.18) is valid, then

(6.44)
Dα{−v−2 ˙̃

ϑhji + v−1
˙̃
ϑh̄ikg

kj} = v−1
˙̃
ϑDα{−v−1hji + h̄ikg

kj}+O1
ε

= −v−2 ˙̃
ϑDαhji +O1

ε ,

where O1
ε represents a tensor that can be estimated like

(6.45) ‖O1
ε‖ ≤ cεe(

1
n+ε)t ∀ ε > 0.

In case m = 1 we have

(6.46)
D{−v−2 ˙̃

ϑhji + v−1
˙̃
ϑh̄ikg

kj} = v−1
˙̃
ϑD{−v−1hji + h̄ikg

kj}+O2
0u
j
i

= −v−2 ˙̃
ϑDhji +O1

0 +O2
0u
j
i ,

where O1
0 resp. O2

0 represent tensors that can be estimated like

(6.47) ‖O1
0‖ ≤ ce

t
n

resp.

(6.48) ‖O2
0‖ ≤ ce

2
n t.

Proof. Observing that

(6.49) h̄ik = u−1ḡik = u−1gik − u−1uiuk
the relation (6.44) follows from (6.38), (6.41) and (6.18), while (6.46) can be
deduced from (6.43). �

6.6. Definition. Let k ∈ Z, then the symbol Okε represents any tensor
that can be estimated by

(6.50) ‖Okε ‖ ≤ cεe(
k
n+ε)t ∀ ε > 0,

and the symbol Ok0 represents any tensor that can be estimated by

(6.51) ‖Ok0‖ ≤ ce
k
n t.

Thus O0
0 represents a uniformly bounded tensor.
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We also denote by DmF the derivatives of order m of F with respect to the
argument ȟij , and when S, T are arbitrary tensors then S ? T will symbolize
any linear combination of tensors formed by contracting over S and T . The
result can be a tensor or a function. Note that we do not distinguish between
S ? T and cS ? T , c a constant.

From (6.34), the homogeneity of F and the definition of Φ we then deduce

6.7. Lemma. Let m = 1 or assume that (6.18) is valid, then we have

(6.52) DmF = DF ? DmA+DF ?O1
ε ,

(6.53) DmΦ(k) = Φ(k+1)DmF + Φ(k+1) ?O1
ε ,

and similarly

(6.54) DmDkF = Dk+1F ? DmF +Dk+1F ?O1
ε ,

where Φ(k) is the k-th derivative of Φ. In case m = 1 O1
ε can be replaced by

O1
0.

We are now ready to differentiate (5.24) on page 18 covariantly.

6.8. Lemma. The tensor DA satisfies the evolution equation

(6.55)

D

dt
(DA)− Φ̇F kl(DA);kl =

Φ̈O0
0 ? (DA+O1

ε ) ?D2A+ Φ̇D2F ? (DA+O1
ε ) ? D

2A

+ Φ̇O0
0 ? DA+ Φ̈O0

0 ? (DA+O1
0) + Φ̇O0

0 ? (DA+O1
0)

+ ΦO0
0 ? DA+

...
Φ O0

0 ? (DA+O1
0) ? (DA+O1

0) ? (DA+O1
0)

+ Φ̈O0
0 ? (D2A+O1

0 +O2
0 ? D

2u) ? (DA+O1
0)

+ Φ̈D2F ?DF ? (DA+O1
0) ? (DA+O1

0) ? (DA+O1
0)

+ Φ̇D3F ? (DA+O1
0) ? (DA+O1

0) ? (DA+O1
0)

+ Φ̇D2F ? (D2A+O1
0 +O2

0 ? D
2u) ? (DA+O1

0)

+ Φ̈O0
0 ? (DA+O1

0) ? (
˙̃
ϑD2u ?O0

0 + ϑ̃O0
0 +DA ?O0

0)

+ Φ̇O0
0 ? (O1

0 +O1
0 ? DA+O0

0 ? D
2A+O2

0 ? D
2u)

+ Φ̇F klgkl(−v−2 ˙̃
ϑDA).

