AN ENERGY GAP FOR YANG-MILLS CONNECTIONS

CLAUS GERHARDT

ABSTRACT. Consider a Yang-Mills connection over a Riemann mani-
fold M = M™, n > 3, where M may be compact or complete. Then its
energy must be bounded from below by some positive constant, if M
satisfies certain conditions, unless the connection is flat.
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1. INTRODUCTION

We consider the problem: When is a Yang-Mills connection non-flat? Of
course, the trivial answer F),, # 0 is unsatisfactory. Bourguignon and Law-
son proved in [3, Theorem C], among other results, that any Yang-Mills
connection over S™, n > 3, the field strength of which satisfies the pointwise
estimate

(1.1) F2 = —te(F 2 F™) < (Z)

is flat.

We want to prove that under certain assumptions on the base space M,
which is supposed to be a Riemannian manifold of dimension n > 3, the
energy of a Yang-Mills connection has to satisfy

(1.2) (/MF) > ko > 0,

where kg depends only on the Sobolev constants of M, n and the dimension
of the Lie group G, unless the connection is flat.
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Here,
(1.3) |F| = VF?,

and we also call the left-hand side of (1.2) energy though this label is only
correct when n = 4. However, this norm is also the crucial norm, which has
to be (locally) small, used to prove regularity of a connection, cf. [4, Theorem
1.3].

The exponent 5 naturally pops up when Sobolev inequalities are applied
to solutions of differential equations satisfied by the field strength or the
energy density of a connection in the adjoint bundle.

We distinguish two cases: M compact and M complete and non-compact.
When M is compact, we require

(1.4) RogA$APY — LR 5,0 AP APY > g A5 AP

for all skew-symmetric A, € T%2?(M), where 0 < ¢g, while for non-compact
M the weaker assumption

(1.5) RapASAPY — LRop,n AP A >0
and in addition
n—2
(1.6) (/ uf—n?> " Scl/ | Dul? VYue HY*(M)
M M
should be satisfied.

1.1. Remark. (i) If M is a space of constant curvature

(1.7) Ragur = Knr(Gapdsr — Gardsu),
then
(1.8) Raﬂ/l(;f/lﬁ)\ - %Ra,gu,\/laﬁ/ﬂm = (’I’L - Q)KMAQBAaﬁ.

In case n = 2 the curvature term therefore vanishes, and this result is also
valid for an arbitrary two-dimensional Riemannian manifold, since the cur-
vature tensor then has the same structure as in (1.7) though Kjs is not
necessarily constant.

(ii) If M =R™, n > 3, the conditions (1.5) and (1.6) are always valid.

1.2. Theorem. Let M = M™, n > 3, be a compact Riemannian manifold
for which the condition (1.4) with ¢o > 0 holds. Then any Yang-Mills con-
nection over M with compact, semi-simple Lie group is either flat or satisfies
(1.2) for some constant kg > 0 depending on the Sobolev constants of M,
n, co, and the dimension of the Lie group.

1.3. Theorem. Let M = M"™, n > 3, be complete, non-compact and
assume that the conditions (1.5) and(1.6) hold. Then any Yang-Mills con-
nection over M with compact, semi-simple Lie group is either flat or the
estimate (1.2) is valid. The constant ko > 0 in (1.2) depends on the constant
c1 in (1.6), n, and the dimension of the Lie group.
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2. THE COMPACT CASE

Let (P,M,G,G) be a principal fiber bundle where M = M™ n > 3 is a
compact Riemannian manifold with metric g,s and G a compact, semi-simple
Lie group with Lie algebra g. Let f. = (f%) be a basis of ad g and
(2.1) Ay = fA]

a Yang-Mills connection in the adjoint bundle (E, M, g, Ad(G)).
The curvature tensor of the connection is given by

(2-2) Rab;M = f% ﬁm

where

(2.3) Fux = foF),

is the field strength of the connection, and

(2.4) F? = 3 F\ F"* = Rapua R

the energy density of the connection—at least up to a factor i.

Here, 7,4 is the Cartan-Killing metric acting on elements of the fiber g,
and Latin indices are raised or lowered with respect to the inverse Y% or vus,
and Greek indices with respect to the metric of M.

2.1. Definition. The adjoint bundle F is vector bundle; let E* be the
dual bundle, then we denote by
(2.5) T"*(E)=I'F® - QEQE " ® ---® E")

T S

the sections of the corresponding tensor bundle.

Thus, we have
(2.6) Fiy € TH(E) @ T®*(M).

Since A, is a Yang-Mills connection it solves the Yang-Mills equation
(2.7) F*%., =0,

where we use Einstein’s summation convention, a semi-colon indicates co-
variant differentiation, and where we stipulate that a covariant derivative is
always a full tensor, i.e.,

a _ 1a a Ab e =y a =Y a
(28) ph;ae T pha + fbcAa ux Foz,u L2 FozAF,u’Y’

where f;ﬁ are the Christoffel symbols of the Riemannian connection; a
comma indicates partial differentiation.

