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CLOSED WEINGARTEN HYPERSURFACES
IN RIEMANNIAN MANIFOLDS

CLAUS GERHARDT

0. Introduction

In a complete (n+ 1)-dimensional manifold N we want to find closed
hypersurfaces M of prescribed curvature, so-called Weingarten hyper-
surfaces. To be more precise, let £ be a connected open subset of N,
f € C*%(Q), F a smooth, symmetric function defined in the positive
cone I'y C R". Then we look for a convex hypersurface M C Q such

that
(0.1) Fly = f(z) Vz e M,

where F'|j; means that F is evaluated at the vector (k;(z)) the compo-
nents of which are the principal curvatures of M.

This is in general a problem for a fully nonlinear partial differential
equation, which is elliptic if we assume F' to satisfy

oF

(0.2) o

>0 in T,.

Classical examples of curvature functions F' are the elementary sym-
metric polynomials H; of order k£ defined by

(0.3) Hi= Y kiyoki, 1<k<n

11<... <1t

H, is the mean curvature H, H, is the scalar curvature - for hypersur-
faces in Euclidean space -, and H,, is the Gaussian curvature K.

For technical reasons it is convenient to consider, instead of Hy, the
homogeneous polynomials of degree 1

1/k
(04) O = Hk/ )
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CLOSED WEINGARTEN HYPERSURFACES 613

which are not only monotone increasing but also concave. Their inverses
O}, defined by

1
0.5 Or(k;) = ——=
( ) k( ) o ( Hi—l) )
share these properties; a proof of this non-trivial result can be found in
[11]. &) is the so-called harmonic curvature G, and, evidently, we have
Op = Op.

The general curvature functions which we have in mind will be de-
fined in Section 1. We shall call those functions to be of class (K);
special functions belonging to that class are the n-th root of the Gaus-
sian curvature, the harmonic curvature, the inverse of the length of the
second fundamental form, i.e.,

(0.6) Flr) = ———5,

(£+7)

and, more generally, the inverses of the complete symmetric functions
Yk, 1 < k < n, which are homogeneous of degree 1 and defined by

(0.7) () = (X xe)

|la|=k

1/k

Our main assumption in the existence proof is a barrier assumption.

Definition 0.1. Let M;, M, be strictly convex, closed hypersurfaces
in N, homeomorphic to S™ and of class C** which bound a connected
open subset €2, such that the mean curvature vector of M; points outside
of 2 and the mean curvature vector of M, points inside of . M, M,
are barriers for (F, f) if

and
(0.9) Flu, > f.

Remark 0.2. In view of the Harnack inequality we deduce from the
properties of the barriers that they do not touch, unless both coincide
and are solutions of our problem. In this case 2 would be empty.

Then we can prove

Theorem 0.3. Let the sectional curvature of N be non-positive, let
F be of class (K), 0 < f € C*>*(Q) and assume that M, M, are barriers
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for (F, f). Then the problem
(0.10) Fly=f

has a strictly convez solution M C Q of class C.

In a separate paper we shall consider closed Weingarten hypersurfaces
in space forms for a class of curvature functions that includes the oys,
cf.[8].

The existence of closed Weingarten hypersurfaces in R™*! has been
studied extensively by various authors: the case F = H by Bakelman
and Kantor [1], Treibergs and Wei [13], the case F = K by Oliker [12],
Delanoé [4], and for general curvature functions by Caffarelli, Nirenberg
and Spruck [3]. In all the papers - except [4] - the authors imposed a sign
condition for the radial derivative of the right-hand side to prove the
existence. This condition is necessary for two reasons, first to derive
a priori estimates for the C'-norm and secondly to apply the inverse
function theorem, i.e., the kernel of the linearized operator has to be
trivial. Without this condition the kernel is no longer trivial, and the
inverse function theorem or Leray-Schauder type arguments fail.

We therefore use the evolution method to approximate stationary
solutions. But there is still the difficulty of obtaining the C'-estimates:
either one has to impose some artificial condition on the right-hand
side, i.e., the condition depends on the choice of a special coordinate
system, or one has to stay in the class of convex hypersurfaces where
the C'-estimates are a trivial consequence of the convexity, but then
the preservation of the convexity has to be proved and this can only be
achieved for special curvature functions such as the Gaussian curvature,
or by assuming f to be concave; for details see [8].

This paper is organized as follows: In Section 1 we define the curva-
ture functions of class (K') and give sufficient conditions for a curvature
function to belong to that class; cf. Lemma 1.4.

In Section 2 we formulate the evolution problem and prove the short-
time existence.

Section 3 contains the derivation of the evolution equation for some
geometric quantities such as the metric and the second fundamental
form.

In Section 4 we demonstrate that the geometric setting can be lifted
isometrically to the universal cover, so that without loss of generality
we may assume that N is simply connected.

The flow staying in Q in Section 5 is proved and a priori estimates in
the C'-norm are derived in Section 6.
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In Section 7 we obtain the parabolic equations satisfied by h;; resp.
v =+/1+ |Dul?

In Section 8 the C%-estimates are derived, while in Section 9 the
convergence to a smooth stationary solution is proved.

1. Curvature functions

Let F € C*>*(I'y) N C°(T';) be a symmetric function satisfying the
condition
_OF
- aK,,-
Then F can also be viewed as a function defined on the space of sym-
metric, positive definite matrices S;, or to be more precise, at least in

this section, let (h;;) € Sy with eigenvalues «;,1 < i < n then define F
on §; by

(1.1) F; > 0.

(1.2) F(hi;) = F(x:).