Proof. Differentiate (5.24) on page 18 covariantly with respect to a spatial
variable and apply Lemma 5.4 on page 20, Lemma 6.5, Definition 6.6, and
Lemma 6.7. �

An almost identical proof—where we also have to rely on Lemma 6.4—
yields the evolution equation for higher derivatives of A.
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6.9. Lemma. Let m ≥ 2 and assume that assumptions (6.18) are valid,
then the tensor DmA, where DmA represents any covariant derivative DαA,
|α| = m, satisfies the evolution equation

(6.56)

D

dt
(DmA)− Φ̇F kl(DmA);kl =

Φ̈DF ? (DmA+O1
ε ) ? D

2A+ Φ̇D2F ? (DmA+O1
ε ) ? D

2A

+ ΦO0
0 ? D

mA+ Φ̇O1
ε ? D

m+1A+ Φ̇D2F ?O1
ε ? (Dm+1A+O1

ε )

+ Φ̈D2F ? (D2F +O1
ε ) ?DF ? (DmA+O1

ε )

+ Φ̇D2F ? (D2A+O1
ε ) ? (DmA+O1

ε ) ?DF

+ Φ̈ (DF ? DmA+O1
ε ) ?O0

0 + Φ̇D2F ? (DmA+O1
ε ) ?O0

0

+ Φ̇ (DmA+O1
ε ) ?O0

0 +
...
Φ (DmA+O1

ε ) ? DǍ ? DǍ ?O0
0

+ Φ̈D2F ? DmA ? DǍ+ Φ̈D2F ?O1
ε ? DǍ

+ Φ̈DF ? (DmA+O1
ε ) ?D2F ? DǍ ? DǍ ?O0

0

+ Φ̇D3F ? (DmA+O1
ε ) ? DǍ ? DǍ

+ Φ̇D2F ? (Dm+1A+O1
ε ) ? (DA+O1

ε )

+ Φ̈ (DmA+O1
ε ) ? (

˙̃
ϑD2u ?O0

0 + ϑ̃O0
0)

+ Φ̇D2F ? (DmA+O1
ε ) ? (

˙̃
ϑD2u+ ϑ̃O0

0) ?O0
0

+ Φ̇DF ? (O1
ε + ϑ̃DmA ?O0

0 +O0
0 ? D

m+1A)

− Φ̇F klgklv−2 ˙̃
ϑDmA

We are now going to prove uniform bounds for

(6.57) 1
2‖D

mÃ‖2 = 1
2

∑
|α|=m

‖DαA‖2e2λt

for all m ≥ 1 and

(6.58) 0 ≤ λ < 1
n .

First, we observe that

(6.59)

D

dt
( 1
2‖D

mÃ‖2)− Φ̇F kl( 1
2‖D

mÃ‖2);kl ={D
dt

(DmA)− Φ̇F kl(DmA);kl

}
eλtDmÃ− Φ̇F kl(DmÃ);k(DmÃ);l

+ λ‖DmÃ‖2

6.10. Lemma. The quantities 1
2‖D

mÃ‖2 are uniformly bounded during

the evolution for any m ≥ 1 and 0 ≤ λ < 1
n ,

Proof. We prove the lemma recursively by estimating

(6.60) ϕ = log(1
2‖D

mÃ‖2) + µ 1
2‖D

m−1A‖2,
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where

(6.61) 0 < µ = µ(m) << 1,

cf. the proof of [6, Lemma 7.6.3].
We shall only treat the case m = 1, since the proof for m ≥ 2 is almost

identical by considering the evolution equation (6.56) instead of (6.55).
Thus, let

(6.62) ϕ = log( 1
2‖DÃ‖

2) + µ 1
2‖A‖

2.

Fix 0 < T <∞, T very large, and suppose that

(6.63) sup
[0,T ]

sup
M(t)

ϕ = ϕ(t0, ξ0)

is large, and hence, 0 < t0 ≤ T , is sufficiently large, such that the previous
decay estimates for ‖Du‖, etc. can be employed.

Applying the maximum principle we deduce from (6.55), (6.59) and the
evolution equation for 1

2‖A‖
2, see (5.113) on page 25,

(6.64)

0 ≤ {−Φ̇F klgklv−2 ˙̃
ϑ+ λ} − 2Φ̇F kl(DÃ);k(DÃ);l

+ Φ̇F kl log( 1
2‖Ã‖

2)k log( 1
2‖DÃ‖

2)l

− µΦ̇F klhij;khij;l + rest.

When t0 is large then terms in the braces can be estimated from above by

(6.65) − 2δ,

where

(6.66) δ = δ(λ) ≈ 1
2 ( 1
n − λ).

