AN ENERGY GAP FOR YANG-MILLS CONNECTIONS

CLAUS GERHARDT

ABSTRACT. Consider a Yang-Mills connection over a Riemann manifold $M = M^n$, $n \ge 3$, where M may be compact or complete. Then its energy must be bounded from below by some positive constant, if M satisfies certain conditions, unless the connection is flat.

CONTENTS

1.	Introduction	1
2.	The compact case	3
3.	The non-compact case	6
References		9

1. INTRODUCTION

We consider the problem: When is a Yang-Mills connection non-flat? Of course, the trivial answer $F_{\mu\lambda} \neq 0$ is unsatisfactory. Bourguignon and Lawson proved in [3, Theorem C], among other results, that any Yang-Mills connection over S^n , $n \geq 3$, the field strength of which satisfies the pointwise estimate

(1.1)
$$F^2 = -\operatorname{tr}(F_{\mu\lambda}F^{\mu\lambda}) < \binom{n}{2}$$

is flat.

Received by the editors July 3, 2011.

 $2000\ Mathematics\ Subject\ Classification.\ 35J60,\ 53C21,\ 53C44,\ 53C50,\ 58J05.$

Key words and phrases. energy gap, Yang-Mills connections.

This work has been supported by the DFG.

We want to prove that under certain assumptions on the base space M, which is supposed to be a Riemannian manifold of dimension $n \geq 3$, the energy of a Yang-Mills connection has to satisfy

(1.2)
$$\left(\int_{M} |F|^{\frac{n}{2}}\right)^{\frac{2}{n}} \ge \kappa_0 > 0,$$

where κ_0 depends only on the Sobolev constants of M, n and the dimension of the Lie group \mathcal{G} , unless the connection is flat.

Here,

$$|F| = \sqrt{F^2},$$

and we also call the left-hand side of (1.2) energy though this label is only correct when n = 4. However, this norm is also the crucial norm, which has to be (locally) small, used to prove regularity of a connection, cf. [4, Theorem 1.3].

The exponent $\frac{n}{2}$ naturally pops up when Sobolev inequalities are applied to solutions of differential equations satisfied by the field strength or the energy density of a connection in the adjoint bundle.

We distinguish two cases: M compact and M complete and non-compact. When M is compact, we require

(1.4)
$$\bar{R}_{\alpha\beta}\Lambda^{\alpha}_{\lambda}\Lambda^{\beta\lambda} - \frac{1}{2}\bar{R}_{\alpha\beta\mu\lambda}\Lambda^{\alpha\beta}\Lambda^{\mu\lambda} \ge c_0\Lambda_{\alpha\beta}\Lambda^{\alpha\beta}$$

for all skew-symmetric $\Lambda_{\alpha\beta} \in T^{0,2}(M)$, where $0 < c_0$, while for non-compact M the weaker assumption

(1.5)
$$\bar{R}_{\alpha\beta}\Lambda^{\alpha}_{\lambda}\Lambda^{\beta\lambda} - \frac{1}{2}\bar{R}_{\alpha\beta\mu\lambda}\Lambda^{\alpha\beta}\Lambda^{\mu\lambda} \ge 0$$

and in addition

(1.6)
$$\left(\int_{M} u^{\frac{2n}{n-2}}\right)^{\frac{n-2}{n}} \le c_1 \int_{M} |Du|^2 \quad \forall u \in H^{1,2}(M)$$

should be satisfied.

1.1. **Remark.** (i) If M is a space of constant curvature

(1.7)
$$\bar{R}_{\alpha\beta\mu\lambda} = K_M (\bar{g}_{\alpha\mu}\bar{g}_{\beta\lambda} - \bar{g}_{\alpha\lambda}\bar{g}_{\beta\mu}),$$

then

(1.8)
$$\bar{R}_{\alpha\beta}\Lambda^{\alpha}_{\lambda}\Lambda^{\beta\lambda} - \frac{1}{2}\bar{R}_{\alpha\beta\mu\lambda}\Lambda^{\alpha\beta}\Lambda^{\mu\lambda} = (n-2)K_M\Lambda_{\alpha\beta}\Lambda^{\alpha\beta}.$$

In case n = 2 the curvature term therefore vanishes, and this result is also valid for an arbitrary two-dimensional Riemannian manifold, since the curvature tensor then has the same structure as in (1.7) though K_M is not necessarily constant.