It is well known, see e.g. [2], that F" is as smooth as F' and that
F = 2L satisfies

o oF
ije g - 2 |, 2
(13) Fiigg; = ol6f,

where we use the summation convention throughout this paper unless
otherwise stated.

Moreover, if F' is concave or convex, then F' is also concave or convex,
i.e.,

(1.4) Fioklp mg <0 or Fo*ningy >0
for any symmetric (7;;), where
. o? .
1.5 Fik — _ — [,
( ) ahij(?hk,

An even sharper estimate is valid, namely,
Lemma 1.1. Let F, F be defined as above. Then

. 0*F F; — F;
(1.6) Fioky g = W"iiﬂjj + Z . 7(%‘)2,

for any (n;;) € S, where S is the space of all symmetric matrices and

F; = g—::. The second term on the right-hand side of (1.6) is non-positive
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if F is concave and non-negative if it is convez, and has to be interpreted
as a limit if K; = K;.
In [6, Lemma 2] it is shown that

oF OF
(am - 5;;)(*% — ;) <0

if F' is concave and that the reverse inequality holds in case F' it is
convex. Hence the second term on the right-hand side of (1.6) is non-
positive or non-negative.

The proof of (1.6) is very elementary but rather lengthy, so we shall
only indicate the main steps.

We also want to mention that F' need not be defined on the positive
cone, and that any open, convex cone will do.

Proof of Lemma 1.1. First, let us remark that by continuity we may
assume the eigenvalues of the matrix (h;;), where F is evaluated, to be
simple; if not, we can approximate (h;;) by matrices with this property.

(1.7)

Let x; be the eigenvalues of (h;;), and = (ifk) the corresponding

eigenvectors. Let "¢, °¢ be two eigenvectors. Then we define the matrix
[r, s] by

1 T 8 T ]
(1.8) [r,sli; = FU&T6G+7676)
We want to evaluate terms such as
(1.9) Fij’kl[rlarz]ij[r& T4l

For simplicity we restrict the ranges of ry,...,74 to {1,...,4}, i.e., [1,1]
represents a generic pair [ry,71], and [1,2] a generic pair [r;,r;] with

T 75 Ta.
We shall consider several cases.
1. Case. Let us first consider a perturbation

(110) h,’j - hij + 6[1,2]1-]'.

The new non-trivial eigenvalues are

. [(x1—K2)? 2
B o= n1+2N2 /s - 2) 64,
~ _ K1tk K1—K2)? g2
Fo _112'_2_1/5__4_L+T.

Let R be the square root on the right-hand side. Then

OF 1e OF1¢
0ki R4 Ok, R4

(1.11)

(1.12) Filg 2, = Fiilry,ry);; =
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and
Ny 1F, - F F, - F.
FiaR19),501,2 =1 291 -2 2
[ ]J[ ’ ]kl|e=0 2 Ky — Ky Ky — Ky ([112]12)
F,— F,
(1.13) =) —([1,2])*
iz T R
2. Case. Choose
(1.14) hij = hyj + €[1,2]i; + 6[3, 4],
and conclude from (1.12),
(1.15) Fiik1,9]:13, 4] = 0.
3. Case. Choose
(1.16) hij = hi; + €[1,2]i; + 6[3, 35,
and use the same arguments to obtain
(1.17) FaR[19],:03,3]u = 0.
4. Case. Choose
(1.18) i"ij = h;; + €[1,1];5,
and deduce
0’F 0*’F

) Fik1 11,001, 1), = - y
(1 19) [1’ ]J[ ]kl Ok, 0K, ah‘,jal-ij[l’l]”[l,:l]”

5. Case. Choose

(1.20) hij = hij +€[1,1];; + 6[2, 2]y,

and deduce

0*F 0*F
- [1’ l]ii [2, 2]]'9' :

vij,kl . = =
(1.21) F [17 1]1] [2’ 2]“ Ok, 0Ko (9/‘.',,'8/{‘]

6. Case. Choose

(1.22) hij = hij + €[1,1];; + 6[1, 2]y,
and deduce from (1.12),
(123) ﬁ'ij’kl[]-) 1]1] [la 2]kl =0.

7. Case.  Choose

(1.24) hi; = hij + €[1,2];; + 6[1, 3.
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The three non-trivial eigenvalues are the solutions of the cubic equation

2 2

Z(n — Ka) + %(n —K3) — (k — K1)(Kk — K2)(k — K3) = 0.

They depend smoothly on the parameters €,8, and we deduce from
(1.25),

(1.25)

Ok Ok Ok _

9e 86  0eds

at € = 6 = 0, where k represents any of the three eigenvalues. Hence,
we obtain

(1.26)

(1.27) F’ij’kl[l, 2];;(1,3]u = 0.
Now, let (7;;) € S, then
(1.28) (m:5) Znn [, 8] = 7ys[r, 5]

and we conclude from the previous particular results
Fij’klﬂijnkl = Jridkl [r, 3]1‘]’ [P, qJkiTrsTpg
= Zpij’kl [’I', "']ij [p,p]kl"]rrnpp

pr
(29) + 22};‘11'1',):! [r’ s]ij [’r, s]kl (nrs)z
T#8
o*F
Bma Oryom, i T 2;{ - n]] Z TralT 815) }
1#£] T#8
82 F F,—F,
= mﬂimﬁ + ; e — *(n:5)*
1F)

Definition 1.2. A symmetric function F € C°(T;) N C**(T';) ho-
mogeneous of degree 1 is said to be of class (K) if

(1.30) F;, = oF >0 in Iy,
al‘ii

(1.31) Fis concave,

(1'32) F|3F+ = 0,

and

. A N2
(1.33)  F9Hp.ny <2F7! (F”ﬂz‘j) — F*h'ning, Vne€S,
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where F is evaluated at (hij) € Sy and (ﬁ“) = (hi)™?