Before we formulate the crucial lemma let us note that Raﬁ,ﬂ; resp. Raﬁ’
symbolize the Riemann curvature tensor resp. the Ricci tensor of gag.
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2.2. Lemma. Let A, be a Yang-Mills connection, then its energy density
F? solves the equation

_ %AFQ + %Fau)\;aFaHA; a RBMFGB)\Fa HXA %RQBMAFa aB paph

(2.9)
= - ngoczuFba/\Fa#)\'

Proof. Differentiating (2.7) covariantly with respect to z* and using the Ricci
identities we obtain

— ac
0=—F"%...

_ ac
=-—F Ao

2.10 _ _
( ) + RabauFba/\ =+ R Fa,B/\ + R,ﬁ’

On the other hand, differentiating the second Bianchi identities

aq
Bap )\;th B

(211) 0= g)\;p, + F;a;)\ + F)L\lu;a

we infer

(212) 0= aa)\;ua + Fau a;Aoc + AF)?;U
and we deduce further

(2.13) — AF\F, M = —2F  F,"

In view of (2.10) we then conclude
0=—-1AF}\F,"* + R
+R’

Fba/\Fa#)\ + RﬁALFaﬁ/\FaIM
aaﬂFa ,u)\,

(2.14) bk

Apor
which is equivalent to
_ 1 A c b LA D af PN
(215) 0— _fAFE/\FaH +f_lcabFa#F a)\Fal +R5HF )\Fal
_ RauﬁAFWﬁFa /M7

in view of (2.2).
Finally, using the first Bianchi identities,

(216) Raﬁp)\ + Raﬂ)\ﬁ + Ra)\ﬁll = O,
we deduce
(217) Raﬂ}i)\FaaﬁFa A + ROCM/\/BFaaﬁFa#A + Ra)\BHFaaﬁFa'u)\ = 0)

and hence

(2.18) RopuinF*“PF, " = 2R s F**P F, 1,

from which the equation (2.9) immediately follows. d
Proof of Theorem 1.2 on page 2. Define

(2.19) u=F?

then

(2.20) Rp F* F i — LR og,0 F, “P R > cou,

where ¢g > 0, in view of the assumption (1.4) on page 2.
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Multiplying (2.9) with v and integrating by parts we obtain

(2.21) g/ |Du\2+c0/ u? gc/ Vauu?,
M M M

where we used the simple estimate
(2.22) |Dul?® < 4Fx0 F* *u
and where ¢ depends on n and the dimension of g; note that

(223) fc € SO(Q,%b)-
The integral on the right-hand side of (2.21) is estimated by

e ()

where

(2.25) (/Muﬁ)f‘ - (/M|F|3>i.

Applying then the Sobolev inequality

(2.26) (/ u%) ! Scl/ |Du|2—|—62/ u?,
M M M

cf. [1], we obtain

on \ 52 2 2n \
oo (fu) T sal ) ([ )
M M M

where c3 depends on c¢q,co, ¢y and c. Hence, we deduce u = 0 or

(2.28) Gl < (/MF2)2

Setting
(2.29) Ko =c3'
finishes the proof. O

3. THE NON-COMPACT CASE

We now suppose that M = M™ is a complete, non-compact Riemannian
manifold. Then there holds

(3.1) H'(M) = Hy*(M),
i.e., the test functions C°(M) are dense in the Sobolev space H12(M), see
[1, Lemme 4] or [2, Theorem 2.6].
Since we do not a priori know
(3.2) F?e HY?(M),
but only
(3.3) F? e HY2 (M),

loc
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the preceding proof has to be modified.
Let n = n(t) be defined through

1, t<1,
(3.4) ) ={@-n1, 1<1<2,
0, =2,
where
(3.5) g = max(1, 2).

Fix a point g € M and let r be the Riemannian distance function with
center in g

(3.6) r(z) = d(zg, x).
Then r is Lipschitz such that
(3.7) |Dr| =1

almost everywhere.
For k > 1 define

(3.8) ni () = (k).
The functions
(3.9) uP~tnh,
where
(3.10) p=7,
then have compact support, and multiplying (2.9) on page 4 with upfln‘;;j
yields
2 n—2
(k-9 [ Do < [ 1112)( [ wnomr) T
(3.11) M M M

* Cﬁ/ |\ Dy P %P,
M

where 0 < € is supposed to be small.
Furthermore, there holds

2
/M|D(u77k)%|2 = % /M|Du77k + uDny|* (ung, )P 2
(3.12)

2 2
<+ [ ipurw g e [ (oo
M M

Now, choosing € so small such that
(3.13) (1+9Z <pE+i-0)
and setting

(3.14) ¢ = (uny)

p
2
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we obtain

3 n—2
(3.15) /|Dcp|2<pc /|F|2 " /spnzfz> " +c€/ \an|277‘272up,
M

where ¢, is a new constant.
We furthermore observe that

(3.16) | Dy Pl ™% < Ph72(2 — k)2
subject to
(3.17) 1<k~
In view of (3.5) and (3.10)
(3.18) gp—22>0
and hence
(3.19) | D207 < ¢?k 2
Applying now the Sobolev inequality (1.6) on page 2 to ¢ and choosing
(3.20) Ko = (ciep) ™

we conclude |F| =0, if

(3.21) (/ \F\%)% < Ko.

Indeed, if the preceding 1nequahty is valid, then we deduce from (3.15)

e22) (-t ([ 1FE)") ([ rer) T S <ok [ 1piE

In the limit £ — oo we obtain

n—2

(3.23) ( |u\%)T <0.
M
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