(ii) If $M = \mathbb{R}^n$, $n \ge 3$, the conditions (1.5) and (1.6) are always valid.

1.2. **Theorem.** Let $M = M^n$, $n \ge 3$, be a compact Riemannian manifold for which the condition (1.4) with $c_0 > 0$ holds. Then any Yang-Mills connection over M with compact, semi-simple Lie group is either flat or satisfies (1.2) for some constant $\kappa_0 > 0$ depending on the Sobolev constants of M, n, c_0 , and the dimension of the Lie group.

1.3. **Theorem.** Let $M = M^n$, $n \ge 3$, be complete, non-compact and assume that the conditions (1.5) and (1.6) hold. Then any Yang-Mills connection over M with compact, semi-simple Lie group is either flat or the estimate (1.2) is valid. The constant $\kappa_0 > 0$ in (1.2) depends on the constant c_1 in (1.6), n, and the dimension of the Lie group.

2. The compact case

Let $(P, M, \mathcal{G}, \mathcal{G})$ be a principal fiber bundle where $M = M^n$, $n \geq 3$ is a compact Riemannian manifold with metric $\bar{g}_{\alpha\beta}$ and \mathcal{G} a compact, semi-simple Lie group with Lie algebra \mathfrak{g} . Let $f_c = (f_{cb}^a)$ be a basis of ad \mathfrak{g} and

a Yang-Mills connection in the adjoint bundle $(E, M, \mathfrak{g}, \mathrm{Ad}(\mathcal{G}))$.

The curvature tensor of the connection is given by

(2.2)
$$R^a_{\ b\mu\lambda} = f^a_{cb} F^c_{\mu\lambda},$$

where

(2.3)
$$F_{\mu\lambda} = f_c F^c_{\mu\lambda}$$

is the field strength of the connection, and

(2.4)
$$F^2 \equiv \gamma_{ab} F^a_{\mu\lambda} F^{b\mu\lambda} = R_{ab\mu\lambda} R^{ab\mu\lambda}$$

the energy density of the connection—at least up to a factor $\frac{1}{4}$.

Here, γ_{ab} is the Cartan-Killing metric acting on elements of the fiber \mathfrak{g} , and Latin indices are raised or lowered with respect to the inverse γ^{ab} or γ_{ab} , and Greek indices with respect to the metric of M.

2.1. **Definition.** The adjoint bundle E is vector bundle; let E^* be the dual bundle, then we denote by

(2.5)
$$T^{r,s}(E) = \Gamma(\underbrace{E \otimes \cdots \otimes E}_{r} \otimes \underbrace{E^* \otimes \cdots \otimes E^*}_{s})$$

the sections of the corresponding tensor bundle.

Thus, we have

(2.6)
$$F^a_{\mu\lambda} \in T^{1,0}(E) \otimes T^{0,2}(M).$$

Since A_{μ} is a Yang-Mills connection it solves the Yang-Mills equation

(2.7)
$$F^{a\alpha}_{\ \lambda;\alpha} = 0$$

where we use Einstein's summation convention, a semi-colon indicates covariant differentiation, and where we stipulate that a covariant derivative is always a *full* tensor, i.e.,

(2.8)
$$F^{a}_{\mu\lambda;\alpha} = F^{a}_{\mu\lambda,\alpha} + f^{a}_{bc}A^{b}_{\alpha}F^{c}_{\mu\lambda} - \bar{\Gamma}^{\gamma}_{\alpha\mu}F^{a}_{\gamma\lambda} - \bar{\Gamma}^{\gamma}_{\alpha\lambda}F^{a}_{\mu\gamma},$$

where $\bar{\Gamma}^{\gamma}_{\alpha\beta}$ are the Christoffel symbols of the Riemannian connection; a comma indicates partial differentiation.

Before we formulate the crucial lemma let us note that $\bar{R}_{\alpha\beta\gamma\delta}$ resp. $\bar{R}_{\alpha\beta}$ symbolize the Riemann curvature tensor resp. the Ricci tensor of $\bar{g}_{\alpha\beta}$.

