
CURVATURE FLOWS AND CMC HYPERSURFACES

CLAUS GERHARDT

Abstract. We give an overview of the existence and regularity results for

curvature flows and how these flows can be used to solve some problems
in geometry and physics.
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1. Introduction

We want to give a survey of the existence and regularity results for extrinsic
curvature flows in semi-Riemannian manifolds, i.e., Riemannian or Lorentzian
ambient spaces. In order to treat both cases simultaneously terminology like
spacelike, timelike, etc., that only makes sense in a Lorentzian setting should
be ignored in the Riemannian case.
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Those, who are already experts in the field, might still be interested in
the regularity result in Theorem 5.5—especially the time independent Cm+2,α-
estimates—for converging curvature flows that are graphs, and in the general
curvature estimates for flows in Riemannian manifolds in Section 6.

2. Notations and preliminary results

The main objective of this section is to state the equations of Gauß, Codazzi,
and Weingarten for hypersurfaces. In view of the subtle but important differ-
ence that is to be seen in the Gauß equation depending on the nature of the
ambient space—Riemannian or Lorentzian—, we shall formulate the governing
equations of a hypersurface M in a semi-Riemannian (n+1)-dimensional space
N , which is either Riemannian or Lorentzian. Geometric quantities in N will
be denoted by (ḡαβ), (R̄αβγδ), etc., and those in M by (gij), (Rijkl), etc. Greek
indices range from 0 to n and Latin from 1 to n; the summation convention
is always used. Generic coordinate systems in N resp. M will be denoted by
(xα) resp. (ξi). Covariant differentiation will simply be indicated by indices,
only in case of possible ambiguity they will be preceded by a semicolon, i.e., for
a function u in N , (uα) will be the gradient and (uαβ) the Hessian, but e.g.,
the covariant derivative of the curvature tensor will be abbreviated by R̄αβγδ;ε.
We also point out that

(2.1) R̄αβγδ;i = R̄αβγδ;εx
ε
i

with obvious generalizations to other quantities.
Let M be a spacelike hypersurface, i.e., the induced metric is Riemannian,

with a differentiable normal ν. We define the signature of ν, σ = σ(ν), by

(2.2) σ = ḡαβν
ανβ = 〈ν, ν〉.

In case N is Lorentzian, σ = −1, and ν is timelike.
In local coordinates, (xα) and (ξi), the geometric quantities of the spacelike

hypersurface M are connected through the following equations

(2.3) xαij = −σhijνα

the so-called Gauß formula. Here, and also in the sequel, a covariant derivative
is always a full tensor, i.e.,

(2.4) xαij = xα,ij − Γ kijxαk + Γ̄αβγx
β
i x

γ
j .

The comma indicates ordinary partial derivatives.
In this implicit definition the second fundamental form (hij) is taken with

respect to −σν.
The second equation is the Weingarten equation

(2.5) ναi = hki x
α
k ,

where we remember that ναi is a full tensor.
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Finally, we have the Codazzi equation

(2.6) hij;k − hik;j = R̄αβγδν
αxβi x

γ
j x

δ
k

and the Gauß equation

(2.7) Rijkl = σ{hikhjl − hilhjk}+ R̄αβγδx
α
i x

β
j x

γ
kx

δ
l .

Here, the signature of ν comes into play.

2.1. Definition. (i) Let F ∈ C0(Γ̄ ) ∩ C2,α(Γ ) be a strictly monotone cur-
vature function, where Γ ⊂ Rn is a convex, open, symmetric cone containing
the positive cone, such that

(2.8) F |∂Γ = 0 ∧ F |Γ > 0.

Let N be semi-Riemannian. A spacelike, orientable1 hypersurface M ⊂ N
is called admissible, if its principal curvatures with respect to a chosen normal
lie in Γ . This definition also applies to subsets of M .

(ii) Let M be an admissible hypersurface and f a function defined in a
neighbourhood of M . M is said to be an upper barrier for the pair (F, f), if

(2.9) F |M ≥ f
(iii) Similarly, a spacelike, orientable hypersurface M is called a lower barrier

for the pair (F, f), if at the points Σ ⊂M , where M is admissible, there holds

(2.10) F |Σ ≤ f.
Σ may be empty.

(iv) If we consider the mean curvature function, F = H, then we suppose F
to be defined in Rn and any spacelike, orientable hypersurface is admissible.

One of the assumptions that are used when proving a priori estimates is that
there exists a strictly convex function χ ∈ C2(Ω̄) in a given domain Ω. We
shall state sufficient geometric conditions guaranteeing the existence of such a
function. The lemma below will be valid in Lorentzian as well as Riemannian
manifolds, but we formulate and prove it only for the Lorentzian case.

2.2. Lemma. Let N be globally hyperbolic, S0 a Cauchy hypersurface, (xα)
a special coordinate system associated with S0, and Ω̄ ⊂ N be compact. Then,
there exists a strictly convex function χ ∈ C2(Ω̄) provided the level hypersur-
faces {x0 = const} that intersect Ω̄ are strictly convex.

Proof. For greater clarity set t = x0, i.e., t is a globally defined time function.
Let x = x(ξ) be a local representation for {t = const}, and ti, tij be the
covariant derivatives of t with respect to the induced metric, and tα, tαβ be the
covariant derivatives in N , then

(2.11) 0 = tij = tαβx
α
i x

β
j + tαx

α
ij ,

1A hypersurface is said to be orientable, if it has a continuous normal field.



4 CLAUS GERHARDT

and therefore,

(2.12) tαβx
α
i x

β
j = −tαxαij = −h̄ijtανα.

Here, (να) is past directed, i.e., the right-hand side in (2.12) is positive definite
in Ω̄, since (tα) is also past directed.

Choose λ > 0 and define χ = eλt, so that

(2.13) χαβ = λ2eλttαtβ + λeλttαβ .

Let p ∈ Ω be arbitrary, S = {t = t(p)} be the level hypersurface through p,
and (ηα) ∈ Tp(N). Then we conclude

(2.14) e−λtχαβη
αηβ = λ2|η0|2 + λtijη

iηj + 2λt0jη
0ηi,

where tij now represents the left-hand side in (2.12), and we infer further

(2.15)
e−λtχαβη

αηβ ≥ 1
2λ

2|η0|2 + [λε− cε]σijηiηj

≥ ε
2λ{−|η

0|2 + σijη
iηj}

for some ε > 0, and where λ is supposed to be large. Therefore, we have in Ω̄

(2.16) χαβ ≥ cḡαβ , c > 0,

i.e., χ is strictly convex. �

3. Evolution equations for some geometric quantities

Curvature flows are used for different purposes, they can be merely vehicles
to approximate a stationary solution, in which case the flow is driven not
only by a curvature function but also by the corresponding right-hand side,
an external force, if you like, or the flow is a pure curvature flow driven only
by a curvature function, and it is used to analyze the topology of the initial
hypersurface, if the ambient space is Riemannian, or the singularities of the
ambient space, in the Lorentzian case.

In this section we are treating very general curvature flows2 in a semi-
Riemannian manifold N = Nn+1, though we only have the Riemannian or
Lorentzian case in mind, such that the flow can be either a pure curvature flow
or may also be driven by an external force. The nature of the ambient space,
i.e., the signature of its metric, is expressed by a parameter σ = ±1, such that
σ = 1 corresponds to the Riemannian and σ = −1 the Lorentzian case. The
parameter σ can also be viewed as the signature of the normal of the spacelike
hypersurfaces, namely,

(3.1) σ = 〈ν, ν〉.

Properties like spacelike, achronal, etc., however, only make sense, when N
is Lorentzian and should be ignored otherwise.

2We emphasize that we are only considering flows driven by the extrinsic curvature not
by the intrinsic curvature.
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We consider a strictly monotone, symmetric, and concave curvature F ∈
C4,α(Γ ), homogeneous of degree 1, a function 0 < f ∈ C4,α(Ω), where Ω ⊂ N
is an open set, and a real function Φ ∈ C4,α(R+) satisfying

(3.2) Φ̇ > 0 and Φ̈ ≤ 0.

For notational reasons, let us abbreviate

(3.3) f̃ = Φ(f).

Important examples of functions Φ are

(3.4) Φ(r) = r, Φ(r) = log r, Φ(r) = −r−1

or

(3.5) Φ(r) = r
1
k , Φ(r) = −r− 1

k , k ≥ 1.

3.1. Remark. The latter choices are necessary, if the curvature function F
is not homogeneous of degree 1 but of degree k, like the symmetric polynomials

Hk. In this case we would sometimes like to define F = Hk and not H
1/k
k , since

(3.6) F ij =
∂F

∂hij

is then divergence free, if the ambient space is a spaceform, though on the other
hand we need a concave operator for technical reasons, hence we have to take
the k-th root.

The curvature flow is given by the evolution problem

(3.7)
ẋ = −σ(Φ− f̃)ν,

x(0) = x0,

where x0 is an embedding of an initial compact, spacelike hypersurface M0 ⊂ Ω
of class C6,α, Φ = Φ(F ), and F is evaluated at the principal curvatures of the
flow hypersurfaces M(t), or, equivalently, we may assume that F depends on
the second fundamental form (hij) and the metric (gij) of M(t); x(t) is the
embedding of M(t) and σ the signature of the normal ν = ν(t), which is
identical to the normal used in the Gaussian formula (2.3) on page 2.

The initial hypersurface should be admissible, i.e., its principal curvatures
should belong to the convex, symmetric cone Γ ⊂ Rn.

This is a parabolic problem, so short-time existence is guaranteed, cf. [20,
Chapter 2.5].

There will be a slight ambiguity in the terminology, since we shall call the
evolution parameter time, but this lapse shouldn’t cause any misunderstand-
ings, if the ambient space is Lorentzian.

At the moment we consider a sufficiently smooth solution of the initial value
problem (3.7) and want to show how the metric, the second fundamental form,
and the normal vector of the hypersurfaces M(t) evolve. All time derivatives
are total derivatives, i.e., covariant derivatives of tensor fields defined over the
curve x(t), cf. [19, Chapter 11.5]; t is the flow parameter, also referred to
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as time, and (ξi) are local coordinates of the initial embedding x0 = x0(ξ)
which will also serve as coordinates for the the flow hypersurfaces M(t). The
coordinates in N will be labelled (xα), 0 ≤ α ≤ n.

3.2. Lemma (Evolution of the metric). The metric gij of M(t) satisfies the
evolution equation

(3.8) ġij = −2σ(Φ− f̃)hij .

Proof. Differentiating

(3.9) gij = 〈xi, xj〉
covariantly with respect to t yields

(3.10)
ġij = 〈ẋi, xj〉+ 〈xi, ẋj〉

= −2σ(Φ− f̃)〈xi, νj〉 = −2σ(Φ− f̃)hij ,

in view of the Codazzi equations. �

3.3. Lemma (Evolution of the normal). The normal vector evolves according
to

(3.11) ν̇ = ∇M (Φ− f̃) = gij(Φ− f̃)ixj .

Proof. Since ν is unit normal vector we have ν̇ ∈ T (M). Furthermore, differ-
entiating

(3.12) 0 = 〈ν, xi〉
with respect to t, we deduce

(3.13) 〈ν̇, xi〉 = −〈ν, ẋi〉 = (Φ− f̃)i.

�

3.4. Lemma (Evolution of the second fundamental form). The second fun-
damental form evolves according to

(3.14) ḣji = (Φ− f̃)ji + σ(Φ− f̃)hki h
j
k + σ(Φ− f̃)R̄αβγδν

αxβi ν
γxδkg

kj

and

(3.15) ḣij = (Φ− f̃)ij − σ(Φ− f̃)hki hkj + σ(Φ− f̃)R̄αβγδν
αxβi ν

γxδj .

Proof. We use the Ricci identities to interchange the covariant derivatives of ν
with respect to t and ξi

(3.16)

D
dt (ν

α
i ) = (ν̇α)i − R̄αβγδνβx

γ
i ẋ

δ

= gkl(Φ− f̃)kix
α
l + gkl(Φ− f̃)kx

α
li − R̄αβγδνβx

γ
i ẋ

δ.

For the second equality we used (3.11). On the other hand, in view of the
Weingarten equation we obtain

(3.17) D
dt (ν

α
i ) = D

dt (h
k
i x

α
k ) = ḣki x

α
k + hki ẋ

α
k .
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Multiplying the resulting equation with ḡαβx
β
j we conclude

(3.18) ḣki gkj − σ(Φ− f̃)hki hkj = (Φ− f̃)ij + σ(Φ− f̃)R̄αβγδν
αxβi ν

γxδj

or equivalently (3.14).
To derive (3.15), we differentiate

(3.19) hij = hki gkj

with respect to t and use (3.8). �

We emphasize that equation (3.14) describes the evolution of the second
fundamental form more meaningfully than (3.15), since the mixed tensor is
independent of the metric.

3.5. Lemma (Evolution of (Φ− f̃)). The term (Φ− f̃) evolves according to
the equation

(3.20)
(Φ− f̃)

′
− Φ̇F ij(Φ− f̃)ij =σΦ̇F ijhikh

k
j (Φ− f̃) + σf̃αν

α(Φ− f̃)

+ σΦ̇F ijR̄αβγδν
αxβi ν

γxδj(Φ− f̃),

where

(3.21) (Φ− f̃)′ =
d

dt
(Φ− f̃)

and

(3.22) Φ̇ =
d

dr
Φ(r).