We immediately deduce from (1.33),
Lemma 1.3. Let F be of class (K), and k., be the largest eigenvalue
of (hi;) € S4. Then for any (n;;) € S we have

. . N2 ..
(1.34) Fiky oy < 2F1 (F”Uij) — K F 9 0 Mims

where F is evaluated at (hy;) .

For the rest of the paper we shall no longer distinguish between F'
and F, instead we shall consider F' to be defined on both S, and I'; .

Lemma 1.4. Let F € C°(T';) N C?>*(T',) be symmetric, homoge-
neous of degree 1, monotone increasing and convezx. Then, its inverse
F is of class (K).

Proof. We first show that F is concave.

We have F(k;) = F(—'IT so that

(1.35) F, = F*Fk;?,

(1.36) Fy; =2F°F.Fjr;%k;? — F2F;k;72 k5% — 2F *Fik;%6;5,

and therefore, we obtain

(1.37) Fy€'¢) <2F 7 (Fin’¢)" — 2F 2 Fi €',
We further estimate
(1.38) Fk;2E =F}1/2I€{1/2F.1/2,{3/2§i

< (Fi)'? (F2lei2)

and conclude that the right-hand side of (1.37) is non-positive, where
we have used in addition the homogeneity of F'.
Next, we prove that F satisfies the condition (1.33). Let

(hij) € St (ilij) = (hy)~" and

(1.39) F(hi;) = F(;ﬂj).

Then,

ah'ab

. Fz’j — F—2Frs~railbs
(1.40) i G

= PR, o (W + R,
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ook gt i
(L41) = PP (e + BRI
_ FzFrs% (R7ERE 4 BrREYRI® 4 (IR 4 RIRR
+ {R™RY 4 RRR YR
T (kR 4 R
The last term in (1.41) is equal to
(1.42) G UFPR PR PR g P,
and thus we deduce
(1.43) ﬁ'ij*k'nijnkl < 2F! (ﬁ'ijnij)z - ZFikizjlmjnk,, Vn € S.

The remaining conditions which functions of class (K) have to satisfy
are easily verified.

Remark 1.5.

(i) The mean curvature, the length of the second fundamental form
and the -y, satisfy the assumptions of the lemma, hence their inverses
are of class (K).

For the mean curvature and the length of the second fundamental
form the required properties are obvious, while the non-trivial result for
the 7y can be found in [11, p.105].

(ii) A straightforward computation shows that the n-th root of the
Gaussian curvature is of class (K).

The preceding considerations are also applicable if the k; are the
principal curvatures of a hypersurface M with metric (g;;). F' can then
be looked at as being defined on the space of all symmetric tensors (h;;)
with eigenvalues k with respect to the metric. Moreover,

_OF
~ ohy;

(1.44) Fii

is a contravariant tensor of second order. Sometimes, it will be conve-
nient to circumvent the dependence on the metric by considering F' to
depend on the mixed tensor

(1.45) i = g™ hy;.
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Thus

. OF
1.46 Fl = —
(1.46) != o

is also a mixed tensor with contravariant index j and covariant index 3.

2. The evolution problem

Let N be a complete (n + 1)-dimensional Riemannian manifold, and
M a closed hypersurface. Geometric quantities in N will be denoted by
(Gap)s (Rapys), etc., and those in M by (gi;), (Rijk), etc.. Greek indices
range from 0 to n and Latin from 1 to n; the summation convention is
always used. Generic coordinate systems in N (resp. M) will be denoted
by (z%) (resp. (¢')). Covariant differentiation will simply be indicated
by indices, only in case of possible ambiguity they will be preceded by
a semicolon, i.e., for a function u on N, (u,) will be the gradient, and
(uag) the Hessian, but, e.g. the covariant derivative of the curvature
tensor will be abbreviated by Ras,s,.. We also point out that

(21) Raﬂ—yé;i = Raﬂ'y&;szi

with obvious generalizations to other quantities.
In local coordinates @ and ¢ the geometric quantities of the hyper-
surface M are connected by the following equations

(2.2) Ty = —hyv®,

ij
the so-called Gauf8 formula. Here, and also in the sequel, a covariant
derivative is always a full tensor, i.e.,

(2.3) Ty = x5 I‘f +F[,7w z]

ij
where the comma 1nd1cates ordinary partial derivatives.
In the implicit definition (2.2) the second fundamental form (h;;) is
taken with respect to —v.
The second equation is the Weingarten equation

(2.4) o = hEze,

where we remember that v{* is a full tensor.
Finally, we have the Codazzi equation

(2.5) hijik = hitij = Ragysv® iz} o}
and the Gauf equation
(26) Rijkl = hikhﬂ — hilhjk + Rag,yé.’L‘?.’Ej .TZ.’L‘?
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We want to prove that the equation
(2.7) F=f

has a solution. For technical reasons it is convenient to solve instead of
(2.7) the equivalent equation

(2.8) o(F) = o(f),
where @ is real function defined on R, such that
(2.9) >0 and ¥<0.
For notational reasons let us abbreviate
(2.10) f=2().
To solve (2.8), we look at the evolution problem
;= —(® - f)v
2.11 & =—( ’
211 £(0) = 20,

where z, is an embedding of an initial strictly convex hypersurface M,
diffeomorphic to S, & = ®(F'), and F is evaluated for the principal
curvatures of the flow hypersurfaces M(t), or, equivalently, we may
assume that F' depends on the second fundamental form (k;;) and the
metric (g;;) of M(t);z(t) is the embedding for M(t).