2.2. Lemma. Let A_{μ} be a Yang-Mills connection, then its energy density F^2 solves the equation

(2.9)
$$\begin{array}{l} -\frac{1}{4}\Delta F^2 + \frac{1}{2}F_{a\mu\lambda;\alpha}F^{a\mu\lambda\,\alpha} + \bar{R}_{\beta\mu}F^{a\beta}_{\ \lambda}F_a^{\ \mu\lambda} - \frac{1}{2}\bar{R}_{\alpha\beta\mu\lambda}F_a^{\ \alpha\beta}F^{a\mu\lambda} \\ = -f^a_{cb}F^c_{\alpha\mu}F^{b\alpha}_{\ \lambda}F_a^{\ \mu\lambda}. \end{array}$$

Proof. Differentiating (2.7) covariantly with respect to x^{μ} and using the Ricci identities we obtain

(2.10)
$$0 = -F^{a\alpha}_{\ \lambda;\alpha\mu} = -F^{a\alpha}_{\ \lambda;\mu\alpha} + R^{a}_{\ b\alpha\mu}F^{b\alpha}_{\ \lambda} + \bar{R}^{\alpha}_{\ \beta\alpha\mu}F^{a\beta}_{\ \lambda} + \bar{R}^{\beta}_{\ \lambda\mu\alpha}F^{a\alpha}_{\ \beta}.$$

On the other hand, differentiating the second Bianchi identities

(2.11)
$$0 = F^a_{\alpha\lambda;\mu} + F^a_{\mu\alpha;\lambda} + F^a_{\lambda\mu;\alpha}$$

we infer

(2.12)
$$0 = F^{a\alpha}_{\ \lambda;\mu\alpha} + F^{a\alpha}_{\ \mu;\lambda\alpha} + \Delta F^{a}_{\lambda\mu},$$

and we deduce further

(2.13)
$$-\Delta F^a_{\mu\lambda}F_a{}^{\mu\lambda} = -2F^{a\alpha}_{\ \lambda;\mu\alpha}F_a{}^{\mu\lambda}.$$

In view of (2.10) we then conclude

(2.14)
$$0 = -\frac{1}{2}\Delta F^{a}_{\mu\lambda}F_{a}^{\ \mu\lambda} + R^{a}_{\ b\alpha\mu}F^{b\alpha}_{\ \lambda}F_{a}^{\ \mu\lambda} + \bar{R}_{\beta\mu}F^{a\beta}_{\ \lambda}F_{a}^{\ \mu\lambda} + \bar{R}^{\beta}_{\beta\mu\alpha}F^{a\beta}_{\ \lambda\mu\alpha}F^{a\alpha}_{\ \beta}F_{a}^{\ \mu\lambda},$$

which is equivalent to

(2.15)
$$0 = -\frac{1}{2}\Delta F^a_{\mu\lambda}F_a^{\ \mu\lambda} + f^a_{cb}F^c_{\alpha\mu}F^{b\alpha}_{\ \lambda}F_a^{\ \mu\lambda} + \bar{R}_{\beta\mu}F^{a\beta}_{\ \lambda}F_a^{\ \mu\lambda} - \bar{R}_{\alpha\mu\beta\lambda}F^{a\alpha\beta}F_a^{\ \mu\lambda},$$

in view of (2.2).

Finally, using the first Bianchi identities,

(2.16)
$$\bar{R}_{\alpha\beta\mu\lambda} + \bar{R}_{\alpha\mu\lambda\beta} + \bar{R}_{\alpha\lambda\beta\mu} = 0,$$

we deduce

(2.17)
$$\bar{R}_{\alpha\beta\mu\lambda}F^{a\alpha\beta}F_{a}^{\ \ \mu\lambda} + \bar{R}_{\alpha\mu\lambda\beta}F^{a\alpha\beta}F_{a}^{\ \ \mu\lambda} + \bar{R}_{\alpha\lambda\beta\mu}F^{a\alpha\beta}F_{a}^{\ \ \mu\lambda} = 0,$$

and hence

(2.18)
$$\bar{R}_{\alpha\beta\mu\lambda}F^{a\alpha\beta}F_{a}^{\ \mu\lambda} = 2\bar{R}_{\alpha\mu\beta\lambda}F^{a\alpha\beta}F_{a}^{\ \mu\lambda},$$

from which the equation (2.9) immediately follows.