Proof. When we differentiate F with respect to t we consider F to depend on
the mixed tensor hji and conclude

(3.23) (Φ− f̃)′ = Φ̇F ij ḣ
j
i − f̃αẋ

α;

The equation (3.20) then follows in view of (3.7) and (3.14). �

3.6. Remark. The preceding conclusions, except Lemma 3.5, remain valid
for flows which do not depend on the curvature, i.e., for flows

(3.24)
ẋ = −σ(−f)ν = σfν,

x(0) = x0,

where f = f(x) is defined in an open set Ω containing the initial spacelike
hypersurface M0. In the preceding equations we only have to set Φ = 0 and
f̃ = f .

The evolution equation for the mean curvature then looks like

(3.25) Ḣ = −∆f − σ{|A|2 + R̄αβν
ανβ}f,

where the Laplacian is the Laplace operator on the hypersurface M(t). This is
exactly the derivative of the mean curvature operator with respect to normal
variations as we shall see in a moment.

But first let us consider the following example.
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3.7. Example. Let (xα) be a future directed Gaussian coordinate system
in N , such that the metric can be expressed in the form

(3.26) ds̄2 = e2ψ{σ(dx0)2 + σijdx
idxj}.

Denote by M(t) the coordinate slices {x0 = t}, then M(t) can be looked at as
the flow hypersurfaces of the flow

(3.27) ẋ = −σ(−eψ)ν̄,

where we denote the geometric quantities of the slices by ḡij , ν̄, h̄ij , etc.
Here x is the embedding

(3.28) x = x(t, ξi) = (t, xi).

Notice that, if N is Riemannian, the coordinate system and the normal are
always chosen such that ν0 > 0, while, if N is Lorentzian, we always pick the
past directed normal.

Hence the mean curvature of the slices evolves according to

(3.29) ˙̄H = −∆eψ − σ{|Ā|2 + R̄αβ ν̄
αν̄β}eψ.

We can now derive the linearization of the mean curvature operator of a
spacelike hypersurface, compact or non-compact.

3.8. Let M0 ⊂ N be a spacelike hypersurface of class C4. We first assume
that M0 is compact; then there exists a tubular neighbourhood U and a cor-
responding normal Gaussian coordinate system (xα) of class C3 such that ∂

∂x0

is normal to M0.
Let us consider in U of M0 spacelike hypersurfaces M that can be writ-

ten as graphs over M0, M = graphu, in the corresponding normal Gaussian
coordinate system. Then the mean curvature of M can be expressed as

(3.30) H = {−∆u+ H̄ − σv−2uiuj h̄ij}v,

where σ = 〈ν, ν〉, and hence, choosing u = εϕ, ϕ ∈ C2(M0), we deduce

(3.31)

d

dε
H |ε=0

= −∆ϕ+ ˙̄Hϕ

= −∆ϕ− σ(|Ā|2 + R̄αβν
ανβ)ϕ,

in view of (3.29).
The right-hand side is the derivative of the mean curvature operator applied

to ϕ.
If M0 is non-compact, tubular neighbourhoods exist locally and the relation

(3.31) will be valid for any ϕ ∈ C2
c (M0) by using a partition of unity.

The preceding linearization can be immediately generalized to a hypersurface
M0 solving the equation

(3.32) F |M0
= f,
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where f = f(x) is defined in a neighbourhood of M0 and F = F (hij) is a
curvature operator.

3.9. Lemma. Let M0 be of class Cm,α, m ≥ 2, 0 ≤ α ≤ 1, satisfy (3.32).
Let U be a (local) tubular neighbourhood of M0, then the linearization of the
operator F − f expressed in the normal Gaussian coordinate system (xα) cor-
responding to U and evaluated at M0 has the form

(3.33) − F ijuij − σ{F ijhki hkj + F ijR̄αβγδν
αxβi ν

γxδj + fαν
α}u,

where u is a function defined in M0, and all geometric quantities are those of
M0; the derivatives are covariant derivatives with respect to the induced metric
of M0. The operator will be self-adjoint, if F ij is divergence free.

Proof. For simplicity assume that M0 is compact, and let u ∈ C2(M0) be fixed.
Then the hypersurfaces

(3.34) Mε = graph(εu)

stay in the tubular neighbourhood U for small ε, |ε| < ε0, and their second
fundamental forms (hij) can be expressed as

(3.35) v−1hij = −(εu)ij + h̄ij ,

where h̄ij is the second fundamental form of the coordinate slices {x0 = const}.
We are interested in

(3.36)
d

dε
(F − f)|ε=0

.

To differentiate F with respect to ε it is best to consider the mixed form
(hji ) of the second fundamental form to derive

(3.37)
d

dε
(F − f) = F ij ḣ

j
i −

∂f

∂x0
u = −F ijuij + F ij

˙̄hjiu−
∂f

∂x0
u,

where the equation is evaluated at ε = 0 and ˙̄hji is the derivative of h̄ji with
respect to x0.

The result then follows from the evolution equation (3.14) for the flow (3.27),

i.e., we have to replace (Φ− f̃) in (3.14) by −1. �

4. Essential parabolic flow equations

From (3.14) on page 6 we deduce with the help of the Ricci identities a
parabolic equation for the second fundamental form
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4.1. Lemma. The mixed tensor hji satisfies the parabolic equation

(4.1)

ḣji − Φ̇F
klhji;kl =

σΦ̇F klhrkh
r
l h
j
i − σΦ̇Fhrih

rj + σ(Φ− f̃)hki h
j
k

− f̃αβxαi x
β
kg
kj + σf̃αν

αhji + Φ̇F kl,rshkl;ih
j

rs;

+ Φ̈FiF
j + 2Φ̇F klR̄αβγδx

α
mx

β
i x

γ
kx

δ
rh
m
l g

rj

− Φ̇F klR̄αβγδxαmx
β
kx

γ
rx

δ
l h
m
i g

rj − Φ̇F klR̄αβγδxαmx
β
kx

γ
i x

δ
l h
mj

+ σΦ̇F klR̄αβγδν
αxβkν

γxδl h
j
i − σΦ̇FR̄αβγδν

αxβi ν
γxδmg

mj

+ σ(Φ− f̃)R̄αβγδν
αxβi ν

γxδmg
mj

+ Φ̇F klR̄αβγδ;ε{ναxβkx
γ
l x

δ
ix
ε
mg

mj + ναxβi x
γ
kx

δ
mx

ε
lg
mj}.

Proof. We start with equation (3.14) on page 6 and shall evaluate the term

(4.2) (Φ− f̃)ji ;

since we are only working with covariant spatial derivatives in the subsequent
proof, we may—and shall—consider the covariant form of the tensor

(4.3) (Φ− f̃)ij .

First we have

(4.4) Φi = Φ̇Fi = Φ̇F klhkl;i

and

(4.5) Φij = Φ̇F klhkl;ij + Φ̈F klhkl;iF
rshrs;j + Φ̇F kl,rshkl,;ihrs;j .

Next, we want to replace hkl;ij by hij;kl. Differentiating the Codazzi equation

(4.6) hkl;i = hik;l + R̄αβγδν
αxβkx

γ
l x

δ
i ,

where we also used the symmetry of hik, yields

(4.7)
hkl;ij = hik;lj + R̄αβγδ;εν

αxβkx
γ
l x

δ
ix
ε
j

+ R̄αβγδ{ναj x
β
kx

γ
l x

δ
i + ναxβkjx

γ
l x

δ
i + ναxβkx

γ
ljx

δ
i + ναxβkx

γ
l x

δ
ij}.

To replace hkl;ij by hij;kl we use the Ricci identities

(4.8) hik;lj = hik;jl + hakR
a
ilj + haiR

a
klj

and differentiate once again the Codazzi equation

(4.9) hik;j = hij;k + R̄αβγδν
αxβi x

γ
kx

δ
j .

To replace f̃ij we use the chain rule

(4.10)
f̃i = f̃αx

α
i ,

f̃ij = f̃αβx
α
i x

β
j + f̃αx

α
ij .
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Then, because of the Gauß equation, Gaussian formula, and Weingarten
equation, the symmetry properties of the Riemann curvature tensor and the
assumed homogeneity of F , i.e.,

(4.11) F = F klhkl,

we deduce (4.1) from (3.14) on page 6 after reverting to the mixed representa-
tion. �

4.2. Remark. If we had assumed F to be homogeneous of degree d0 instead
of 1, then we would have to replace the explicit term F—occurring twice in the
preceding lemma—by d0F .

If the ambient semi-Riemannian manifold is a space of constant curvature,
then the evolution equation of the second fundamental form simplifies consid-
erably, as can be easily verified.

4.3. Lemma. Let N be a space of constant curvature KN , then the second
fundamental form of the curvature flow (3.7) on page 5 satisfies the parabolic
equation

(4.12)

ḣji − Φ̇F
klhji;kl = σΦ̇F klhrkh

r
l h
j
i − σΦ̇Fhrih

rj + σ(Φ− f̃)hki h
j
k

− f̃αβxαi x
β
kg
kj + σf̃αν

αhji + Φ̇F kl,rshkl;ih
j

rs;

+ Φ̈FiF
j

+KN{(Φ− f̃)δji + Φ̇Fδji − Φ̇F
klgklh

j
i}.

Let us now assume that the open set Ω ⊂ N containing the flow hyper-
surfaces can be covered by a Gaussian coordinate system (xα), i.e., Ω can be
topologically viewed as a subset of I × S0, where S0 is a compact Riemannian
manifold and I an interval. We assume furthermore, that the flow hypersur-
faces can be written as graphs over S0

(4.13) M(t) = {x0 = u(xi) : x = (xi) ∈ S0 };
we use the symbol x ambiguously by denoting points p = (xα) ∈ N as well as
points p = (xi) ∈ S0 simply by x, however, we are careful to avoid confusions.

Suppose that the flow hypersurfaces are given by an embedding x = x(t, ξ),
where ξ = (ξi) are local coordinates of a compact manifold M0, which then has
to be homeomorphic to S0, then

(4.14)
x0 = u(t, ξ) = u(t, x(t, ξ)),

xi = xi(t, ξ).

The induced metric can be expressed as

(4.15) gij = 〈xi, xj〉 = σuiuj + σklx
k
i x

l
j ,

where

(4.16) ui = ukx
k
i ,
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i.e.,

(4.17) gij = {σukul + σkl}xki xlj ,

hence the (time dependent) Jacobian (xki ) is invertible, and the (ξi) can also
be viewed as coordinates for S0.

Looking at the component α = 0 of the flow equation (3.7) on page 5 we
obtain a scalar flow equation

(4.18) u̇ = −e−ψv−1(Φ− f̃),

which is the same in the Lorentzian as well as in the Riemannian case, where

(4.19) v2 = 1 + σσijuiuj ,

and where

(4.20) |Du|2 = σijuiuj

is of course a scalar, i.e., we obtain the same expression regardless, if we use
the coordinates xi or ξi.

The time derivative in (4.18) is a total time derivative, if we consider u to
depend on u = u(t, x(t, ξ)). For the partial time derivative we obtain

(4.21)

∂u

∂t
= u̇− ukẋki

= −e−ψv(Φ− f̃),

in view of (3.7) on page 5 and our choice of normal ν = (να)

(4.22) (να) = σe−ψv−1(1,−σui),

where ui = σijuj .
Controlling the C1-norm of the graphs M(t) is tantamount to controlling v,

if N is Riemannian, and ṽ = v−1, if N is Lorentzian. The evolution equations
satisfied by these quantities are also very important, since they are used for
the a priori estimates of the second fundamental form.

Let us start with the Lorentzian case.

4.4. Lemma (Evolution of ṽ). Consider the flow (3.7) in a Lorentzian space
N such that the spacelike flow hypersurfaces can be written as graphs over S0.
Then, ṽ satisfies the evolution equation

(4.23)

˙̃v − Φ̇F ij ṽij =− Φ̇F ijhikhkj ṽ + [(Φ− f̃)− Φ̇F ]ηαβν
ανβ

− 2Φ̇F ijhkjx
α
i x

β
kηαβ − Φ̇F

ijηαβγx
β
i x

γ
j ν

α

− Φ̇F ijR̄αβγδναxβi x
γ
kx

δ
jηεx

ε
lg
kl

− f̃βxβi x
α
kηαg

ik,

where η is the covariant vector field (ηα) = eψ(−1, 0, . . . , 0).
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Proof. We have ṽ = 〈η, ν〉. Let (ξi) be local coordinates for M(t). Differenti-
ating ṽ covariantly we deduce

(4.24) ṽi = ηαβx
β
i ν

α + ηαν
α
i ,

(4.25)
ṽij = ηαβγx

β
i x

γ
j ν

α + ηαβx
β
ijν

α

+ ηαβx
β
i ν

α
j + ηαβx

β
j ν

α
i + ηαν

α
ij

The time derivative of ṽ can be expressed as

(4.26)

˙̃v = ηαβ ẋ
βνα + ηαν̇

α

= ηαβν
ανβ(Φ− f̃) + (Φ− f̃)kxαkηα

= ηαβν
ανβ(Φ− f̃) + Φ̇F kxαkηα − f̃βx

β
i x

α
k g

ikηα,

where we have used (3.11) on page 6.
Substituting (4.25) and (4.26) in (4.23), and simplifying the resulting equa-

tion with the help of the Weingarten and Codazzi equations, we arrive at the
desired conclusion. �

In the Riemannian case we consider a normal Gaussian coordinate system
(xα), for otherwise we won’t obtain a priori estimates for v, at least not without
additional strong assumptions. We also refer to x0 = r as the radial distance
function.