This is a parabolic problem, so short-time existence is guaranteed -
an exact proof is given below-, and under suitable assumptions we shall
be able to prove that the solution exists for all time and that the velocity
tends to zero if ¢ goes to infinity.

Consider now a tubular neighbourhood U of the initial hypersurface
M,. Then we can introduce so-called normal Gaussian coordinates z°,
such that the metric in &/ has the form

2.12) ds® = dr® + g;;dz*dz’,
J

where 7 = 2°§G;; = §;;(r,z); here we have used slightly ambiguous
notation.

A point p € U can be represented by its signed distance from M, and
its base point z € My, thus p = (r, z).

Let M C U be a hypersurface which is a graph over M, i.e.,

(2.13) M = {(r,z) : r = u(z),z € Mp}.
The induced metric g;; of M can then be expressed as

(2.14) 9ij = Gij + Uiu;
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with inverse

. g bl
(2.15) gi=gi - LY
v v
where () = (g;;) " and
ui = gilu,
(2.16) v? =1+ §uu

The normal vector v of M then takes the form
(2.17) (v") = v\ (1, —u),

if ° is chosen appropriately.
From the Gaufl formula we immediately deduce that the second fun-
damental form of M is given by

(218) 'U—lhij = —U,'j + }_lij,
where

_ 1. 18
2.1 hij = =§;; = = -2
( 9) J 291] 2 ar

is the second fundamental form of the level surfaces {r = const}, and
the second covariant derivatives of u are defined with respect to the
induced metric.

At least for small ¢ the hypersurfaces M(t) are graphs over M, and
the embedding vector looks like

z'(t) = u(t, z*(¢)),
2.20 ; i
(220) 2(0) = 2'(t,),
where the ¢ are local coordinates for M (t) independent of ¢.
Furthermore,

(2.21) P =u= %% + gtu,,
and from (2.11) we conclude
=@,
(2:22) it = v (D - f).
Hence
ou
(2.23) 5 =—(® - f)

This is a scalar equation, which can be solved on a cylinder [0, €] x M,
for small €, if the principal curvatures of the initial hypersurface M, are
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strictly positive. The equation (2.22) for the embedding vector is then
a classical ordinary differential equation of the form

(2.24) & = o(t, z).

We have therefore proved
Theorem 2.1. The evolution problem (2.11) has a solution on a
small time interval [0, ¢].

3. The evolution equations of some geometric quantities

In this section we want to show how the metric, the second funda-
mental form, and the normal vector of the hypersurfaces M (t) evolve.
All time derivatives are total derivatives.

Lemma 3.1 (Evolution of the metric).

The metric g;; of M(t) satisfies the evolution equation

(3.1) Gi; = —2(® — f)hi;.
Proof. Let & be local coordinates for M(t). Then
(3.2) 9ij = apTie)
and thus
(3.3) Gij = 20aptl.
On the other hand, differentiating
(3.4) % = —(® - f©

with respect to £ yields
(3.5) &f = —(@ ~ fl — (@ - vy,

and the desired result follows from the Weingarten equation.
Lemma 3.2 (Evolution of the normal).
The normal vector v evolves according to

(3.6) v =Vu(®-f)=g7(@ - f)i;.

Proof. Since v is a unit normal vector we have € T(M). Further-
more, differentiating

(37) 0= (V’ 2:i)

with respect to ¢, we deduce

(3.8) (0, zi) = —(v, &) = (@ — [
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Lemma 3.3 (Evolution of the second fundamental form).
The second fundamental form evolves according to

(3.9) Al =(2— f)] + (2~ /)hh] + (@ — f)Raprsv sl v zig
and

(3.10) hij = (@ — f)ij — (& — f)RFhi; + (@ — f)Rapysv vzl

J
Proof. We use the Ricci identities to interchange the covariant
derivatives of v with respect to ¢t and ¢*

d _
2 (0) = (57, = R, "]’
(3.11) = g"(® ~ fluaf + " (@ — frzf; — R*pysr 2]’
For the second equality we have used (3.6).
On the other hand, in view of the Weingarten equation we obtain

d d

(3.12) 5 W) = = (hiw}) = his} + hiag.

Multiplying the resulting equation with gagl'? we conclude

(3.13)
hfgi; — (@ = f)hfhe; = (@ = f)ij + (2 = f)Rapysr iV}
or equivalently (3.9).
To derive (3.10), we differentiate
(3.14) hij = higxs

with respect to t and use (3.3). 3
Lemma 3.4 (Evolution of (® — f)).
The term (® — f) evolves according to the equation

(@ — f) —®F9(® - f)y
(3.15) =®FThyh¥ (@ - f) + far®(® — f)
+ éFinaﬂ,ﬂ;I/a$i V‘yx?(@ - f)’

where

(3.16) @-f) = %(‘I)—f)
and

(3.17) ®= i¢>(r).
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Proof. When we differentiate F' with respect to ¢ it is advisable to
consider F' as a function of the mixed tensor h;; then we obtain

(3.18) (® — f)' = ®F}h] — fai®.
(3.15) now follows from (3.9) and (3.4).

4. Lifting of the problem to the universal cover

Let us first recall the definition of a strictly convex hypersurface;
strictly convex means that the second fundamental form has a sign.

Then we give

Definition 4.1. Let M be a strictly convex, closed hypersurface
homeomorphic to S™. Then v is the outward unit normal if

(41) <AM$,V) <0.

This definition is consistent with the usual definition of the interior of
a convex body bounded by M if the sectional curvature of the ambient
space N is non-positive, cf. the considerations below.