Proof of Theorem 1.2 on page 3. Define

$$(2.19) u = F^2,$$

then

(2.20)
$$\bar{R}_{\beta\mu}F^{a\beta}_{\ \lambda}F_{a}^{\ \mu\lambda} - \frac{1}{2}\bar{R}_{\alpha\beta\mu\lambda}F_{a}^{\ \alpha\beta}F^{a\mu\lambda} \ge c_{0}u,$$

where $c_0 > 0$, in view of the assumption (1.4) on page 2.

Multiplying (2.9) with u and integrating by parts we obtain

(2.21)
$$\frac{3}{8} \int_{M} |Du|^2 + c_0 \int_{M} u^2 \le c \int_{M} \sqrt{u} u^2$$

where we used the simple estimate

$$(2.22) |Du|^2 \le 4F_{a\mu\lambda;\alpha}F^{a\mu\lambda} {}^{\alpha}u$$

and where c depends on n and the dimension of \mathfrak{g} ; note that

$$(2.23) f_c \in \mathrm{SO}(\mathfrak{g}, \gamma_{ab}).$$

The integral on the right-hand side of (2.21) is estimated by

(2.24)
$$\int_M \sqrt{u} u^2 \le \left(\int_M u^{\frac{n}{4}}\right)^{\frac{2}{n}} \left(\int_M u^{\frac{2n}{n-2}}\right)^{\frac{n-2}{n}},$$

where

(2.25)
$$\left(\int_{M} u^{\frac{n}{4}}\right)^{\frac{2}{n}} = \left(\int_{M} |F|^{\frac{n}{2}}\right)^{\frac{2}{n}}.$$

Applying then the Sobolev inequality

(2.26)
$$\left(\int_{M} u^{\frac{2n}{n-2}}\right)^{\frac{n-2}{n}} \le c_1 \int_{M} |Du|^2 + c_2 \int_{M} u^2,$$

cf. [1], we obtain

(2.27)
$$\left(\int_{M} u^{\frac{2n}{n-2}}\right)^{\frac{n-2}{n}} \le c_3 \left(\int_{M} |F|^{\frac{n}{2}}\right)^{\frac{2}{n}} \left(\int_{M} u^{\frac{2n}{n-2}}\right)^{\frac{n-2}{n}},$$

where c_3 depends on c_1, c_2, c_0 and c. Hence, we deduce $u \equiv 0$ or

(2.28)
$$c_3^{-1} \le \left(\int_M |F|^{\frac{n}{2}}\right)^{\frac{2}{n}}$$

Setting

(2.29)
$$\kappa_0 = c_3^{-1}$$

finishes the proof.

3. The non-compact case

We now suppose that $M = M^n$ is a complete, non-compact Riemannian manifold. Then there holds

(3.1)
$$H^{1,2}(M) = H_0^{1,2}(M),$$

i.e., the test functions $C_c^{\infty}(M)$ are dense in the Sobolev space $H^{1,2}(M)$, see [1, Lemme 4] or [2, Theorem 2.6].

Since we do not a priori know

(3.2)
$$F^2 \in H^{1,2}(M),$$

but only

(3.3)
$$F^2 \in H^{1,2}_{\text{loc}}(M),$$

the preceding proof has to be modified.

Let $\eta = \eta(t)$ be defined through

(3.4)
$$\eta(t) = \begin{cases} 1, & t \le 1, \\ (2-t)^q, & 1 \le t \le 2, \\ 0, & t \ge 2, \end{cases}$$

where

$$(3.5) q = \max(1, \frac{8}{n}).$$

Fix a point $x_0 \in M$ and let r be the Riemannian distance function with center in x_0

(3.6)
$$r(x) = d(x_0, x).$$

Then r is Lipschitz such that

(3.7) |Dr| = 1

almost everywhere.

