AN ENERGY GAP FOR YANG-MILLS CONNECTIONS

CLAUS GERHARDT

ABSTRACT. Consider a Yang-Mills connection over a Riemann mani-
fold M = M™, n > 3, where M may be compact or complete. Then its
energy must be bounded from below by some positive constant, if M
satisfies certain conditions, unless the connection is flat.
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1. INTRODUCTION

We consider the problem: When is a Yang-Mills connection non-flat? Of
course, the trivial answer F,5 # 0 is unsatisfactory. Bourguignon and Law-
son proved in [3, Theorem C], among other results, that any Yang-Mills
connection over S™, n > 3, the field strength of which satisfies the pointwise
estimate

(1.1) F? = —tr(F, F") < <Zj)
is flat.
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We want to prove that under certain assumptions on the base space M,
which is supposed to be a Riemannian manifold of dimension n > 3, the
energy of a Yang-Mills connection has to satisfy

(1.2) (/M|F|3>Z > kp > 0,

where kg depends only on the Sobolev constants of M, n and the dimension
of the Lie group G, unless the connection is flat.
Here,

(1.3) |F| = VF?,

and we also call the left-hand side of (1.2) energy though this label is only
correct when n = 4. However, this norm is also the crucial norm, which has
to be (locally) small, used to prove regularity of a connection, cf. [4, Theorem
1.3].

The exponent % naturally pops up when Sobolev inequalities are applied
to solutions of differential equations satisfied by the field strength or the
energy density of a connection in the adjoint bundle.

We distinguish two cases: M compact and M complete and non-compact.
When M is compact, we require

(1.4) RogASAPY — LRog,n AP AP > o Nqp AP

for all skew-symmetric A5 € T%?(M), where 0 < cg, while for non-compact
M the weaker assumption

(1.5) RogASAPY — LR 5,0 AP AP >0

and in addition

—2

(1.6) (/M ) T <o /M|Du|2 Vu e HY2(M)

should be satisfied.

1.1. Remark. (i) If M is a space of constant curvature

(17) Ra,@u)\ = KM(gaugﬂk - ga)ﬁﬁu)’
then
(1.8) RopAS AP — IR0 AP A = (n — 2) Ky AapA®P.
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In case n = 2 the curvature term therefore vanishes, and this result is also
valid for an arbitrary two-dimensional Riemannian manifold, since the cur-
vature tensor then has the same structure as in (1.7) though Kj; is not
necessarily constant.

(ii) If M = R"™, n > 3, the conditions (1.5) and (1.6) are always valid.

1.2. Theorem. Let M = M™, n > 3, be a compact Riemannian manifold
for which the condition (1.4) with c¢o > 0 holds. Then any Yang-Mills con-
nection over M with compact, semi-simple Lie group is either flat or satisfies
(1.2) for some constant kg > 0 depending on the Sobolev constants of M,
n, ¢, and the dimension of the Lie group.

1.3. Theorem. Let M = M", n > 3, be complete, non-compact and
assume that the conditions (1.5) and(1.6) hold. Then any Yang-Mills con-
nection over M with compact, semi-simple Lie group is either flat or the
estimate (1.2) is valid. The constant ko > 0 in (1.2) depends on the constant
c1 in (1.6), n, and the dimension of the Lie group.

2. THE COMPACT CASE

Let (P,M,G,G) be a principal fiber bundle where M = M™, n > 3 is a
compact Riemannian manifold with metric g,g and G a compact, semi-simple
Lie group with Lie algebra g. Let f. = (f%) be a basis of ad g and

(2.1) Ay = [AS

a Yang-Mills connection in the adjoint bundle (F, M, g, Ad(G)).
The curvature tensor of the connection is given by

(2.2) Re%yn = fanFions

where

(2.3) Fux = feFyx

is the field strength of the connection, and

(2.4) F? = v F F""* = Rapua R

the energy density of the connection—at least up to a factor %.

Here, 7,4 is the Cartan-Killing metric acting on elements of the fiber g,
and Latin indices are raised or lowered with respect to the inverse Y or v4s,
and Greek indices with respect to the metric of M.



4 CLAUS GERHARDT

2.1. Definition. The adjoint bundle FE is vector bundle; let E* be the
dual bundle, then we denote by

(2.5) TE)=T'E® - E®E*®---© E¥)

™ S

the sections of the corresponding tensor bundle.

Thus, we have
(2.6) Fl e TY(E) @ T"*(M).

Since A, is a Yang-Mills connection it solves the Yang-Mills equation
(27) Faa/\;a = Oa

where we use Einstein’s summation convention, a semi-colon indicates co-
variant differentiation, and where we stipulate that a covariant derivative is
always a full tensor, i.e.,
b _ _

(28) ﬁ)\;a = ﬁk,a + fl?cAa /f)\ - F;I;A ’(yl)\ - F;/AF;LI’W
where I’ ;B are the Christoffel symbols of the Riemannian connection; a
comma indicates partial differentiation. ~ ~

Before we formulate the crucial lemma let us note that R,g+s resp. Rqs
symbolize the Riemann curvature tensor resp. the Ricci tensor of gug.