In the sequel, we shall always assume that the second fundamental
form of a strictly convex hypersurface is positive definite, i.e., the normal
v in the Gauf§ formula (2.2) is the outward normal.

In this section we want to show that the open set {2 bounded by the
barriers M,, M, is a distinguished open set, i.e., it can be isometrically
lifted to the universal cover N.

By assumption, we have Ky < 0, thus the universal cover is diffeo-
morphic to R"*!, any geodesic in N is minimizing, and the geodesic
spheres around a point are strictly convex with respect to the inner
normal, cf. [9, pp. 143-163].

Let MC N be a strictly convex, closed hypersurface homeomorphic
to S*. Then N\M has two components Q_ and Q,, one of which is
bounded and simply connected. Let {2_ be the bounded component; we
call it the interior of M. Then we can prove

Proposition 4.2. M is star-shaped with respect to any interior point,
i.e., let £y € Q_; then any geodesic v emanating from x, intersects M
ezactly once, and let ¥ be the tangent vector at that point. Then

(4.2) (¥,v) >0,

where v is the outward normal according to Definition 4.1.
Proof. First, we shall show that —v points into Q_.
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Fix z, € ©2_ and introduce geodesic polar coordinates z* around z,,
so that

(4.3) ds® = dr? + g;;dz*dz?.
Let T € M be such that
(4.4) r(Z) = supy,T,

and let £ be local coordinates for M near Z. Then we have at z

(4.5) 0=r; =r.zf
and
(4.6) 0>r; = rag:c;"sc? + ro ;-

Here, r, = v,, and the first term on the right-hand side is the second
fundamental form of the geodesic sphere through that point and hence
positive definite, i.e., in view of the Gaul formula we have

(4.7) hij > Tapzlzl >0,

which proves that Definition 4.1 is consistent with the geometric notion
of interior in this case.
Next, let Z € M be such that

(4.8) d(zo,Z) = inf{d(zo,z) : z € M},

and let v; be the geodesic connecting zo and Z, and [zo, Z) be its half-
open segment. Then

(4.9) [0,Z) C Q_
and
(4.10) (Yz,v) > 0;

it is obvious, where the last expression has to be evaluated.
Now, let £ € M be arbitrary and let I' C M be any curve connecting
Z and z:

(4.11) F={z(t):0<t<1}, =z(0)=1z.
Define
(4.12) A={t: (Jeq),v) >0 and [zo,2(t)) C Q_}.

Then, A # @, since 0 € A, and we shall show that A is both open and
closed and hence coincides with the interval [0, 1].
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(iii) A 4s open. If not, then, in view of the uniqueness of the geodesics,
we would deduce the existence of a sequence t; converging to ¢, € A
such that there are z; € [z, z(tx)] N M satisfying

(4.13) zr = z(ty) and (Y.,,v) <0,

clearly a contradiction.
(iv) A is closed. Let t, € A, t;, — to and to ¢ A. Then, there are two
possibilities: First, suppose

(414) [‘/EOa m(tO)) N Q+ # Qa
which implies that
(4.15) [zo,z(t)) Ny #O

for all but a finite number of k’s, a contradiction.
Thus, we have

(4.16) (50, 2(to)) C O,
but
(417) (")lz(to)a V) =0.

NOW, choose Riemannian normal coordinates z® in z(ty). Then 7, is
contained in T;;,)M. In a neighbourhood of z(t,) we can write M as a
graph over T, M:

(4.18) M = {z° = u(z")}.

If we choose the coordinates such that at z(to)
0

(419) _8;; = -V,

then we have at z(t,)
(420) hij = Uqj,

where the derivatives of u are ordinary partial derivatives, i.e., the Eu-
clidean Hessian of u is positive definite in a neighbourhood of z(%,), or
equivalently, M is (locally) strictly convex in R"*!. Thus, Q_ is (locally)
completely contained in the half-space defined by T,, M contradicting
(4.16) and the fact that v,,) is contained in T,, M.

Corollary 4.3. The interior of a strictly convez hypersurface M C N
homeomorphic to S™ is convez.

Let us consider the domain €2 C N bounded by the barriers M;, M,.
Each barrier is homeomorphic to S™,n > 2, so each M; has a tubular



CLOSED WEINGARTEN HYPERSURFACES 629

neighbourhood U; which is simply connected, i.e., there is a well defined

lift to V. More precisely, let
(4.21) m:N o> N

be the covering map. Then each 7' (l;) consists of several disjoint
copies such that the restriction of 7 to each copy is an isometry on U.
Let M;, M be two generic elements of 7=(M;) and let (M), (M!) be
the corresponding open convex bodies. Then we have

Lemma 4.4. Let M; # M!. Then

(4.22) (M) N (M) = @.

(3

Proof. Mi’ is the image of J\;I,- under a des:k transformation which
is an isometry, hence (M) is the image of (M;) under the same deck
transformation and so the diameters of the convex bodies are the same.

Thus, if M; # J\;I,’ and

(4.23) (W) 0 (L) # 9,
then (M,) is strictly contained in (M!) or vice versa, but this is impos-

sible since the diameters are the~same.
Corollary 4.5. For each (M;), |

the images, then

G s an isometry. Let (M;) be

(4.24) Q = (M)\(MEy).

Proof. The first claim is evident. To prove (4.24) we only have to
show

(4.25) Q2 C (M,).
Let
(4.26) A= QN (M,).

(i) A is non-empty, since the tubular neighbourhood U;, previously
defined, corresponds to a tubular neighbourhood U, of M, and
the notions interior and exterior relative to My and M, are the
same.

(ii) A is evidently open.