4.5. Lemma (Evolution of v). Consider the flow (3.7) in a normal Gaussian
coordinate system where the M(t) can be written as graphs of a function u(t)
over some compact Riemannian manifold S0. Then the quantity

(4.27) v =
√

1 + |Du|2 = (rαν
α)−1

satisfies the evolution equation

(4.28)

v̇ − Φ̇F ijvij = −Φ̇F ijhikhkj v − 2v−1Φ̇F ijvivj

+ rαβν
ανβ [(Φ− f̃)− Φ̇F ]v2 + 2Φ̇F ijhki rαβx

α
kx

β
j v

2

+ Φ̇F ijR̄αβγδν
αxβi x

γ
j x

δ
krεx

ε
mg

mkv2

+ Φ̇F ijrαβγν
αxβi x

γ
j v

2 + f̃αx
α
mg

mkrβx
β
kv

2.

Proof. Similar to the proof of the previous lemma. �

The previous problems can be generalized to the case when the right-hand
side f is not only defined in N or in Ω̄ but in the tangent bundle T (N) resp.
T (Ω̄). Notice that the tangent bundle is a manifold of dimension 2(n+ 1), i.e.,
in a local trivialization of T (N) f can be expressed in the form

(4.29) f = f(x, ν)

with x ∈ N and ν ∈ Tx(N), cf. [19, Note 12.2.14]. Thus, the case f = f(x) is
included in this general set up. The symbol ν indicates that in an equation

(4.30) F |M = f(x, ν)
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we want f to be evaluated at (x, ν), where x ∈M and ν is the normal of M in
x.

The Minkowski problem or Minkowski type problems are also covered by the
present setting, though the Minkowski problem has the additional property that
the problem is transformed via the Gauß map to a different semi-Riemannian
manifold as a dual problem and solved there. Minkowski type problems have
been treated in [6], [27], [23] and [21].

4.6. Remark. The equation (4.30) will be solved by the same methods as
in the special case when f = f(x), i.e., we consider the same curvature flow,
the evolution equation (3.7) on page 5, as before.

The resulting evolution equations are identical with the natural exception,
that, when f or f̃ has to be differentiated, the additional argument has to be
considered, e.g.,

(4.31) f̃i = f̃αx
α
i + f̃νβν

β
i = f̃αx

α
i + f̃νβx

β
kh

k
i

and

(4.32)
˙̃
f = f̃αẋ

α + f̃νβ ν̇
β = −σ(Φ− f̃)f̃αν

α + f̃νβg
ij(Φ− f̃)ix

β
j .

The most important evolution equations are explicitly stated below.

Let us first state the evolution equation for (Φ− f̃).

4.7. Lemma (Evolution of (Φ− f̃)). The term (Φ− f̃) evolves according to
the equation

(4.33)

(Φ− f̃)
′
− Φ̇F ij(Φ− f̃)ij = σΦ̇F ijhikh

k
j (Φ− f̃)

+ σf̃αν
α(Φ− f̃)− f̃ναxαi (Φ− f̃)jg

ij

+ σΦ̇F ijR̄αβγδν
αxβi ν

γxδj(Φ− f̃),

where

(4.34) (Φ− f̃)′ =
d

dt
(Φ− f̃)

and

(4.35) Φ̇ =
d

dr
Φ(r).

Here is the evolution equation for the second fundamental form.
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4.8. Lemma. The mixed tensor hji satisfies the parabolic equation

(4.36)

ḣji − Φ̇F
klhji;kl

= σΦ̇F klhrkh
r
l h
j
i − σΦ̇Fhrih

rj + σ(Φ− f̃)hki h
j
k

− f̃αβxαi x
β
kg
kj + σf̃αν

αhji − f̃ανβ (xαi x
β
kh

kj + xαl x
β
kh

k
i g

lj)

− f̃νανβxαl x
β
kh

k
i h

lj − f̃νβx
β
kh

k
i;l g

lj + σf̃ναν
αhki h

j
k

+ Φ̇F kl,rshkl;ih
j

rs; + 2Φ̇F klR̄αβγδx
α
mx

β
i x

γ
kx

δ
rh
m
l g

rj

− Φ̇F klR̄αβγδxαmx
β
kx

γ
rx

δ
l h
m
i g

rj − Φ̇F klR̄αβγδxαmx
β
kx

γ
i x

δ
l h
mj

+ σΦ̇F klR̄αβγδν
αxβkν

γxδl h
j
i − σΦ̇FR̄αβγδν

αxβi ν
γxδmg

mj

+ σ(Φ− f̃)R̄αβγδν
αxβi ν

γxδmg
mj + Φ̈FiF

j

+ Φ̇F klR̄αβγδ;ε{ναxβkx
γ
l x

δ
ix
ε
mg

mj + ναxβi x
γ
kx

δ
mx

ε
lg
mj}.

The proof is identical to that of Lemma 4.1; we only have to keep in mind
that f now also depends on the normal.

If we had assumed F to be homogeneous of degree d0 instead of 1, then, we
would have to replace the explicit term F—occurring twice in the preceding
lemma—by d0F .

4.9. Lemma (Evolution of ṽ). Consider the flow (3.7) in a Lorentzian space
N such that the spacelike flow hypersurfaces can be written as graphs over S0.
Then, ṽ satisfies the evolution equation

(4.37)

˙̃v − Φ̇F ij ṽij =− Φ̇F ijhikhkj ṽ + [(Φ− f̃)− Φ̇F ]ηαβν
ανβ

− 2Φ̇F ijhkjx
α
i x

β
kηαβ − Φ̇F

ijηαβγx
β
i x

γ
j ν

α

− Φ̇F ijR̄αβγδναxβi x
γ
kx

δ
jηεx

ε
lg
kl

− f̃βxβi x
α
kηαg

ik − f̃νβx
β
kh

ikxαi ηα,

where η is the covariant vector field (ηα) = eψ(−1, 0, . . . , 0).

The proof is identical to the proof of Lemma 4.4.
In the Riemannian case we have:

4.10. Lemma (Evolution of v). Consider the flow (3.7) in a normal Gauss-
ian coordinate system (xα), where the M(t) can be written as graphs of a func-
tion u(t) over some compact Riemannian manifold S0. Then the quantity

(4.38) v =
√

1 + |Du|2 = (rαν
α)−1
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satisfies the evolution equation

(4.39)

v̇ − Φ̇F ijvij =− Φ̇F ijhikhkj v − 2v−1Φ̇F ijvivj

+ [(Φ− f)− Φ̇F ]rαβν
ανβv2

+ 2Φ̇F ijhkjx
α
i x

β
krαβv

2 + Φ̇F ijrαβγx
β
i x

γ
j ν

αv2

+ Φ̇F ijR̄αβγδν
αxβi x

γ
kx

δ
jrεx

ε
lg
klv2

+ f̃βx
β
i x

α
k rαg

ikv2 + f̃νβx
β
kh

ikxαi rαv
2,

where r = x0 and (rα) = (1, 0, . . . , 0).

5. Existence results

From now on we shall assume that ambient manifold N is Lorentzian, or
more precisely, that it is smooth, globally hyperbolic with a compact, connected
Cauchy hypersurface. Then there exists a smooth future oriented time function
x0 such that the metric in N can be expressed in Gaussian coordinates (xα) as

(5.1) ds̄2 = e2ψ{−(dx0)2 + σijdx
idxj},

where x0 is the time function and the (xi) are local coordinates for

(5.2) S0 = {x0 = 0}.
S0 is then also a compact, connected Cauchy hypersurface. For a proof of the
splitting result see [5, Theorem 1.1], and for the fact that all Cauchy hyper-
surfaces are diffeomorphic and hence S0 is also compact and connected, see [4,
Lemma 2.2].

One advantage of working in globally hyperbolic spacetimes with a compact
Cauchy hypersurface is that all compact, connected spacelike Cm-hypersurfaces
M can be written as graphs over S0.

5.1. Lemma. Let N be as above and M ⊂ N a connected, spacelike hyper-
surface of class Cm, 1 ≤ m, then M can be written as a graph over S0

(5.3) M = graphu|S0

with u ∈ Cm(S0).

We proved this lemma under the additional hypothesis that M is achronal,
[14, Proposition 2.5], however, this assumption is unnecessary as has been
shown in [29, Theorem 1.1].

We are looking at the curvature flow (3.7) on page 5 and want to prove that
it converges to a stationary solution hypersurface, if certain assumptions are
satisfied.

The existence proof consists of four steps:

(i) Existence on a maximal time interval [0, T ∗).
(ii) Proof that the flow stays in a compact subset.
(iii) Uniform a priori estimates in an appropriate function space, e.g., C4,α(S0)

or C∞(S0), which, together with (ii), would imply T ∗ =∞.
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(iv) Conclusion that the flow—or at least a subsequence of the flow hypersur-
faces—converges if t tends to infinity.

The existence on a maximal time interval is always guaranteed, if the data
are sufficiently regular, since the problem is parabolic. If the flow hypersurfaces
can be written as graphs in a Gaussian coordinate system, as will always be the
case in a globally hyperbolic spacetime with a compact Cauchy hypersurface
in view of Lemma 5.1, the conditions are better than in the general case:

5.2. Theorem. Let 4 ≤ m ∈ N and 0 < α < 1, and assume the semi-
Riemannian space N to be of class Cm+2,α. Let the strictly monotone curvature
function F , the functions f and Φ be of class Cm,α and let M0 ∈ Cm+2,α be
an admissible compact, spacelike, connected, orientable3 hypersurface. Then the
curvature flow (3.7) on page 5 with initial hypersurface M0 exists in a maximal
time interval [0, T ∗), 0 < T ∗ ≤ ∞, where in case that the flow hypersurfaces
cannot be expressed as graphs they are supposed to be smooth, i.e, the conditions
should be valid for arbitrary 4 ≤ m ∈ N in this case.

A proof can be found in [20, Theorem 2.5.19, Lemma 2.6.1].

The second step, that the flow stays in a compact set, can only be achieved
by barrier assumptions, cf. Definition 2.1. Thus, let Ω ⊂ N be open and
precompact such that ∂Ω has exactly two components

(5.4) ∂Ω = M1
.∪M2

where M1 is a lower barrier for the pair (F, f) and M2 an upper barrier. More-
over, M1 has to lie in the past of M2

(5.5) M1 ⊂ I−(M2),

cf. [20, Remark 2.7.8].
Then the flow hypersurfaces will always stay inside Ω̄, if the initial hyper-

surface M0 satisfies M0 ⊂ Ω, [20, Theorem 2.7.9]. This result is also valid if

M0 coincides with one the barriers, since then the velocity (Φ− f̃) has a weak
sign and the flow moves into Ω for small t, if it moves at all, and the arguments
of the proof are applicable.

In Lorentzian manifolds the existence of barriers is associated with the pres-
ence of past and future singularities. In globally hyperbolic spacetimes, when
N is topologically a product

(5.6) N = I × S0,

where I = (a, b), singularities can only occur, when the endpoints of the interval
are approached. A singularity, if one exists, is called a crushing singularity, if
the sectional curvatures become unbounded, i.e.,

(5.7) R̄αβγδR̄
αβγδ →∞

3Recall that oriented simply means there exists a continuous normal, which will always
be the case in a globally hyperbolic spacetime.
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and such a singularity should provide a future resp. past barrier for the mean
curvature function H.

5.3. Definition. Let N be a globally hyperbolic spacetime with compact
Cauchy hypersurface S0 so that N can be written as a topological product
N = I × S0 and its metric expressed as

(5.8) ds̄2 = e2ψ(−(dx0)2 + σij(x
0, x)dxidxj).

Here, x0 is a globally defined future directed time function and (xi) are lo-
cal coordinates for S0. N is said to have a future resp. past mean curvature
barrier, if there are sequences M+

k resp. M−k of closed, spacelike, admissible
hypersurfaces such that

(5.9) lim
k→∞

H |
M

+
k

=∞ resp. lim
k→∞

H |
M
−
k

= −∞

and

(5.10) lim sup inf
M+
k

x0 > x0(p) ∀ p ∈ N

resp.

(5.11) lim inf sup
M−k

x0 < x0(p) ∀ p ∈ N,

If one stipulates that the principal curvatures of the M+
k resp. M−k tend to

plus resp. minus infinity, then these hypersurfaces could also serve as barriers
for other curvature functions. The past barriers would most certainly be non-
admissible for any curvature function except H.

5.4. Remark. Notice that the assumptions (5.9) alone already implies (5.10)
resp. (5.11), if either

(5.12) lim sup inf
M+
k

x0 > a

resp.

(5.13) lim inf sup
M−k

x0 < b

where (a, b) = x0(N), or, if

(5.14) R̄αβν
ανβ ≥ −Λ ∀ 〈ν, ν〉 = −1,

where Λ ≥ 0.

Proof. It suffices to prove that the relation (5.10) is automatically satisfied
under the assumptions (5.12) or (5.14) by switching the light cone and replacing
x0 by −x0 in case of the past barrier.

Fix k, and let

(5.15) τk = inf
Mk

x0,
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then the coordinate slice

(5.16) Mτk = {x0 = τk}
touches Mk from below in a point pk ∈ Mk where τk = x0(pk) and the maxi-
mum principle yields that in that point

(5.17) H |Mτk
≥ H |Mk ,

hence, if k tends to infinity the points (pk) cannot stay in a compact subset,
i.e.,

(5.18) lim supx0(pk)→ b

or

(5.19) lim supx0(pk)→ a.

We shall show that only (5.18) can be valid. The relation (5.19) evidently
contradicts (5.12).