2.2. Lemma. Let A, be a Yang-Mills connection, then its energy density
F?2 solves the equation

— %AF2 + %Falu)\;aFaM)\;a + R/BMFaBAFaM)\ - %RQBHAFGQBFQMA

(2.9)
= ngocz;LFba)\FaH)\'

Proof. Differentiating (2.7) covariantly with respect to z* and using the Ricci
identities we obtain

_ acx
0=—-F"%.q,

_ aa
=—-F A

2.10 _ _
( ) + RabauFba)\ + RaﬁauFaﬂ)\ + RBAuaFaa,B'

On the other hand, differentiating the second Bianchi identities

(211) 0= c(xl)\;u + F;(Lla;)\ + F)?M;a
we infer
(212) 0= aa)\;u(x + Faua;koz + AF)(\IN’
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and we deduce further

(2.13) — AF\F, " = —2F%

E H,
In view of (2.10) we then conclude
0=—-1AF\F," + R

+R°

Fba)\Fa #A + RﬁMFaﬂ)\Fa 2
Faa,BFa“)\7

bap

(2.14)
Apa
which is equivalent to

(2 15) O = _%AFS)\FaN/\ + fngocz;LFbaAFaH)\ + R,BNFGIBAFaM)\
: o Rap,ﬂ)\FaaﬁFa NA,

in view of (2.2).
Finally, using the first Bianchi identities,

(2.16) Rogux + Raprg + Raxgu =0,

we deduce

(217)  RapinF ™ PE, P + RyngF P E M 4 Rorp F*PF, M =0,
and hence

(2.18) RopnF*“PEMA = 2R, s F*P F, 1,

from which the equation (2.9) immediately follows.

Proof of Theorem 1.2 on page 3. Define

(2.19) u=F?%
then
(2.20) Rg, F* F, " — LR, 5,0 F,“PF > cou,

where ¢g > 0, in view of the assumption (1.4) on page 2.
Multiplying (2.9) with « and integrating by parts we obtain

(2.21) %/ |Du|2+co/ u? §c/ Vauu?,
M M M

where we used the simple estimate
(2.22) |Du|? < AF 50 F" %u
and where ¢ depends on n and the dimension of g; note that

(2.23) fe € 50(g,Yab)-
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The integral on the right-hand side of (2.21) is estimated by

ean [ (L) ()T

where

(2.25) (/M u%)% - (/M|F|%)

Applying then the Sobolev inequality

(2.26) (/ ufﬁZ)T gcl/ \Du|2—|—02/ u?,
M M M

cf. [1], we obtain
n\ 2n \
D)
M

(2.27) (/MW?$>"“2 < 03(/M|F

where c3 depends on c¢1, co, ¢g and ¢. Hence, we deduce u = 0 or

2
(2.28) Gl< (/ |F|%)".
M
Setting
(2.29) Ko = 3!
finishes the proof. 0

3. THE NON-COMPACT CASE

We now suppose that M = M" is a complete, non-compact Riemannian
manifold. Then there holds

(3.1) H'2(M) = Hy* (M),

i.e., the test functions C°(M) are dense in the Sobolev space H1:2(M), see
[1, Lemme 4] or [2, Theorem 2.6].
Since we do not a priori know

(3.2) F?ec HY*(M),
but only
(3.3) F? e H2 (M),

the preceding proof has to be modified.
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Let n = n(t) be defined through

1, t<1,
(3.4) n(t)=4(2-t)7 1<t<2,
0, t>2,
where
(3.5) q = max(1, &).

Fix a point g € M and let r be the Riemannian distance function with
center in xg

(3.6) r(z) = d(zg, x).
Then r is Lipschitz such that
(3.7 |Dr| =1

almost everywhere.
For k > 1 define

(3.8) () = n(k™"r).
The functions
(3.9) uP~tnh,
where
(3.10) p=17,
then have compact support, and multiplying (2.9) on page 4 with up_lnz
yields
3 n—2
G+i-o [ iparwi<c [ FE)7( [ @noe)
(3.11) M

+ Ce / |D77k|277£_2up,
M

where 0 < € is supposed to be small.
Furthermore, there holds

2
[ 1Dt = / D+ uDn )
(3.12)

<(1+e=— / | Dul?uP~?n +c€f/ | D |2}~ 2uP.
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Now, choosing € so small such that

2
(3.13) A+08 <p+E-0
and setting
(3.14) o = () ¥
we obtain

2 n—2

3.15) Dol? < pe Flz)" 7)) " 4ee D) ®n? 2P

( @l* <p © nk| . Tub,
M M M M

where ¢, is a new constant.
We furthermore observe that

(3.16) | D27 < Pk72(2 — k)2,
subject to
(3.17) 1<k r <2
In view of (3.5) and (3.10)
(3.18) qgp—220
and hence
(3.19) | Dy P ™% < Pk

Applying now the Sobolev inequality (1.6) on page 2 to ¢ and choosing
(3.20) ko = (crep) ™t

we conclude |F| =0, if

(3.21) (/M|F|g)i < Ko.

Indeed, if the preceding inequality is valid, then we deduce from (3.15)

(3.22) (1 _ﬁol(/M|F|3)i)(/M|gp%)T < ce?k? /MIFI%~

In the limit £ — oo we obtain

(3.23) ( /M|u|#’fz)n”2 <.
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