(iii) A is closed in Q, for let

(4.27) . €A, x> xTE,

then we also know z € (M) but z ¢ M,.
Thus, we have proved that A = 2 since 2 is connected.
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Having laid so much groundwork on this context, let us also consider
the case where the ambient space N is a space form with positive curva-
ture, and let us show that the problem can still be lifted to the universal
cover; without loss of generality we shall assume that N = S™*!. The
basic definitions are the same as in the preceding considerations.

First, let us quote a result due to Do Carmo and Warner [5]

Theorem 4.6. Let M C S™! be a strictly conver hypersurface
diffeomorphic to S™. Then M 1is contained in an open hemisphere and
is the boundary of a convex body.

Actually, Do Carmo and Warner’s result is slightly more general, but
that is irrelevant in our context.

Since the shortest geodesic between two points in an open hemisphere
is unique, Proposition 4.2 remains valid with the obvious restriction
that only geodesics contained in the hemisphere are considered; the
other former considerations also apply in this situation and we derive
the following theorem.

Theorem 4.7. Suppose that the universal cover of N either is S™**
or has non-positive sectional curvature . Then the data of our problem
Q, M, M, and f can be lifted to the universal cover N, and Q is the
difference of two convex bodies, one of which is contained in the other.

In the following we shall therefore assume that NV is simply connected.

5. Barriers and a priori estimates in the C°-norm

By assumption the ambient space N has non-positive curvature, and
in the preceding section we have shown that we may assume that A is
simply connected. Therefore, we can introduce geodesic polar coordi-
nates (z*) = (r,z') = (r,z) around a point in (M,) such that

(5.1 ds? = dr® + gy;dz'de?,
j

and the second fundamental form h;; of a geodesic sphere {r = const}
is uniformly positive definite in .

Let M(t) be a solution of the evolution problem (2.11) in a maximal
time interval I = [0,T*) such that the hypersurfaces are strictly convex.
Then, in view of Proposition 4.2 each M (t) can be represented as a
graph:

(5.2) M(t) = {(r,z) : r = u(t,z), T € Sp},

where S is a fixed geodesic sphere. The barriers M; are also graphs of
positive functions u;. We can then prove
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Lemma 5.1. Choose M, either My or M, as the initial hypersurface.
Then for the embedding vector z = z(t) we have

(5.3) z(t) e, Vtel.

Proof. We shall only consider the case where My, = M,. By Lemma
5.2 below we then obtain

(5.4) d-f<0, Vi

For all t the flow hypersurfaces are the graphs of functions u(t¢). Then
equations (2.23) and (5.4) yield

Ou
. —_— >
(5-5) o 2 0,
i.e., the flow moves into (2 and
(5.6) infgou; <u Vi

Thus, let us assume that for ¢ = ¢, > 0 it is the first time that the
flow M(t) touches M,. Let T = z(ty) = (u(to, o), &o) be that point. In
a neighbourhood Bg = Bg(&) of &, define

(6.7) p=uy;—u>0, u = u(to, ).
Now, because of (5.4) u satisfies the inequality

(5.8) ®-f<0 in By,

and u, the reverse inequality

(5.9) ®—f>0 in Bg,

since M, is an upper barrier. Here, we note, that the elliptic operator
in the above inequalities is evaluated at v and u, respectively.

We then conclude- if we choose By small-, that ¢ satisfies a linearized
elliptic inequality of the form

(5.10) —ap; +bp;+cp>0 in Bp.

Since ¢ is nonnegative, the Harnack inequality tells us that ¢ has to
vanish identically in Bpg, i.e., if the flow touches M, at t = ¢y, then
M (ty) = M, and M, is a solution of the problem (2.8). The flow is then
stationary for ¢t > t,.

Lemma 5.2. Let M(t) be a solution of the evolution problem (2.11)
defined on a mazimal interval [0,T*). As the initial hypersurface M,
we choose either M, or M,; then we obtain

(5.11) d-f<0 Wt
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Zf MO = M17 and
(5.12) d-f>0 Vi

if My = M,.

Proof. In Lemma 3.4 we have shown that ® — f satisfies a linear
parabolic equation; therefore, the proclaimed estimates follow from the
maximum principle, since the inequalities are satisfied initially at ¢ = 0.

6. A priori estimates in the C'-norm
The result of Lemma 5.1 implies
(6.1) infg u; < u < supg,us.

We shall show that Du and hence the induced metric of M(t) is
uniformly bounded, cf. (2.14), as long as the M(t) remain convex.

Lemma 6.1. Let M = graphul|s, be a closed convex hypersurface
represented in normal Gaussian coordinates. Then the quantity v =

V14 |Dul? can be estimated by
(62) u S C('U', SOagij)-
Proof. We have

(6.3) 9ij = Gij + u;uj, Gij = Gij(u, ).
Define
(6.4) |1 Dull* = g7 usu,, |Dul? = g7u;u;.
then
Dul?
(6.5) |Duf = 1242
and
(6.6) v ?=1-| Du|?.

Let ¢ be defined by
(6.7) p =logv + Au,
where the parameter A will be chosen later, and let 2, € Sy be such that
(6.8) ¢(2o) = supg, -
Then, we have at z,

(6.9) 0=; =v 'y + Iy,
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or
(6.10) 0 = v 'wu’ + \||Dull?.

Differentiating v yields

(611) V; = ’U,ij'U.i’Us,
ie.,
(6.12) viut = ugutuivd,

We then conclude from (2.18),
(613) 0= —h,-juiujv2 + A“_D’LL”2 + f_Li]-u"uj'uz.
We now observe that
(6.14) u' = gYu; = gluu2
Let & be an upper bound for the eigenvalues of i_z,-j. Then
(6.15) hiutv'v? < Rv~%|Duf?,

and in view of (6.13) we deduce

(6.16) 0 < (K + A)|Duf*v™
at z.