In case the assumption (5.14) is valid, we consider a fixed coordinate slice
M0 = {x0 = const}, then all hypersurfaces Mk satisfying

(5.20) H |M0
< inf

Mk

H ∧
√
nΛ < inf

Mk

H

have to lie in the future of M0, cf. [20, Lemma 4.7.1], hence the result. �

A future mean curvature barrier certainly represents a singularity, at least
if N satisfies the condition

(5.21) R̄αβν
ανβ ≥ −Λ ∀ 〈ν, ν〉 = −1

where Λ ≥ 0, because of the future timelike incompleteness, which is proved in
[1], and is a generalization of Hawking’s earlier result for Λ = 0, [28]. But these
singularities need not be crushing, cf. [26, Section 2] for a counterexample.

The uniform a priori estimates for the flow hypersurfaces are the hardest
part in any existence proof. When the flow hypersurfaces can be written as
graphs it suffices to prove C1 and C2 estimates, namely, the induced metric

(5.22) gij(t, ξ) = 〈xi, xj〉
where x = x(t, ξ) is a local embedding of the flow, should stay uniformly
positive definite, i.e., there should exist positive constants ci, 1 ≤ i ≤ 2, such
that

(5.23) c1gij(0, ξ) ≤ gij(t, ξ) ≤ c2gij(0, ξ),
or equivalently, that the quantity

(5.24) ṽ = 〈η, ν〉,
where ν is the past directed normal of M(t) and η the vector field

(5.25) η = (ηα) = eψ(−1, 0, . . . , 0),

is uniformly bounded, which is achieved with the help of the parabolic equation
(4.37) on page 15, if it is possible at all.
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However, in some special situations C1-estimates are automatically satisfied,
cf. Theorem 5.10 at the end of this section.

For the C2-estimates the principle curvatures κi of the flow hypersurfaces
have to stay in a compact set in the cone of definition Γ of F , e.g., if F is the
Gaussian curvature, then Γ = Γ+ and one has to prove that there are positive
constants ki, i = 1, 2 such that

(5.26) k1 ≤ κi ≤ k2 ∀ 1 ≤ i ≤ n

uniformly in the cylinder [0, T ∗)×M0, where M0 is any manifold that can serve
as a base manifold for the embedding x = x(t, ξ).

The parabolic equations that are used for these curvature estimates are
(4.36) on page 15, usually for an upper estimate, and (4.33) on page 14 for the
lower estimate. Indeed, suppose that the flow starts at the upper barrier, then

(5.27) F ≥ f

at t = 0 and this estimate remains valid throughout the evolution because of
the parabolic maximum principle, use (4.36). Then, if upper estimates for the
κi have been derived and if f > 0 uniformly, then we conclude from (5.27) that
the κi stay in a compact set inside the open cone Γ , since

(5.28) F |∂Γ = 0.

To obtain higher order estimates we are going to exploit the fact that the
flow hypersurfaces are graphs over S0 in an essential way, namely, we look
at the associated scalar flow equation (4.21) on page 12 satisfied by u. This
equation is a nonlinear uniformly parabolic equation, where the operator Φ(F )
is also concave in hij , or equivalently, convex in uij , i.e., the C2,α-estimates of
Krylov and Safonov, [30, Chapter 5.5] or see [33, Chapter 10.6] for a very clear
and readable presentation, are applicable, yielding uniform estimates for the
standard parabolic Hölder semi-norm

(5.29) [D2u]β,Q̄T

for some 0 < β ≤ α in the cylinder

(5.30) Q = [0, T )× S0,

independent of 0 < T < T ∗, which in turn will lead to Hm+2+α,m+2+α
2 (Q̄T )

estimates, cf. [20, Theorem 2.5.9, Remark 2.6.2].

Hm+2+α,m+2+α
2 (Q̄T ) is a parabolic Hölder space, cf. [31, p. 7] for the original

definition and [20, Note 2.5.4] in the present context.
The estimate (5.29) combined with the uniform C2-norm leads to uniform

C2,β(S0)-estimates independent of T .
These estimates imply that T ∗ =∞.

Thus, it remains to prove that u(t, ·) converges in Cm+2(S0) to a stationary
solution ũ, which is then also of class Cm+2,α(S0) in view of the Schauder
theory.



CURVATURE FLOWS AND CMC HYPERSURFACES 21

Because of the preceding a priori estimates u(t, ·) is precompact in C2(S0).
Moreover, we deduce from the scalar flow equation (4.21) on page 12 that u̇
has a sign, i.e., the u(t, ·) converge monotonely in C0(S0) to ũ and therefore
also in C2(S0).

To prove that graph ũ is a solution, we again look at (4.21) and integrate it
with respect to t to obtain for fixed x ∈ S0

(5.31) |ũ(x)− u(t, x)| =
∫ ∞
t

e−ψv|Φ− f̃ |,

where we used that (Φ− f̃) has a sign, hence (Φ− f̃)(t, x) has to vanish when
t tends to infinity, at least for a subsequence, but this suffices to conclude that
graph ũ is a stationary solution and

(5.32) lim
t→∞

(Φ− f̃) = 0.

Using the convergence of u to ũ in C2, we can then prove:

5.5. Theorem. The functions u(t, ·) converge in Cm+2(S0) to ũ, if the data
satisfy the assumptions in Theorem 5.2, since we have

(5.33) u ∈ Hm+2+β,m+2+β
2 (Q̄),

where Q = Q∞.

Proof. Out of convention let us write α instead of β knowing that α is the
Hölder exponent in (5.29).

We shall reduce the Schauder estimates to the standard Schauder estimates
in Rn for the heat equation with a right-hand side by using the already estab-
lished results (5.29) and

(5.34) u(t, ·) →
C2(S0)

ũ ∈ Cm+2,α(S0).

Let (Uk) be a finite open covering of S0 such that each Uk is contained in a
coordinate chart and

(5.35) diamUk < ρ,

ρ small, ρ will be specified in the proof, and let (ηk) be a subordinate finite
partition of unity of class Cm+2,α.

Since

(5.36) u ∈ Hm+2+α,m+2+α
2 (Q̄T )

for any finite T , cf. [20, Lemma 2.6.1], and hence

(5.37) u(t, ·) ∈ Cm+2,α(S0) ∀ 0 ≤ t <∞
we shall choose u0 = u(t0, ·) as initial value for some large t0 such that

(5.38) |aij(t, ·)− ãij |0,S0 < ε/2 ∀ t ≥ t0,
where

(5.39) aij = v2Φ̇F ij
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and ãij is defined correspondingly for M̃ = graph ũ.
However, making a variable transformation we shall always assume that

t0 = 0 and u0 = u(0, ·).
We shall prove (5.33) successively.

(i) Let us first show that

(5.40) Dxu ∈ H2+α, 2+α2 (Q̄).

This will be achieved, if we show that for an arbitrary ξ ∈ Cm+1,α(T 1,0(S0))

(5.41) ϕ = Dξu ∈ H2+α, 2+α2 (Q̄),

cf. [20, Remark 2.5.11].
Differentiating the scalar flow equation (4.21) on page 12 with respect to ξ

we obtain

(5.42) ϕ̇− aijϕij + biϕi + cϕ = f,

where of course the symbol f has a different meaning then in (4.21).
Later we want to apply the Schauder estimates for solutions of the heat flow

equation with right-hand side. In order to use elementary potential estimates
we have to cut off ϕ near the origin t = 0 by considering

(5.43) ϕ̃ = ϕθ,

where θ = θ(t) is smooth satisfying

(5.44) θ(t) =

{
1, t > 1,

0, t ≤ 1
2 .

This modification doesn’t cause any problems, since we already have a priori
estimates for finite t, and we are only concerned about the range 1 ≤ t < ∞.
ϕ̃ satisfies the same equation as ϕ only the right-hand side has the additional
summand ϕθ̇.

Let η = ηk be one of the members of the partition of unity and set

(5.45) w = ϕ̃η,

then w satisfies a similar equation with slightly different right-hand side

(5.46) ẇ − aijwij + biwi + cw = f̃

but we shall have this in mind when applying the estimates.
The w(t, ·) have compact support in one of the Uk’s, hence we can replace

the covariant derivatives of w by ordinary partial derivatives without changing
the structure of the equation and the properties of the right-hand side, which
still only depends linearly on ϕ and Dϕ.

We want to apply the well-known estimates for the ordinary heat flow equa-
tion

(5.47) ẇ −∆w = f̂

where w is defined in R × Rn.
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To reduce the problem to this special form, we pick an arbitrary x0 ∈ Uk,
set z0 = (0, x0), z = (t, x) and consider instead of (5.46)

(5.48)
ẇ − aij(z0)wij = f̂

= [aij(z)− aij(z0)]wij − biwi − cw + f̃ ,

where we emphasize that the difference

(5.49) |aij(z)− aij(z0)|

can be made smaller than any given ε > 0 by choosing ρ = ρ(ε) in (5.35) and
t0 = t0(ε) in (5.38) accordingly. Notice also that this equation can be extended
into R × Rn, since all functions have support in {t ≥ 1

2}.
Let 0 < T <∞ be arbitrary, then all terms belong to the required function

spaces in Q̄T and there holds

(5.50) [w]2+α,QT ≤ c[f̂ ]α,QT ,

where c = c(n, α). The brackets indicate the standard unweighted parabolic
semi-norms, cf. [20, Definition 2.5.2], which are identical to those defined in
[31, p. 7], but there the brackets are replaced by kets.

Thus, we conclude

(5.51)
[w]2+α,QT ≤ c sup

Uk×(0,T )

|aij(z)− aij(z0)|[D2w]α,QT + c[f ]α,QT

+ c1{[D2u]α,QT + [Du]α,QT + [u]α,QT + |w|0,QT + |D2w|0,QT },

where c1 is independent of T , but dependent on ηk. Here we also used the fact
that the lower order coefficients and ϕ,Dϕ are uniformly bounded.

Choosing now ε > 0 so small that

(5.52) cε < 1
2

and ρ, t0 accordingly such the difference in (5.49) is smaller than ε, we deduce

(5.53)
[w]2+α,QT ≤ 2c[f ]α,QT

+ 2c1{[D2u]α,QT + [Du]α,QT + [u]α,QT + |w|0,QT + |D2w|0,QT }.

Summing over the partition of unity and noting that ξ is arbitrary we see
that in the preceding inequality we can replace w by Du everywhere resulting
in the estimate

(5.54)
[Du]2+α,QT ≤ c1[f ]α,QT

+ c1{[D2u]α,QT + [Du]α,QT + [u]α,QT + |Du|0,QT + |D3u|0,QT },

where c1 is a new constant still independent of T .
Now the only critical terms on the right-hand side are |D3u|0,QT , which can

be estimated by (5.57), and the Hölder semi-norms with respect to t

(5.55) [Du]α
2 ,t,QT

+ [u]α
2 ,t,QT

.
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The second one is taken care of by the boundedness of u̇, see (4.21) on page 12,
while the first one is estimated with the help of equation (5.42) revealing

(5.56) |Du̇| ≤ c{sup
[0,T ]

|u|3,S0 + |f |0,QT },

since for fixed but arbitrary t we have

(5.57) |u|3,S0 ≤ ε[D3u]α,S0 + cε|u|0,S0 ,

where cε is independent of t.
Hence we conclude

(5.58) |Du|2+α,QT ≤ const

uniformly in T .

(ii) Repeating these estimates successively for 2 ≤ l ≤ m we obtain uniform
estimates for

(5.59)

m∑
l=2

[Dl
xu]2+α,QT ,

which, when combined with the uniform C2-estimates, yields

(5.60) |u(t, ·)|m+2,α,S0 ≤ const

uniformly in 0 ≤ t <∞.
Looking at the equation (4.21) we then deduce

(5.61) |u̇(t, ·)|m,α,S0 ≤ const

uniformly in t.

(iii) To obtain the estimates for Dr
tu up to the order

(5.62) [m+2+α
2 ]

we differentiate the scalar curvature equation with respect to t as often as
necessary and also with respect to the mixed derivatives Dr

tD
s
x to estimate

(5.63)
∑

1≤2r+s<m+2+α

Dr
tD

s
xu

using (5.60), (5.61) and the results from the prior differentiations.
Combined with the estimates for the heat equation in R×Rn these estimates

will also yield the necessary a priori estimates for the Hölder semi-norms in Q̄,
where again the smallness of (5.49) has to be used repeatedly. �

5.6. Remark. The preceding regularity result is also valid in Riemannian
manifolds, if the flow hypersurfaces can be written as graphs in a Gaussian
coordinate system. In fact the proof is unaware of the nature of the ambient
space.



CURVATURE FLOWS AND CMC HYPERSURFACES 25

With the method described above the following existence results have been
proved in globally hyperbolic spacetimes with a compact Cauchy hypersurface.
Ω ⊂ N is always a precompact domain the boundary of which is decomposed
as in (5.4) and (5.5) into an upper and lower barrier for the pair (F, f). We also
apply the stability results from [25, Section 5] and the just proved regularity
of the convergence and formulate the theorems accordingly.

By convergence of the flow in Cm+2 we mean convergence of the leaves
M(t) = graphu(t, ·) in this norm.

5.7. Theorem. Let M1, M2 be lower resp. upper barriers for the pair (H, f),
where f ∈ Cm,α(Ω̄) and the Mi are of class Cm+2,α, 4 ≤ m, 0 < α < 1, then
the curvature flow

(5.64)
ẋ = (H − f)ν

x(0) = x0,

where x0 is an embedding of the initial hypersurface M0 = M2 exists for all
time and converges in Cm+2 to a stable solution M of class Cm+2,α of the
equation

(5.65) H |M = f,

provided the initial hypersurface is not already a solution.

The existence result was proved in [15, Theorem 2.2], see also [20, Theorem
4.2.1] and the remarks following the theorem, and the stability result in [25,
Section 5]. Notice that f isn’t supposed to satisfy any sign condition.