For $k \ge 1$ define

(3.8)
$$\eta_k(x) = \eta(k^{-1}r).$$

The functions

 $(3.9) u^{p-1}\eta_k^p,$

where

$$(3.10) p = \frac{n}{4},$$

then have compact support, and multiplying (2.9) on page 4 with $u^{p-1}\eta_k^p$ yields

(3.11)
$$(\frac{p}{4} + \frac{1}{8} - \epsilon) \int_{M} |Du|^{2} u^{p-2} \eta_{k}^{p} \leq c \Big(\int_{M} |F|^{\frac{n}{2}} \Big)^{\frac{2}{n}} \Big(\int_{M} (u\eta_{k})^{\frac{n}{n-2}p} \Big)^{\frac{n-2}{n}} + c_{\epsilon} \int_{M} |D\eta_{k}|^{2} \eta_{k}^{p-2} u^{p},$$

where $0 < \epsilon$ is supposed to be small.

Furthermore, there holds

(3.12)
$$\int_{M} |D(u\eta_{k})|^{\frac{p}{2}}|^{2} = \frac{p^{2}}{4} \int_{M} |Du\eta_{k} + uD\eta_{k}|^{2} (u\eta_{k})^{p-2} \\ \leq (1+\epsilon) \frac{p^{2}}{4} \int_{M} |Du|^{2} u^{p-2} \eta_{k}^{p} + c_{\epsilon} \frac{p^{2}}{4} \int_{M} |D\eta_{k}|^{2} \eta_{k}^{p-2} u^{p}.$$

Now, choosing ϵ so small such that

(3.13)
$$(1+\epsilon)\frac{p^2}{4} \le p(\frac{p}{4} + \frac{1}{8} - \epsilon)$$

and setting

(3.14)
$$\varphi = (u\eta_k)^{\frac{p}{2}}$$

we obtain

(3.15)
$$\int_{M} |D\varphi|^{2} \le pc \Big(\int_{M} |F|^{\frac{n}{2}}\Big)^{\frac{2}{n}} \Big(\int_{M} \varphi^{\frac{2n}{n-2}}\Big)^{\frac{n-2}{n}} + c_{\epsilon} \int_{M} |D\eta_{k}|^{2} \eta_{k}^{p-2} u^{p},$$

where c_{ϵ} is a new constant.

We furthermore observe that

(3.16)
$$|D\eta_k|^2 \eta_k^{p-2} \le q^2 k^{-2} (2 - k^{-1}r)^{qp-2}$$

subject to

$$(3.17) 1 \le k^{-1}r \le 2$$

In view of (3.5) and (3.10)

and hence

(3.19)
$$|D\eta_k|^2 \eta_k^{p-2} \le q^2 k^{-2}$$

Applying now the Sobolev inequality (1.6) on page 2 to φ and choosing

(3.20)
$$\kappa_0 = (c_1 c_p)^{-1}$$

we conclude $|F| \equiv 0$, if

(3.21)
$$\left(\int_{M} |F|^{\frac{n}{2}}\right)^{\frac{2}{n}} < \kappa_{0}$$

Indeed, if the preceding inequality is valid, then we deduce from (3.15)

(3.22)
$$\left(1 - \kappa_0^{-1} \left(\int_M |F|^{\frac{n}{2}}\right)^{\frac{2}{n}}\right) \left(\int_M |\varphi|^{\frac{2n}{n-2}}\right)^{\frac{n-2}{n}} \le c_\epsilon q^2 k^{-2} \int_M |F|^{\frac{n}{2}}.$$

In the limit $k \to \infty$ we obtain

(3.23)
$$\left(\int_{M} |u|^{\frac{pn}{n-2}}\right)^{\frac{n-2}{n}} \le 0.$$

References

- Thierry Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11 (1976), no. 4, 573–598.
- [2] _____, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982.
- [3] Jean-Pierre Bourguignon and H. Blaine Lawson, Jr., Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79 (1981), no. 2, 189–230.
- [4] Karen K. Uhlenbeck, Connections with L^p bounds on curvature, Comm. Math. Phys. 83 (1982), no. 1, 31–42.

RUPRECHT-KARLS-UNIVERSITÄT, INSTITUT FÜR ANGEWANDTE MATHEMATIK, IM NEUEN-HEIMER FELD 294, 69120 HEIDELBERG, GERMANY

E-mail address: gerhardt@math.uni-heidelberg.de *URL*: http://www.math.uni-heidelberg.de/studinfo/gerhardt/