To estimate

(6.67) Φ̇F kl log( 1
2‖Ã‖

2)k log( 1
2‖DÃ‖

2)l

we use Dϕ = 0 and conclude that this term can be estimated from above by

(6.68) µ2Φ̇F klhij;kh
ij
;l‖A‖

2 ≤ µ
2 Φ̇F

klhij;kh
ij
;l,

if 0 < µ is small.
Most terms in the

”
rest“ can be easily absorbed; a few are a bit more

delicate. These can be estimated from above by

(6.69) c
‖D2u‖eλt‖DÃ‖
‖DÃ‖2

< c‖DÃ‖− 1
2 ,

where the last inequality is due to the interpolation lemma, cf. Corollary 6.2,
applied to (u− 2). Here, we also used the assumption that ‖DÃ‖ ≥ 1.

A thorough inspection of the right-hand side of (6.64) then yields

(6.70) 0 ≤ −δ + ce−(
1
n−λ)t0 + c‖DÃ‖− 1

2

and hence an a priori estimate for ‖DÃ‖, if t0 is large. �
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It remains to prove the optimal decay (6.2) and the convergence to a
constant. The optimal decay will be achieved by deriving the equivalent
estimate

(6.71) ‖Dmu‖ ≤ cme−
t
n ∀m ≥ 1.

6.11. Theorem. Let M(t) = graphu(t) be the leaves of the inverse curva-
ture flow, where F and the initial hypersurface are smooth, then the estimate
(6.71) is valid and the function

(6.72) (u− 2)e
t
n

converges in C∞(Sn) to a strictly negative function.

Proof. It suffices to prove (6.71), in view of the relations (3.17) on page 7
and (5.4) on page 16, and to show that the limit exists.

(i) Our starting point is equation (5.21) on page 17 satisfied by u as well
as by (u− 2).

Let ϕ, ϕ̃, F̃ , and Φ̃ be defined by

(6.73) ϕ = (2− u)−1 ∧ ϕ̃ = ϕe−
t
n ,

(6.74) F̃ = F (ȟkl (2− u)),

and

(6.75) Φ̃ = Φ(F̃ ),

then we deduce from (5.21)

(6.76)
˙̃ϕ− ˙̃Φϕ̃−2e−

2
n tF̃ ijϕ̃ij = −2 ˙̃Φϕ̃−2e−

2
n tF̃ ijϕ̃iϕ̃jϕ̃

−1 + 2v−1F̃−1ϕ̃

− F̃−2F ijgij θ̃ϕ̃v−2 − F̃−2F ij h̄ije−
t
n − 1

n ϕ̃,

where

(6.77) θ̃ = ϑ̃(2− u).

θ̃ depends smoothly on u and is strictly positive. The derivatives of arbitrary
order of θ̃, F̃ , Φ̃, F ij , F̃ ij , v, and h̄ij are uniformly bounded and decay expo-
nentially fast, if t goes to infinity, while the Cm-norms of ϕ̃ can be estimated
by

(6.78) ‖Dmϕ̃‖ ≤ cm,εeεt ∀ ε > 0,

in view of our previous estimates.
Differentiating then (6.76) covariantly we obtain the following differential

inequality for

(6.79) w = 1
2‖D

mϕ̃‖2

(6.80)

ẇ − ˙̃Φϕ̃−2e−
2
n tF̃ ijwij ≤ O0

−2δ + 2{2v−1F̃−1 − F̃−2F ijgij θ̃v−2 − 1
n}w,

where O0
r , r ∈ R, represents a term that can be estimated by

(6.81) |O0
r | ≤ cert ∀ 0 ≤ t <∞.
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In inequality (6.80) we may choose δ > 0 independently of m ≥ 1. The terms
inside the braces of that inequality are also an O0

−2δ for an appropriate δ > 0,
and, because of (6.78),

(6.82) O0
−2δw = O0

−δ.

Hence, applying the maximum principle to the function

(6.83) w + µe−δt

we derive an a priori estimate for w by choosing µ large enough.

(ii) It remains to prove that the pointwise limit

(6.84) lim
t→∞

(u(t, ξ)− 2)e
t
n

exists for any ξ ∈ Sn.
Using the scalar flow equation (5.56) on page 21 we deduce

(6.85) ˙̃u =
v

F
e
t
n + 1

n ũ,

where

(6.86) ũ = (u− 2)e
t
n

and F depends on

(6.87) ȟij = hij + v−1ϑ̃δij .

In view of the homogeneity of F we further conclude

(6.88)

˙̃u =
v

F (ȟije
− t
n )

+ 1
n ũ

= (−ũ)
{ v

F (hije
− t
n (−ũ) + v−1 u

(1+ 1
2u)

δij)
− 1

n

}
≥ −ce− t

n

in view of our previous estimates, and we finally obtain

(6.89) (ũ− nce− t
n )′ ≥ 0,

from which the convergence result immediately follows. �
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