For spacetimes that satisfy the timelike convergence condition and for func-
tions f with special structural conditions existence results via a mean curvature
flow were first proved in [8].

The Gaussian curvature or the curvature functions F belonging to the larger
class (K∗), see [14] for a definition, require that the admissible hypersurfaces
are strictly convex.

Moreover, proving a priori estimates for the second fundamental form of
a hypersurface M in general semi-Riemannian manifolds, when the curvature
function is not the mean curvature, or does not behave similar to it, requires
that a strictly convex function χ is defined in a neighbourhood of the hypersur-
face, see Lemma 2.2 on page 3 where sufficient assumptions are stated which
imply the existence of strictly convex functions.

Furthermore, when we consider curvature functions of class (K∗), notice
that the Gaussian curvature belongs to that class, then the right-hand side f
can be defined in T (Ω̄) instead of Ω̄, i.e., in a local trivialization of the tangent
bundle f can be expressed as

(5.66) f = f(x, ν) ∧ ν ∈ Tx(N).

We shall formulate the existence results with this more general assumption.
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5.8. Theorem. Let F ∈ Cm,α(Γ+), 4 ≤ m, 0 < α < 1, be a curvature
function of class (K∗), let 0 < f ∈ Cm,α(T (Ω̄)), and let M1, M2 be lower resp.
upper barriers for (F, f) of class Cm+2,α. Then the curvature flow

(5.67)
ẋ = (Φ− f̃)ν

x(0) = x0

where Φ(r) = log r and x0 is an embedding of M0 = M2, exists for all time and
converges in Cm+2 to a stationary solution M ∈ Cm+2,α of the equation

(5.68) F |M = f

provided the initial hypersurface M2 is not already a stationary solution and
there exists a strictly convex function χ ∈ C2(Ω̄).

The theorem was proved in [14] when f is only defined in Ω̄ and in the
general case in [20, Theorem 4.1.1].

When F = H2 is the scalar curvature operator, then the requirement that
f is defined in the tangent bundle and not merely in N is a necessity, if the
scalar curvature is to be prescribed. To prove existence results in this case, f
has to satisfy some natural structural conditions, namely,

0 < c1 ≤ f(x, ν) if 〈ν, ν〉 = −1,(5.69)

|||fβ(x, ν)||| ≤ c2(1 + |||ν|||2),(5.70)

and

|||fνβ (x, ν)||| ≤ c3(1 + |||ν|||),(5.71)

for all x ∈ Ω̄ and all past directed timelike vectors ν ∈ Tx(Ω), where ||| · ||| is a
Riemannian reference metric.

Applying a curvature flow to obtain stationary solutions requires to approx-
imate f by functions fk and to use these functions for the flow.

The functions fk have the property that |||fkβ ||| only grows linearly in |||ν|||
and |||fkνβ (x, ν)||| is bounded. To simplify the presentation we shall therefore
assume that f satisfies

(5.72) |||fβ(x, ν)||| ≤ c2(1 + |||ν|||),

(5.73) |||fνβ (x, ν)||| ≤ c3,
and also

(5.74) 0 < c1 ≤ f(x, ν) ∀ ν ∈ Tx(N), 〈ν, ν〉 < 0,

although the last assumption is only a minor point that can easily be dealt with,
see [17, Remark 2.6], and [17, Section 7 and 8] for the other approximations of
f .

Now, we can formulate the existence result for the scalar curvature operator
F = H2 under these provisions.
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5.9. Theorem. Let f ∈ Cm,α(T (Ω̄)), 4 ≤ m, 0 < α < 1, satisfy the condi-
tions (5.72), (5.73) and (5.74), and let M1, M2 be lower resp. upper barriers
of class Cm+2,α for (F, f). Then the curvature flow for F

(5.75)
ẋ = (Φ− f̃)

x(0) = x0

where Φ(r) = r
1
2 and x0 is an embedding of M0 = M2, exists for all time and

converges in Cm+2 to a stationary solution M ∈ Cm+2,α of

(5.76) F |M = f

provided there exists a strictly convex function χ ∈ C2(Ω̄).

This theorem has been proved by Christian Enz in [9] using the curvature
estimates in [24], see also Section 6 on page 28.

The first existence result for equation (5.76) was proved in [17] by considering
ε-regularizations of the scalar curvature function in the curvature flow and by
proving rather elaborate curvature estimates. The new existence proof is much
simpler and more elegant.

To conclude this section let us show which spacelike hypersurfaces satisfy
C1-estimates automatically.

5.10. Theorem. Let M = graphu|S0 be a compact, spacelike hypersurface
represented in a Gaussian coordinate system with unilateral bounded principal
curvatures, e.g.,

(5.77) κi ≥ κ0 ∀ i.

Then, the quantity ṽ = 1√
1−|Du|2

can be estimated by

(5.78) ṽ ≤ c(|u|,S0, σij , ψ, κ0),

where we assumed that in the Gaussian coordinate system the ambient metric
has the form as in (5.1).

Proof. We suppose as usual that the Gaussian coordinate system is future
oriented, and that the second fundamental form is evaluated with respect to
the past directed normal. We observe that

(5.79) ‖Du‖2 = gijuiuj = e−2ψ |Du|2

v2
,

hence, it is equivalent to find an a priori estimate for ‖Du‖.
Let λ be a real parameter to be specified later, and set

(5.80) w = 1
2 log‖Du‖2 + λu.

We may regard w as being defined on S0; thus, there is x0 ∈ S0 such that

(5.81) w(x0) = sup
S0

w,
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and we conclude

(5.82) 0 = wi =
1

‖Du‖2
uiju

j + λui

in x0, where the covariant derivatives are taken with respect to the induced
metric gij , and the indices are also raised with respect to that metric.

Expressing the second fundamental form of a graph with the help of the
Hessian of the function

(5.83) e−ψv−1hij = −uij − Γ̄ 0
00uiuj − Γ̄ 0

0iuj − Γ̄ 0
0jui − Γ̄ 0

ij .

we deduce further

(5.84)

λ‖Du‖4 = −uijuiuj

= e−ψ ṽhiju
iuj + Γ̄ 0

00‖Du‖4

+ 2Γ̄ 0
0ju

j‖Du‖2 + Γ̄ 0
iju

iuj .

Now, there holds

(5.85) ui = gijuj = e−2ψσijujv
−2,

and by assumption,

(5.86) hiju
iuj ≥ κ0‖Du‖2,

i.e., the critical terms on the right-hand side of (5.84) are of fourth order in
‖Du‖ with bounded coefficients, and we conclude that ‖Du‖ can’t be too large
in x0 if we choose λ such that

(5.87) λ ≤ −c|||Γ̄ 0
αβ ||| − 1

with a suitable constant c; w, or equivalently, ‖Du‖ is therefore uniformly
bounded from above. �

Especially for convex graphs over S0 the term ṽ is uniformly bounded as
long as they stay in a compact set.

6. Curvature flows in Riemannian manifolds

The existence results for solutions of an equation like

(6.1) F |M = f

or the long time existence of curvature flows, rely on a priori estimates. The
derivation of second order estimates, i.e., curvature estimates, is usually the
most difficult task and depends crucially on the curvature functions involved.
However, if the ambient space is Riemannian and the right-hand side, or ex-
ternal force, f only depends on x, f = f(x), then curvature estimates can be
derived for general concave curvature functions provided lower order a priori
estimates are already known, as we shall show in the following. These estimates
were first proved in [24].
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When proving a priori estimates for solutions of (6.1) the concavity of F
plays a central role. As usual we consider F to be defined in a cone Γ as well
as on the space of admissible tensors such that

(6.2) F (hij) = F (κi).

Notice that curvature functions are always assumed to be symmetric and if
F ∈ Cm,α(Γ ), 2 ≤ m, 0 < α < 1, then F ∈ Cm,α(SΓ ), where SΓ ⊂ T 0,2(M) is
the open set of admissible symmetric tensors with respect to the given metric
gij . The result is due to Ball, [2], see also [20, Theorem 2.1.8].

The second derivatives of F then satisfy

(6.3) F ij,klηijηkl =
∑
i,j

∂2F

∂κi∂κj
ηiiηjj +

∑
i 6=j

Fi − Fj
κi − κj

(ηij)
2 ≤ 0 ∀ η ∈ S,

where S ⊂ T 0,2(M) is the space of symmetric tensors, if F is concave in Γ , cf.
[12, Lemma 1.1].

However, a mere non-positivity of the right-hand side is in general not suf-
ficient to prove a priori estimates for the κi resulting in the fact that only
for special curvature functions for which a stronger estimate was known such
a priori estimates could be derived and the problem (6.1) solved, if further
assumptions are satisfied.

Sheng et al. then realized in [34] that the term

(6.4)
∑
i 6=j

Fi − Fj
κi − κj

(ηij)
2

was all that is needed to obtain the stronger concavity estimates under certain
circumstances. Indeed, if the κi are labelled

(6.5) κ1 ≤ · · · ≤ κn,
then there holds:

6.1. Lemma. Let F be concave and monotone, and assume κ1 < κn, then

(6.6)
∑
i6=j

Fi − Fj
κi − κj

(ηij)
2 ≤ 2

κn − κ1

n∑
i=1

(Fn − Fi)(ηni)2

for any symmetric tensor (ηij), where we used coordinates such that gij = δij.

Proof. Without loss of generality we may assume that the κi satisfy the strict
inequalities

(6.7) κ1 < · · · < κn,

since these points are dense. The concavity of F implies

(6.8) F1 ≥ · · · ≥ Fn,
cf. [7, Lemma 2], where

(6.9) Fi =
∂F

∂κi
> 0;
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the last inequality is the definition of monotonicity. The inequality then follows
immediately. �

The right-hand side of inequality (6.6) is exactly the quantity that is needed
to balance a bad technical term in the a priori estimate for κn, at least in
Riemannian manifolds, as we shall prove. Unfortunately, this doesn’t work in
Lorentzian spaces, because of a sign difference in the Gauß equations.

The assumptions on the curvature function are very simple.

6.2. Assumption. Let Γ ⊂ Rn be an open, symmetric, convex cone con-
taining Γ+ and let F ∈ Cm,α(Γ ) ∩ C0(Γ̄ ), m ≥ 4, be symmetric, monotone,
homogeneous of degree 1, and concave such that

(6.10) F > 0 in Γ

and

(6.11) F |∂Γ = 0.

These conditions on the curvature function will suffice. They could have
been modified, even relaxed, e.g., by only requiring that logF is concave, but
then the condition

(6.12) F ijgij ≥ c0 > 0,

which automatically holds, if F is concave and homogeneous of degree 1, would
have been added, destroying the aesthetic simplicity of Assumption 6.2.

Our estimates apply equally well to solutions of an equation as well as to
solutions of curvature flows. Since curvature flows encompass equations, let us
state the main estimate for curvature flows.

Let Ω ⊂ N be precompact and connected, and 0 < f ∈ Cm,α(Ω̄). We
consider the curvature flow

(6.13)
ẋ = −(Φ− f̃)ν

x(0) = x0,

where Φ is Φ(r) = r and f̃ = f , x0 is the embedding of an initial admissible
hypersurface M0 of class Cm+2,α such that

(6.14) Φ− f̃ ≥ 0 at t = 0,

where of course Φ = Φ(F ) = F . We introduce the technical function Φ in the
present case only to make a comparison with the formulas and results in the
previous sections, which all use the notation for the more general flows, easier.

We assume that Ω̄ is covered by a Gaussian coordinate system (xα), 0 ≤
1 ≤ n, such that the metric can be expressed as

(6.15) ds̄2 = e2ψ{(dx0)2 + σijdx
idxj}

and Ω̄ is covered by the image of the cylinder

(6.16) I × S0
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where S0 is a compact Riemannian manifold and I = x0(Ω̄), x0 is a global
coordinate defined in Ω̄ and (xi) are local coordinates of S0.

Furthermore we assume that M0 and the other flow hypersurfaces can be
written as graphs over S0. The flow should exist in a maximal time interval
[0, T ∗), stay in Ω, and uniform C1-estimates should already have been estab-
lished.

6.3. Remark. The assumption on the existence of the Gaussian coordinate
system and the fact that the hypersurfaces can be written as graphs could be
replaced by assuming the existence of a unit vector field η ∈ C2(T 0,1(Ω̄)) and
of a constant θ > 0 such that

(6.17) 〈η, ν〉 ≥ 2θ

uniformly during the flow, since this assumption would imply uniform C1-
estimates, which are the requirement that the induced metric can be estimated
accordingly by controlled metrics from below and above, and because the ex-
istence of such a vector field is essential for the curvature estimate.

If the flow hypersurfaces are graphs in a Gaussian coordinate system, then
such a vector field is given by

(6.18) η = (ηα) = eψ(1, 0, . . . , 0)

and the C1-estimates are tantamount to the validity of inequality (6.17).
In case N = Rn+1 and starshaped hypersurfaces one could also use the term

(6.19) 〈x, ν〉,

cf. [11, Lemma 3.5].

Then we shall prove:

6.4. Theorem. Under the assumptions stated above the principal curvatures
κi of the flow hypersurfaces are uniformly bounded from above

(6.20) κi ≤ c,

provided there exists a strictly convex function χ ∈ C2(Ω̄). The constant c only
depends on |f |2,Ω, θ, F (1, . . . , 1), the initial data, and the estimates for χ and
those of the ambient Riemann curvature tensor in Ω̄.

Moreover, the κi will stay in a compact set of Γ .