Let us now choose A = —k — . Then Du =0 and
(6.17) © < p(z0) = Au(zo),

or equivalently
(6.18) v < eMu@o)—u} < A {supu—infu}
By letting € tend to zero we finally obtain

(619) v < ek{supu—infu}'

7. The evolution equations for h;; and v

Let us first derive the parabolic equation for the second fundamental
form.
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Lemma 7.1. Let M(t) be a solution of the problem (2.11). Then the
second fundamental form satisfies

hij — ®F* b4 =®F"hy hlhy; — (8 — f)hEhy; — ®FhFhy;
— faprlah + far®hy; + OFF;

+ (.kal'rshkl;ihrs;j
+ (@ - f) —aﬂ'yéya-'l?- Iﬂw‘i + 2<i>F“Rag.,5$ T; :v,cm‘sh,
(7.1) — ®FM Rop 522ty z]alh — ®FY Ropszizyz] i h]

+ ®FM Ryp s zi v alhyy — ®FM R, g5 {1 at vzl
+ ®FM R g {2l z) 2l 5 + v° z? zyziz}.

Proof. We start with equation (3.10) and shall evaluate the term

(7.2) (® - f)is-
First, we have

(7.3) &, = OF, = OF*hy,,
and

(7.4) @ = ‘i’Fklhkt;ij + q')Fklhkl;iF”hrs;j + ‘i’Fkl;rshkt;ihrs;j-

Next, replacing h;j;x; by hiju, and differentiating the Codazzi equa-
tion

(7.5) hiti = higy + Rapyovozha) zd

yielding

B 5
h'kl 117 “hzk ilj + Raﬂ’y& EV zkml xzx

(7.6)

B 6

B s
:1:,]:1:, + vz x

+ Ropre{vy ahx]al +v° Th,x] T} + VT,

To replace hy;; by hij, we use the Ricci identities

(7.7) hikg; = hikgj + o R aj + hai R ij
and differentiate once again the Codazzi equation
(7.8) hiis = hijik + Raprov® e 2}25.

To replace f;; we use the chain rule

(7.9) fi = fazg,
fij = fagmf‘x? + famf‘]
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Then by the Gaufl equation and Gaufl formula, the symmetry properties
of the Riemann curvature tensor and the homogeneity of F, i.e.,

(7.10) F = F*hy,

we deduce equation (7.1) from (3.10).
Since the mixed tensor h} is a more natural geometric object, let us
look at the evolution equation for h¢ that can be derived from (3.9).
Lemma 7.2.  The evolution equation for h: (no summation over
i) has the form

hi — ®FMhL, =®F¥hy, hThi + (® — f)hEh], — @FhEh]
— faﬁxf‘zfg“ + f:,z/"‘h’: + ®F.F + <i>F’°"”hk,;,-h,s;mg’"i
(@ = )Ragosv a2l g™

(7.11) + 2<i>F’°’RaMa:az%kmmgm‘h{ —20FM R, g szl ezl b
+ ®FM Ry sz alhi — éFRaﬂwV"a:- v"mfng""
+ ®FM Rops {voal e alas, + voalz)al x5} g™

Let M be a hypersurface that can be written as a graph in a normal
Gaussian coordinate system (z*) = (r, ‘). From the relation (2.17) it
follows that

(7.12) v =4/1+ |Dul? = (r,v*)"".

For the hypersurfaces M (t) defined by the flow (2.11) we have

Lemma 7.3. Consider the flow in a normal Gaussian coordinate
system where the M(t) can be written as the graph of a function u(t).
Then v safisfies the evolution equation

o — $Fiy,; = — ®Fhyhkv — 207 F Y0,
(7.13) + rag*VO(® — f) — ®F]0?
+®FYR g75u“zfm]zir5 ¢ g’ +2<I>F"raﬂhka:kx v?
+ &Fiir g,,u":v zjv? + fa e g™k rgrhy?
Proof. Differentiating (7.12) gives

(7.14) v; = =0 {Tagr®z; + 1o},

vi; = 20 005 — V¥ {Tap VT :E + ro,ﬁl/a:z:ﬁ

(7.15) + 7opV* :c,-j + ropiT; + rauf‘j}.
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We also have to calculate the time derivative of v:

(7.16) O = —{ragr®a® + rov* v’
= TV (<I> f)v —74(P — f)kxa mky?,
where we have used (3.6).
By substituting (7.15) and (7.16) on the left-hand side of (7.13) and
simplifying the resulting expression with the help of the Weingarten and
Codazzi equations we arrive at the desired conclusion.

Lemma 7.4. For convex hypersurfaces which stay in a compact do-
main we have

(7.17) |Fiiroghfagal| < cF
B k

Proof. Choose a coordinate system &' such that in a fixed but
arbitrary point in M

(7-18) 9ij = 5@'17 h'ij = Hiéij-
Then,
|Firaphiagal] < SIF“h sup|D*r| = Fiih, sup|D?r|

(7.19)
= Fsup |D?r|.

8. A priori estimates in the C*-norm

Let M(t) be a solution of the evolution problem (2.11) with initial
hypersurface My = M, defined on a maximal time interval I = [0,T™).
We also assume that F' is of class (K) as in Definition 1.2, and we choose
®(t) = —t~'. Let M(t) be represented as the graph of a function u in
geodesic polar coordinates. Then, from (2.11) we deduce

(8.1) a=_ —(@ - f)o~

dt
and taking the relation (2.18) into account we conclude
(8.2) i — ®F9u;; = —(® - flo! + ®Fv™! — dFh;.
Here, the f_z,-j are uniformly positive definite in , i.e., we can estimate
(8.3) Fih; > cFg,; > cF(1,...,1)

with a positive constant c¢. The second estimate in (8.3) follows from
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Lemma 8.1. Let F € C?(I'}) be homogeneous of degree 1, mono-
tone increasing and concave. Then

A proof can be found in [14, Lemma 3.2].