As an application of this estimate our former results on the existence of
a strictly convex hypersurface M solving the equation (6.1), [12, 13], which
we proved for curvature functions F of class (K), are now valid for curvature
functions F satisfying Assumption 6.2 with Γ = Γ+.

We are even able to solve the existence problem by using a curvature flow
which formerly only worked in case that the sectional curvature of the ambient
space was non-positive.
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6.5. Theorem. Let F satisfy the assumptions above with Γ = Γ+ and as-
sume that the boundary of Ω has two components

(6.21) ∂Ω = M1
.∪M2,

where the Mi are closed, connected strictly convex hypersurfaces of class
Cm+2,α, m ≥ 4, which can be written as graphs in a normal Gaussian coordi-
nate system covering Ω̄, and where we assume that the normal of M1 points
outside of Ω and that of M2 inside. Let 0 < f ∈ Cm,α(Ω̄), and assume that
M1 is a lower barrier for the pair (F, f) and M2 an upper barrier, then the
problem (6.1) has a strictly convex solution M ∈ Cm+2,α provided there exists
a strictly convex function χ ∈ C2(Ω̄). The solution is the limit hypersurface of
a converging curvature flow.

6.6. Curvature estimates. Let M(t) be the flow hypersurfaces, then their

second fundamental form hji satisfies the evolution equation, cf. (4.1) on
page 10:

6.7. Lemma. The mixed tensor hji satisfies the parabolic equation

(6.22)

ḣji − Φ̇F
klhji;kl =

Φ̇F klhrkh
r
l h
j
i − Φ̇Fhrih

rj + (Φ− f̃)hki h
j
k

− f̃αβxαi x
β
kg
kj + f̃αν

αhji + Φ̇F kl,rshkl;ih
j

rs;

+ Φ̈FiF
j + 2Φ̇F klR̄αβγδx

α
mx

β
i x

γ
kx

δ
rh
m
l g

rj

− Φ̇F klR̄αβγδxαmx
β
kx

γ
rx

δ
l h
m
i g

rj − Φ̇F klR̄αβγδxαmx
β
kx

γ
i x

δ
l h
mj

+ Φ̇F klR̄αβγδν
αxβkν

γxδl h
j
i − Φ̇F R̄αβγδν

αxβi ν
γxδmg

mj

+ (Φ− f̃)R̄αβγδν
αxβi ν

γxδmg
mj

+ Φ̇F klR̄αβγδ;ε{ναxβkx
γ
l x

δ
ix
ε
mg

mj + ναxβi x
γ
kx

δ
mx

ε
lg
mj}.

Let η be the vector field (6.18), or any vector field satisfying (6.17), and set

(6.23) ṽ = 〈η, ν〉,

then we have:

6.8. Lemma (Evolution of ṽ). The quantity ṽ satisfies the evolution equation

(6.24)

˙̃v − Φ̇F ij ṽij =Φ̇F ijhikh
k
j ṽ − [(Φ− f̃)− Φ̇F ]ηαβν

ανβ

− 2Φ̇F ijhkjx
α
i x

β
kηαβ − Φ̇F

ijηαβγx
β
i x

γ
j ν

α

− Φ̇F ijR̄αβγδναxβi x
γ
kx

δ
jηεx

ε
lg
kl

− f̃βxβi x
α
kηαg

ik.
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The derivation is elementary, see the proof of the corresponding lemma in
the Lorentzian case, Lemma 4.4 on page 12.

Notice that ṽ is supposed to satisfy (6.17), hence

(6.25) ϕ = − log(ṽ − θ)
is well defined and there holds

(6.26) ϕ̇− Φ̇F ijϕij = −{ ˙̃v − Φ̇F ij ṽij}
1

ṽ − θ
− Φ̇F ijϕiϕj .

Finally, let χ be the strictly convex function. Its evolution equation is

(6.27)
χ̇− Φ̇F ijχij = −[(Φ− f̃)− Φ̇F ]χαν

α − Φ̇F ijχαβxαi x
β
j

≤ −[(Φ− f̃)− Φ̇F ]χαν
α − c0Φ̇F ijgij

where c0 > 0 is independent of t.
We can now prove Theorem 6.4:

Proof of Theorem 6.4. Let ζ and w be respectively defined by

ζ = sup{hijηiηj : ‖η‖ = 1 },(6.28)

w = log ζ + ϕ+ λχ,(6.29)

where λ > 0 is supposed to be large. We claim that w is bounded, if λ is chosen
sufficiently large.

Let 0 < T < T ∗, and x0 = x0(t0), with 0 < t0 ≤ T , be a point in M(t0)
such that

(6.30) sup
M0

w < sup{ sup
M(t)

w : 0 < t ≤ T } = w(x0).

We then introduce a Riemannian normal coordinate system (ξi) at x0 ∈
M(t0) such that at x0 = x(t0, ξ0) we have

(6.31) gij = δij and ζ = hnn.

Let η̃ = (η̃i) be the contravariant vector field defined by

(6.32) η̃ = (0, . . . , 0, 1),

and set

(6.33) ζ̃ =
hij η̃

iη̃j

gij η̃iη̃j
.

ζ̃ is well defined in neighbourhood of (t0, ξ0).

Now, define w̃ by replacing ζ by ζ̃ in (6.29); then, w̃ assumes its maximum
at (t0, ξ0). Moreover, at (t0, ξ0) we have

(6.34)
˙̃
ζ = ḣnn,

and the spatial derivatives do also coincide; in short, at (t0, ξ0) ζ̃ satisfies the
same differential equation (6.22) as hnn. For the sake of greater clarity, let us
therefore treat hnn like a scalar and pretend that w is defined by

(6.35) w = log hnn + ϕ+ λχ.
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From the equations (6.22), (6.26), (6.27) and (6.6), we infer, by observing

the special form of Φ, i.e., Φ(F ) = F , Φ̇ = 1, f̃ = f and using the monotonicity
and homogeneity of F

(6.36) F = F (κi) = F ( κ1

κn
, . . . , 1)κn ≤ F (1, . . . , 1)κn

that in (t0, ξ0)

(6.37)

0 ≤ − 1
2 Φ̇F

ijhkih
k
k

θ

ṽ − θ
− fhnn + c(θ)Φ̇F ijgij + λc

− λc0Φ̇F ijgij − Φ̇F ijϕiϕj + Φ̇F ij(log hnn)i(log hnn)j

+
2

κn − κ1
Φ̇

n∑
i=1

(Fn − Fi)(h n
ni; )2(hnn)−1.

Similarly as in [17, p. 197], we distinguish two cases

Case 1. Suppose that

(6.38) |κ1| ≥ ε1κn,

where ε1 > 0 is small, notice that the principal curvatures are labelled according
to (6.5). Then, we infer from [17, Lemma 8.3]

(6.39) F ijhkih
k
j ≥ 1

nF
ijgijε

2
1κ

2
n,

and

(6.40) F ijgij ≥ F (1, . . . , 1),

for a proof see e.g., [20, Lemma 2.2.19].
Since Dw = 0,

(6.41) D log hnn = −Dϕ− λDχ,

we obtain

(6.42) Φ̇F ij(log hnn)i(log hnn)j = Φ̇F ijϕiϕj + 2λΦ̇F ijϕiχj + λ2Φ̇F ijχiχj ,

where

(6.43) |ϕi| ≤ c|κi|+ c,

as one easily checks.
Hence, we conclude that κn is a priori bounded in this case.

Case 2. Suppose that

(6.44) κ1 ≥ −ε1κn,
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then, the last term in inequality (6.37) is estimated from above by

(6.45)

2

1 + ε1
Φ̇

n∑
i=1

(Fn − Fi)(h n
ni; )2(hnn)−2 ≤

2

1 + 2ε1
Φ̇

n∑
i=1

(Fn − Fi)(h i
nn; )2(hnn)−2

+ c(ε1)Φ̇

n−1∑
i=1

(Fi − Fn)κ−2
n

where we used the Codazzi equation. The last sum can be easily balanced.
The terms in (6.37) containing the derivative of hnn can therefore be esti-

mated from above by

(6.46)

− 1− 2ε1
1 + 2ε1

Φ̇

n∑
i=1

Fi(h
i

nn; )2(hnn)−2

+
2

1 + 2ε1
Φ̇Fn

n∑
i=1

(h i
nn; )2(hnn)−2

≤ Φ̇Fn
n∑
i=1

(h i
nn; )2(hnn)−2

= Φ̇Fn‖Dϕ+ λDχ‖2

= Φ̇Fn{‖Dϕ‖2 + λ2‖Dχ‖2 + 2λ〈Dϕ,Dχ〉}.

Hence we finally deduce

(6.47)
0 ≤ −Φ̇ 1

2Fnκ
2
n

θ

ṽ − θ
+ cλ2Φ̇Fn(1 + κn)− fκn + λc

+ (c(θ)− λc0)Φ̇F ijgij

Thus, we obtain an a priori estimate

(6.48) κn ≤ const,

if λ is chosen large enough. Notice that ε1 is only subject to the requirement
0 < ε1 <

1
2 . �

6.9. Remark. Since the initial condition F ≥ f is preserved under the flow,
a simple application of the maximum principle, cf. [12, Lemma 5.2], we conclude
that the principal curvatures of the flow hypersurfaces stay in a compact subset
of Γ .

6.10. Remark. These a priori estimates are of course also valid, if M is a
stationary solution.
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6.11. Proof of Theorem 6.5. We consider the curvature flow (6.13) with
initial hypersurface M0 = M2. The flow will exist in a maximal time interval
[0, T ∗) and will stay in Ω̄. We shall also assume thatM2 is not already a solution
of the problem for otherwise the flow will be stationary from the beginning.

Furthermore, the flow hypersurfaces can be written as graphs

(6.49) M(t) = graphu(t, ·)

over S0, since the initial hypersurface has this property and all flow hypersur-
faces are supposed to be convex, i.e., uniform C1-estimates are guaranteed, cf.
[12].

The curvature estimates from Theorem 6.4 ensure that the curvature oper-
ator is uniformly elliptic, and in view of well-known regularity results we then
conclude that the flow exists for all time and converges in Cm+2,β(S0) for some
0 < β ≤ α to a limit hypersurface M , that will be a stationary solution, cf. [25,
Section 6] and also Theorem 5.5 on page 21.

7. Foliation of a spacetime by CMC hypersurfaces

Hypersurfaces of prescribed mean curvature especially those with constant
mean curvature play an important role in general relativity. In [10] the existence
of closed hypersurfaces of prescribed mean curvature in a globally hyperbolic
Lorentz manifold with a compact Cauchy hypersurface was proved provided
there were barriers. The proof consisted of two parts, the a priori estimates for
the gradient and the application of a fixed point theorem. That latter part of
the proof was rather complicated.

Ecker and Huisken, therefore, gave another existence proof using an evo-
lutionary approach, but they had to assume that the timelike convergence
condition is satisfied, and, even more important, that the prescribed mean cur-
vature satisfies a structural monotonicity condition, cf. [8]. These are serious
restrictions which had to be assumed because the authors relied on the gradient
estimate of Bartnik [3], who had proved another a priori estimate in the elliptic
case.

We later gave an existence proof, using a curvature flow method, that works
in an arbitrary globally hyperbolic spacetime without any assumptions on the
ambient curvature as long as there are barriers, cf. [15].

Let N be a globally hyperbolic Lorentzian manifold with a compact Cauchy
hypersurface S0 and a sufficiently smooth proper time function x0. Consider
the problem of finding a closed hypersurface of prescribed mean curvature H
in N , or more precisely, let Ω be a connected open subset of N , f ∈ C0,α(Ω̄),
then we look for a hypersurface M ⊂ Ω such that

(7.1) H |M = f(x) ∀x ∈M,

where H |M means that H is evaluated at the vector (κi(x)) the components of
which are the principal curvatures of M .
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We assume that ∂Ω consists of two compact, connected, spacelike hyper-
surfaces M1 and M2, where M1 is supposed to lie in the past of M2. The Mi

should act as barriers for (H, f), where M2 is an upper and M1 a lower barrier.
Notice that we do not assume f to be positive, hence the mean curvature

function is supposed to be defined in Rn and not in the usual cone Γ1, see [20,
Definition 1.2.10].

In [10, Section 6] we proved the following theorem:

7.1. Theorem. Let M1 be a lower and M2 be an upper barrier for (H, f),
f ∈ C0,α(Ω̄). Then, the problem

(7.2) H |M = f

has a solution M ⊂ Ω̄ of class C2,α that can be written as a graph over the
Cauchy hypersurface S0.

The crucial point in the proof is an a priori estimate in the C1-norm and
for this estimate only the boundedness of f is needed, i.e., even for merely
bounded f H2,p-solutions exist.

We want to give a proof of Theorem 7.1 that is based on the curvature flow
method, and to make this method work, we have to assume temporarily slightly
higher degrees of regularity for the barriers and right-hand side, i.e., we assume
the barriers to be of class C6,α and f to be of class C4,α. We can achieve these
assumptions by approximation without sacrificing the barrier conditions, cf.
[20, Remark 3.5.2].

To solve (7.2) we look at the evolution problem

(7.3)
ẋ = (H − f)ν,

x(0) = x0,

where x0 is an embedding of an initial hypersurface M0, for which we choose
M0 = M2, H is the mean curvature of the flow hypersurfaces M(t) with re-
spect to the past directed normal ν, and x(t) is an embedding of M(t), cf.
Theorem 5.7 on page 25.

The existence result in Theorem 7.1 can be used to prove that a spacetime N ,
satisfying the assumptions of the previous sections, can be foliated by constant
mean curvature hypersurfaces, abbreviated (CMC) hypersurfaces, or that at
least important parts of N , like a future or past end, can be foliated by CMC
hypersurfaces, and that in those parts, the mean curvature of the leaves of the
foliation can be used as new smooth time function.

Of course N has to satisfy some additional conditions in order that the
existence of such a foliation can be proved.

If the timelike convergence condition holds in in N , i.e., if

(7.4) R̄αβν
ανβ ≥ 0 ∀ 〈ν, ν〉 = −1,

and if N has future and past mean curvature barriers, see Definition 5.3 on
page 18 for details, then we proved in [10] that N can be foliated by CMC
hypersurfaces. The mean curvature of the leaves can then be used as a smooth
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time function at least in those parts, where the mean curvature of the slices
does not vanish, cf. [18].

We later generalized this result by replacing the condition (7.4) by the weaker
assumptions

(7.5) R̄αβν
ανβ ≥ −Λ ∀ 〈ν, ν〉 = −1,

where Λ ≥ 0 is a constant, and showed that the former results were still valid
in future and past ends of N , cf. [22].

We shall first present the foliation results for a spacetime satisfying the pre-
ceding weak condition on the Ricci tensor. Setting Λ = 0, we then immediately
obtain the corresponding results for spacetimes satisfying the timelike conver-
gence condition in those parts of N that are foliated by slices with non-zero
CMC hypersurfaces. Only the possible presence of maximal hypersurfaces will
require some additional arguments.

Thus let N be a (n + 1)-dimensional spacetime with a compact Cauchy
hypersurface, so that N is topologically a product, N = I × S0, where S0 is a
compact Riemannian manifold and I = (a, b) an interval.

7.2. Definition. A future end of N , in symbols N+, is defined by

(7.6) N+ = (x0)−1[a0, b)

and similarly a past end by

(7.7) N− = (x0)−1(a, b0],

where a0 and b0 belong to I.

To apply the existence result in Theorem 7.1 on page 37, we need barriers,
or more precisely, a future (past) mean curvature barrier, cf. Definition 5.3 on
page 18.

Our first results are described in the following two theorems.

7.3. Theorem. Suppose that in a future end N+ of N the Ricci tensor
satisfies the estimate (7.5), and suppose that a future mean curvature barrier

exists, then a slightly smaller future end Ñ+ can be foliated by CMC spacelike
hypersurfaces, and there exists a smooth time function x0 such that the slices

(7.8) Mτ = {x0 = τ}, τ0 < τ <∞,

have mean curvature τ for some τ0 >
√
nΛ. The precise value of τ0 depends

on the mean curvature of a lower barrier.

7.4. Theorem. Suppose that a future end N+ = (x0)−1[a0, b) of N can
be covered by a time function x0 such that the mean curvature of the slices
Mt = {x0 = t} is non-negative and the volume of Mt decays to zero

(7.9) lim
t→b
|Mt| = 0,
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then the volume |Mk| of any sequence of spacelike hypersurfaces Mk that ap-
proach b, i.e.,

(7.10) lim
k

inf
Mk

x0 = b,

decays to zero. Thus, in case the additional conditions of Theorem 7.3 are also
satisfied, the volume of the CMC hypersurfaces Mτ converges to zero

(7.11) lim
τ→∞

|Mτ | = 0.

N is also future timelike incomplete, if there is a compact spacelike hyper-
surface M with mean curvature H satisfying

(7.12) H ≥ H0 >
√
nΛ,

due to a result in [1].

7.5. Foliation of future ends. Let us recall the results in Example 3.7 and
Note 3.8 on page 8, which, in the present situation, can be phrased like this: In
a given Gaussian coordinate system (xα) the coordinate slices M(t) = {x0 = t}
can be looked at as a solution of the evolution problem

(7.13) ẋ = −eψν,

where ν = (να) is the past directed normal vector. The embedding x = x(t, ξ)
is then given by x = (t, xi), where (xi) are local coordinates for S0.

Let ḡij , h̄ij and H̄ be the induced metric, second fundamental and mean
curvature of the coordinate slices, then the evolution equations

(7.14) ˙̄gij = −2eψh̄ij

and

(7.15) ˙̄H = −∆eψ + (|Ā|2 + R̄αβν
ανβ)eψ

are valid.
Now, let M0 be a smooth connected spacelike hypersurface and consider in a

tubular neighbourhood U of M0 hypersurfaces M that can be written as graphs
over M0, M = graphu, in the corresponding normal Gaussian coordinate sys-
tem. Then the mean curvature of M can be expressed as

(7.16) H = −∆u+ H̄ + v−2uiuj h̄ij ,

cf. equation (5.83) on page 28, and hence, choosing u = εϕ, ϕ ∈ C2(M0), we
deduce

(7.17)

d

dε
H |ε=0

= −∆ϕ+ ˙̄Hϕ

= −∆ϕ+ (|Ā|2 + R̄αβν
ανβ)ϕ.

Next we shall prove that CMC hypersurfaces are monotonically ordered, if
the mean curvatures are sufficiently large.
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7.6. Lemma. Let Mi = graphui, i = 1, 2, be two spacelike hypersurfaces
such that the resp. mean curvatures Hi satisfy

(7.18) H1 < H2

where H2 is constant,4 H2 = τ2, and

(7.19)
√
nΛ < τ2,

then there holds

(7.20) u1 < u2.

Proof. We first observe that the weaker conclusion

(7.21) u1 ≤ u2

is as good as the strict inequality in (7.20), in view of the maximum principle.
Hence, suppose that (7.21) is not valid, so that

(7.22) E(u1) = {x ∈ S0 : u2(x) < u1(x) } 6= ∅.

Then there exist points pi ∈Mi such that

(7.23) 0 < d0 = d(M2,M1) = d(p2, p1) = sup{ d(p, q) : (p, q) ∈M2 ×M1 },

where d is the Lorentzian distance function. Let ϕ be a maximal geodesic from
M2 to M1 realizing this distance with endpoints p2 and p1, and parametrized
by arc length.

Denote by d̄ the Lorentzian distance function to M2, i.e., for p ∈ I+(M2)

(7.24) d̄(p) = sup
q∈M2

d(q, p).

Since ϕ is maximal, Γ = {ϕ(t) : 0 ≤ t < d0 } contains no focal points of
M2, cf. [32, Theorem 34, p. 285], hence there exists an open neighbourhood
V = V(Γ ) such that d̄ is smooth in V, cf. [20, Theorem 1.9.15]. V is part of
the largest tubular neighbourhood of M2, and hence covered by an associated
normal Gaussian coordinate system (xα) satisfying x0 = d̄ in {x0 > 0}, see [20,
Theorem 1.9.22].

Now, M2 is the level set {d̄ = 0}, and the level sets

(7.25) M(t) = { p ∈ V : d̄(p) = t }

are smooth hypersurfaces.
Thus, the mean curvature H̄(t) of M(t) satisfies the equation

(7.26) ˙̄H = |Ā|2 + R̄αβν
ανβ ,

cf. (7.15), and therefore we have

(7.27) ˙̄H ≥ 1
n |H̄|

2 − Λ > 0,

in view of (7.19).

4It would suffice to require H1 < infM2 H2.
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Next, consider a tubular neighbourhood U of M1 with corresponding normal
Gaussian coordinates (xα). The level sets

(7.28) M̃(s) = {x0 = s}, −ε < s < 0,

lie in the past of M1 = M̃(0) and are smooth for small ε.

Since the geodesic ϕ is normal to M1, it is also normal to M̃(s) and the

length of the geodesic segment of ϕ from M̃(s) to M1 is exactly −s, i.e., equal

to the distance from M̃(s) to M1, hence we deduce

(7.29) d(M2, M̃(s)) = d0 + s,

i.e., {ϕ(t) : 0 ≤ t ≤ d0 + s } is also a maximal geodesic from M2 to M̃(s), and

we conclude further that, for fixed s, the hypersurface M̃(s)∩V is contained in
the past of M(d0 + s) and touches M(d0 + s) in ps = ϕ(d0 + s). The maximum
principle then implies

(7.30) H |M̃(s)
(ps) ≥ H |M(d0+s)

(ps) > τ2,

in view of (7.27).

On the other hand, the mean curvature of M̃(s) converges to the mean
curvature of M1, if s tends to zero, hence we conclude

(7.31) H1(ϕ(d0)) ≥ τ2,

contradicting (7.18). �

7.7. Corollary. The CMC hypersurfaces with mean curvature

(7.32) τ >
√
nΛ

are uniquely determined.

Proof. Let Mi = graphui, i = 1, 2, be two hypersurfaces with mean curvature
τ and suppose, e.g., that

(7.33) {x ∈ S0 : u1(x) < u2(x) } 6= ∅.

Consider a tubular neighbourhood of M1 with a corresponding future oriented
normal Gaussian coordinate system (xα). Then the evolution of the mean
curvature of the coordinate slices satisfies

(7.34) ˙̄H = |Ā|2 + R̄αβν
ανβ ≥ 1

n
|H̄|2 − Λ > 0

in a neighbourhood of M1, i.e., the coordinate slices M(t) = {x0 = t}, with
t > 0, have all mean curvature H̄(t) > τ . Using now M1 and M(t), t > 0, as
barriers, we infer from Theorem 7.1 on page 37 that for any τ ′ ∈ R, τ < τ ′ <
H̄(t), there exists a spacelike hypersurface Mτ ′ with mean curvature τ ′, such
that Mτ ′ can be expressed as a graph over M1, Mτ ′ = graphu, where

(7.35) 0 < u < t.
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Writing Mτ ′ as graph over S0 in the original coordinate system without
changing the notation for u, we obtain

(7.36) u1 < u,

and, by choosing t small enough, we may also conclude that

(7.37) E(u) = {x ∈ S0 : u(x) < u2(x) } 6= ∅,

which is impossible, in view of the preceding result. �

7.8. Lemma. Under the assumptions of Theorem 7.3, let Mτ0 = graphuτ0
be a CMC hypersurface with mean curvature τ0 >

√
nΛ, then the future of Mτ0

can be foliated by CMC hypersurfaces

(7.38) I+(Mτ0) =
⋃

τ0<τ<∞
Mτ .

The Mτ can be written as graphs over S0

(7.39) Mτ = graphu(τ, ·),

such that u is strictly monotone increasing with respect to τ , and continuous
in [τ0,∞)× S0.

Proof. The monotonicity and continuity of u follows from Lemma 7.6 and
Corollary 7.7, in view of the a priori estimates.

Thus, it remains to verify the relation (7.38). Let p = (t, yi) ∈ I+(Mτ0),
then we have to show p ∈Mτ for some τ > τ0.

From the existence result in Theorem 7.1 we deduce that there exists a
family of CMC hypersurfaces Mτ

(7.40) {Mτ : τ0 ≤ τ <∞},

since there is a future mean curvature barrier.
Define u(τ, ·) by

(7.41) Mτ = graphu(τ, ·),

then we have

(7.42) u(τ0, y) < t < u(τ∗, y)

for some large τ∗, because of the mean curvature barrier condition, which,
together with Lemma 7.6, implies that the CMC hypersurfaces run into the
future singularity, if τ goes to infinity.

In view of the continuity of u(·, y) we conclude that there exists τ1 such that
τ0 < τ1 < τ∗ and

(7.43) u(τ1, y) = t,

hence p ∈Mτ1 . �
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7.9. Remark. The continuity and monotonicity of u holds in any coordinate
system (xα), even in those that do not cover the future completely like the
normal Gaussian coordinates associated with a spacelike hypersurface, which
are defined in a tubular neighbourhood.

The proof of Theorem 7.3 on page 38 is now almost finished. The remaining
arguments are given in several steps.

We have to show that the mean curvature parameter τ can be used as a
time function in {τ0 < τ <∞}, i.e., τ should be smooth with a non-vanishing
gradient. Both properties are local properties.

7.10. First step

Fix an arbitrary τ ′ ∈ (τ0,∞), and consider a tubular neighbourhood U of
M ′ = Mτ ′ . The Mτ ⊂ U can then be written as graphs over M ′, Mτ =
graphu(τ, ·). For small ε > 0 we have

(7.44) Mτ ⊂ U ∀ τ ∈ (τ ′ − ε, τ ′ + ε)

and with the help of the implicit function theorem we shall show that u is
smooth. Indeed, define the operator G

(7.45) G(τ, ϕ) = H(ϕ)− τ,

where H(ϕ) is an abbreviation for the mean curvature of graphϕ|M′ . Then G
is smooth and from (7.17) we deduce that D2G(τ ′, 0)ϕ equals

(7.46) −∆ϕ+ (‖A‖2 + R̄αβν
ανβ)ϕ,

where the Laplacian, the second fundamental form and the normal correspond
to M ′. Hence D2G(τ ′, 0) is an isomorphism and the implicit function theorem
implies that u is smooth.

7.11. Second step

Still in the tubular neighbourhood of M ′, define the coordinate transforma-
tion

(7.47) Φ(τ, xi) = (u(τ, xi), xi);

note that x0 = u(τ, xi). Then we have

(7.48) detDΦ =
∂u

∂τ
= u̇.

u̇ is non-negative; if it were strictly positive, then Φ would be a diffeomor-
phism, and hence τ would be smooth with non-vanishing gradient. To prove
u̇ > 0, observe that the CMC hypersurfaces in U satisfy an equation

(7.49) H(u) = τ,
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where the left hand-side can be expressed as in (7.16). Differentiating both sides
with respect to τ and evaluating for τ = τ ′, i.e., on M ′, where u(τ ′, ·) = 0, we
get

(7.50) −∆u̇+ (|A|2 + R̄αβν
ανβ)u̇ = 1.

In a point, where u̇ attains its minimum, the maximum principle implies

(7.51) (|A|2 + R̄αβν
ανβ)u̇ ≥ 1,

hence u̇ 6= 0 and u̇ is therefore strictly positive.

7.12. Remark. The results in Theorem 7.3 on page 38 are also valid in a past
end, if N has a past mean curvature barrier. Moreover, the assumption in the
future (past) mean barrier condition that the mean curvature of the barriers
converge to ∞ resp. −∞ can be easily replaced by the assumption that the
limits are finite numbers as long as the absolute values of these numbers are
strictly larger than

√
nΛ.

If Λ = 0, the mean curvature of future resp. past barriers are also allowed
to converge to 0.

7.13. Proof of Theorem 7.4. Let x0 be time function satisfying the assump-
tions of Theorem 7.4 on page 38, i.e., N+ = {a0 < x0 < b}, the mean curvature
of the slices M(t) = {x0 = t} is non-negative, and

(7.52) lim
t→b
|M(t)| = 0,

and let Mk be a sequence of connected, spacelike hypersurfaces such that

(7.53) lim inf
Mk

x0 = b.

Let us write Mk = graphuk as graphs over S0. Then

(7.54) gij = e2ψ(uiuj + σij(u, x))

is the induced metric, where we dropped the index k for better readability, and
the volume element of Mk has the form

(7.55) dµ = v
√

det(ḡij(u, x)) dx,

where

(7.56) v2 = 1− σijuiuj < 1,

and (ḡij(t, ·)) is the metric of the slices M(t).
From (7.14) we deduce

(7.57)
d

dt

√
det(ḡij(t, ·)) = −eψH̄

√
det(ḡij) ≤ 0.

Now, let a0 < t < b be fixed, then for a.e. k we have

(7.58) t < uk



CURVATURE FLOWS AND CMC HYPERSURFACES 45

and hence

(7.59)

|Mk| =
∫
S0
v
√

det(ḡij(uk, x)) dx

≤
∫
S0

√
det(ḡij(t, x) dx = |M(t)|,

in view of (7.56), (7.57) and (7.58), and we conclude

(7.60) lim sup|Mk| ≤ |M(t)| ∀ a0 < t < b,

and thus

(7.61) lim|Mk| = 0.

7.14. The case Λ = 0. Suppose now that N satisfies the timelike conver-
gence condition and assume that there exist closed, spacelike hypersurfaces
with strictly positive and strictly negative mean curvature. Then there exists
a real number ε0 > 0 and a family of Mε0 of closed spacelike graphs Mτ of
mean curvature τ for any τ ∈ [−ε0, ε0], in view of the preceding results.

The hypersurfaces can be written as graphs over S0, Mτ = graphu(τ, ·), and

(7.62) τ1 < τ2 6= 0 =⇒ u(τ1) < u(τ2),

in view of Lemma 7.6 on page 40.
In view of the a priori estimates in [10] or [15], cf. also Theorem 7.1 on

page 37, the preceding monotonicity relation yields that the limit functions

(7.63) u1 = lim
τ↑0

u(τ) ∧ u2 = lim
τ↓0

u(τ)

are smooth functions the graphs of which are spacelike maximal hypersurfaces.
Moreover, any other maximal hypersurface M = graphu must satisfy

(7.64) u1 ≤ u ≤ u2.

The second inequality of this relation follows immediately from Lemma 7.6
on page 40 applied to u and any u(τ) with τ > 0, which in turn also proves the
first inequality by switching the light cones.

7.15. Theorem. Assume that u1 6= u2, then both hypersurfaces are totally
geodesic and the metric in the region C0 of N determined by

(7.65) C0 = { (x0, x) : u1 ≤ x0 ≤ u2 }
is stationary, i.e., the tubular neighbourhood U of M1 = graphu1 covers C0 and
in the corresponding normal Gaussian coordinate system (xα) the metric has
the form

(7.66) ds̄2 = −(dx0)2 + σij(x)dxidxj ,

where σij is the induced metric of M1 and is hence independent of x0. The
hypersurface M2 is a level hypersurfaces in the new coordinate system

(7.67) M2 = {x0 = t2},
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and the slices

(7.68) Mt = {x0 = t} 0 ≤ t ≤ t2,

which foliate C0, are all totally geodesic.
Thus, a foliation of N is given by

(7.69) C0
.∪ (Mτ )τ 6=0,

where the family (Mτ )τ 6=0 is the foliation of N\C0 by CMC hypersurfaces
with non-vanishing mean curvature, the existence of which has been proved
in Lemma 7.8.5

Proof. We first note that, in view of the maximum principle, there holds either
u1 < u2 or u1 = u2, hence u1 < u2 and their Lorentzian distance d0 is positive.

Consider now a tubular neighbourhood Uε of M1 for small ε, where ε refers to
the upper bound of the signed Lorentzian distance from M1, cf. [20, Theorem
1.3.13]. We are actually more interested in the future part of Uε, which is
denoted by U+

ε and consists of those points in Uε which lie in the future of M1.
Thus, we stipulate that in this proof Uε should be defined as

(7.70) Uε = U−ε1 ∪M1 ∪ U+
ε ,

where ε1 > 0 is fixed and small, and ε is a variable parameter, satisfying

(7.71) ε1 ≤ ε < d0

which can be chosen as large as d0, as we shall show.
Let (xα) be the normal Gaussian coordinate system associated with the

tubular neighbourhood of M1, i.e., x0 denotes the signed Lorentzian distance
from M1 and

(7.72) U+
ε = { p ∈ Uε : 0 < x0(p) < ε },

and the metric in Uε can be expressed as

(7.73) ds̄2 = −(dx0)2 + σij(x
0, x)dxidxj .

Denote the coordinate slices {x0 = t}, 0 ≤ t < ε, by M(t), then these slices
can also be written as graphs over the Cauchy hypersurface S0 in the original
coordinate system

(7.74) M(t) = graphu(t)|S0 .

Since M(0) = M1 there holds u(t) < u2, if 0 ≤ t is small, and we shall
consider only those ε such that

(7.75) u(t) < u2 ∀ 0 ≤ t < ε.

We claim that all slices M(t) contained in Uε with t ≥ 0 are totally geodesic
and that the metric σij in (7.73) is independent of x0.

5Formally, a foliation has only been proved in the future end 0 < τ0 ≤ τ <∞, but it can
obviously be extended to cover 0 < τ <∞, and similarly for the past end.
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To prove this claim, let ḡij , h̄ij , H̄ and ν be the corresponding geometric
quantities of M(t). The mean curvature satisfies the evolution equation

(7.76) ˙̄H = |Ā|2 + R̄αβν
ανβ ,

cf. (7.15) on page 39 and observe that ψ = 0.
Hence the mean curvature is non-decreasing, i.e., H̄(t) ≥ 0. If one of the

M(t), say M(t0), would be not totally geodesic, then the linearization of the
mean curvature operator, evaluate atM(t0) would be an isomorphism, cf. (7.17)
on page 39, and the inverse function theorem would yield the existence of a
hypersurface M = graphu|S0 in a small neighbourhood of M(t0) such that

(7.77) H |M > H̄(t0) ≥ 0 ∧ u < u2,

contradicting the results of Lemma 7.6 on page 40; notice that the mean cur-
vature H2 in that lemma need not be constant, it suffices, if the inequality

(7.78) H1 < inf
M2

H2

is valid, since this is all that is needed for the arguments in the proof.
Thus all hypersurfaces M(t) are totally geodesic and hence the metric σij

independent of x0, because of the evolution equation (7.14) on page 39. In view
of the a priori estimates the slices M(t) are uniformly smooth and the tubular
neighbourhood Uε exists for all ε until the inequality (7.75) is violated, which
will only be the case, if ε > d0, for let ε ≤ d0 and suppose that 0 < t0 < ε is
the first t such that M(t0) touches M2. Since both hypersurfaces are maximal,
the maximum principle would yield M(t0) = M2, a contradiction, since t0 < d0

and t0 is also the Lorentzian distance of M(t0) to M1. �

7.16. Remark. The mean curvature of the CMC leaves Mτ , τ 6= 0, can be
used as smooth time function. If N contains just one maximal hypersurface
M0, then τ is smooth in all of N unless M0 is totally geodesic, as can be easily
deduced from the arguments in Note 7.10 on page 43, where the differential
operator in (7.46) has to be injective, which will be the case, if M0 is not totally
geodesic.

8. The inverse mean curvature flow in Lorentzian spaces

Let us now consider the inverse mean curvature flow (IMCF)

(8.1) ẋ = −H−1ν

with initial hypersurface M0 in a globally hyperbolic spacetime N with compact
Cauchy hypersurface S0.
N is supposed to satisfy the timelike convergence condition

(8.2) R̄αβν
ανβ ≥ 0 ∀ 〈ν, ν〉 = −1.

Spacetimes with compact Cauchy hypersurface that satisfy the timelike con-
vergence condition are also called cosmological spacetimes, a terminology due
to Bartnik.
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In such spacetimes the inverse mean curvature flow will be smooth as long
as it stays in a compact set, and, if H |M0

> 0 and if the flow exists for all time,
it will necessarily run into the future singularity, since the mean curvature of
the flow hypersurfaces will become unbounded and the flow will run into the
future of M0. Hence the claim follows from Remark 5.4 on page 18.

However, it might be that the flow will run into the singularity in finite
time. To exclude this behaviour we introduced in [26] the so-called strong
volume decay condition, cf. Definition 8.2. A strong volume decay condition is
both necessary and sufficient in order that the IMCF exists for all time.

8.1. Theorem. Let N be a cosmological spacetime with compact Cauchy hy-
persurface S0 and with a future mean curvature barrier. Let M0 be a closed,
connected, spacelike hypersurface with positive mean curvature and assume fur-
thermore that N satisfies a future volume decay condition. Then the IMCF
(8.1) with initial hypersurface M0 exists for all time and provides a foliation of
the future D+(M0) of M0.

The evolution parameter t can be chosen as a new time function. The flow
hypersurfaces M(t) are the slices {t = const} and their volume satisfies

(8.3) |M(t)| = |M0|e−t.

Defining a new time function τ by choosing

(8.4) τ = 1− e− 1
n t

we obtain 0 ≤ τ < 1,

(8.5) |M(τ)| = |M0|(1− τ)n,

and the future singularity corresponds to τ = 1.
Moreover, the length L(γ) of any future directed curve γ starting from M(τ)

is bounded from above by

(8.6) L(γ) ≤ c(1− τ),

where c = c(n,M0). Thus, the expression 1 − τ can be looked at as the radius
of the slices {τ = const} as well as a measure of the remaining life span of the
spacetime.

Next we shall define the strong volume decay condition.

8.2. Definition. Suppose there exists a time function x0 such that the future
end of N is determined by {τ0 ≤ x0 < b} and the coordinate slices Mτ = {x0 =
τ} have positive mean curvature with respect to the past directed normal for
τ0 ≤ τ < b. In addition the volume |Mτ | should satisfy

(8.7) lim
τ→b
|Mτ | = 0.

A decay like that is normally associated with a future singularity and we
simply call it volume decay. If (gij) is the induced metric of Mτ and g =
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det(gij), then we have

(8.8) log g(τ0, x)− log g(τ, x) =

∫ τ

τ0

2eψH̄(s, x) ∀x ∈ S0,

where H̄(τ, x) is the mean curvature of Mτ in (τ, x). This relation can be easily
derived from the relation (3.8) on page 6 and Remark 3.6 on page 7. A detailed
proof is given in [16].

In view of (8.7) the left-hand side of this equation tends to infinity if τ
approaches b for a.e. x ∈ S0, i.e.,

(8.9) lim
τ→b

∫ τ

τ0

eψH̄(s, x) =∞ for a.e. x ∈ S0.

Assume now, there exists a continuous, positive function ϕ = ϕ(τ) such that

(8.10) eψH̄(τ, x) ≥ ϕ(τ) ∀ (τ, x) ∈ (τ0, b)× S0,

where

(8.11)

∫ b

τ0

ϕ(τ) =∞,

then we say that the future of N satisfies a strong volume decay condition.

8.3. Remark. (i) By approximation we may assume that the function ϕ
above is smooth.

(ii) A similar definition holds for the past of N by simply reversing the time
direction. Notice that in this case the mean curvature of the coordinate slices
has to be negative.

8.4. Lemma. Suppose that the future of N satisfies a strong volume decay
condition, then there exist a time function x̃0 = x̃0(x0), where x0 is the time
function in the strong volume decay condition, such that the mean curvature H̄
of the slices x̃0 = const satisfies the estimate

(8.12) eψ̃H̄ ≥ 1.

The factor eψ̃ is now the conformal factor in the representation

(8.13) ds̄2 = e2ψ̃(−(dx̃0)2 + σijdx
idxj).

The range of x̃0 is equal to the interval [0,∞), i.e., the singularity corre-
sponds to x̃0 =∞.

A proof is given in [26, Lemma 1.4].

8.5. Remark. Theorem 8.1 can be generalized to spacetimes satisfying

(8.14) R̄αβν
ανβ ≥ −Λ ∀ 〈ν, ν〉 = −1

with a constant Λ ≥ 0, if the mean curvature of the initial hypersurface M0 is
sufficiently large

(8.15) H |M0
>
√
nΛ,
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cf. [29]. In that thesis it is also shown that the future mean curvature barrier
assumption can be dropped, i.e., the strong volume decay condition is sufficient
to prove that the IMCF exists for all time and provides a foliation of the future
of M0. Hence, the strong volume decay condition already implies the existence
of a future mean curvature barrier, since the leaves of the IMCF define such a
barrier.
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