We first note that in view of Lemma 5.2 we know that

(8.5) d<f or F<,

and that by the results in Section 5 the flow stays in the compact set .
Furthermore, due to the choice of ® and the condition (1.32) the M(t)
are strictly convex during the evolution and, hence, Du is uniformly
bounded.

An estimate for the second derivatives of u is given in

Lemma 8.2. Let F be of class (K). Then the principal curvatures
of the evolution hypersurfaces M (t) are uniformly bounded.

Proof. Let ¢ and w be defined respectively by

(8.6) @ = sup{hyn'n’ : |In|| = 1},

(8.7) w = log ¢ + log v + Au,

where A is a large positive parameter. We claim that w is bounded.
Let 0 < T < T*, and zy = z(ty),0 < t, < T, be a point in M(t,)
such that

(8.8) sup, w < sup{supyyw : 0 <t < T} = w(zo).

We then can introduce a Riemannian normal coordinate system &° at
Ty € M(t) such that at z, = z(t, &) we have

(89) gij = 6,‘]' and Y = hz

Let n = (n’) be the contravariant vector defined by

(8.10) n=(0,...,0,1),
and set
. hyminyy
8.11 : = '
( ) 4 gi;n'n’

¢ is well defined in a neighbourhood of (o, &).
Now, define w by replacing ¢ by ¢ in (8.7); then W assumes its
maximum at (to,&,). Moreover, at (to,&)

(8.12) ¢ = h2,
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and the spacial derivatives do also coincide; in short, at (¢o, &) @ satisfies
the same differential equation (7.11) as hA”. For the sake of greater
clarity, let us therefore treat Al like a scalar and pretend that w is
defined by

(8.13) w = log hy +logv + Au.

At (to, &) we have w > 0, and, in view of the maximum principle, we
deduce from (7.11),(7.13) and (8.2)

0<—F A —¢(® — f) +c+ ®Fgc— \(® — f)v™?
+ AF 9t — A®Fih;; — ®F"(logv);(logv);
(8.14) + ®F" (log h}), (log h7),
+{BFF" + F" by nhrg g™} (B2)

where we have estimated bounded terms by a positive constant c, as-
sumed that A? > 1, and also observed (8.5).

Now, the last term in the preceding inequality is estimated from above
by

(8.15 — (K 2 ®F R nbinmg™,
n 3 n;

cf. Lemma 1.3, in view of the choice of ®. Moreover, because of the
Codazzi equation we have

(816) hlin;n = hnn;i + RaﬂyéVa$gxzzi’

and hence, when we abbreviate the curvature term by R;, we conclude
that (8.15) is equal to

(8.17) — (h) P OFY (hn, + Re) (hoy + By) -
Thus, the terms in (8.14) containing the derivatives are estimated
from above by
(8.18) —~®F(logv);(logv); — 2 (h?) ™' ®FY (log h™), R;.
Moreover, at £, Dw vanishes, i.e.,
(8.19) Dlogh, = —Dlogv — ADu,
and (8.18) is further estimated from above by

-1

(8.20) (hg) ADF g,

where we have assumed A > 1.
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Summarizing, we deduce from (8.14)

0 <{=F 'R+ c+ AP0 =A@ = flu! — (& - f)}
(8.21)
+ {c®Fig,; + (h*) "' cA®FYg,; — \OFh,;}
We now choose A very large and assume that

(8.22) hy > p,

where 4 is also large, and we deduce that the terms involving ® sum up
to something negative if we choose p large. Thus, we conclude that we
are left with

(8.23) 0< —F7 'R +c+AF = \@ - flv ! —c(® - ),

i.e., h? and hence w are a priori bounded at (%, ).

To complete the a priori estimates we have to show that the princi-
pal curvatures can be bounded from below by a positive constant, or
equivalently, since F' vanishes on 0I',, that F' is bounded from below
by a positive constant.

Lemma 8.3. Let F be of class (K). Then there is a positive
constant €y such that

(8.24) g < F

during the evolution.
Proof. Consider the function

(8.25) w=—(®—f)+ M,
where A is large. Let 0 < T' < T™ and suppose

(8.26) sup, w < sup{suppw:0<t < T}
Then, there is zo = z(ty),0 < to < T, such that
(8.27) w(To) = sup{supppw:0 <t <T}.

From (3.15),(8.2) and the maximum principle we then infer
0 < — ®FThyk5(@ — f) — ®F Ropsv°ziv"2(® - f)
(8.28)
— fata(® = f) =A@ — flv™t + A®Fv~' — AOF7h,;.
Let k be an upper bound for the principle curvatures. Then the first
term on the right-hand side of (8.28) can be estimated by

(829) —®F7hk(®— f) = —BFk(® - f) = —wF (@~ f);
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the second term is non-positive because Ky < 0; from the remaining
terms the last one is negative and has as dominating factor A®. Hence
F cannot be too small at z, and the lemma is proved.

9. Convergence to a stationary solution

We are now ready to prove Theorem 0.3. Let M (t) be the flow with
initial hypersurface My = M,;. Let us look at the scalar version of the
flow (2.23):

ou

. — =—(® - f)v.

91) =@

This is a scalar parabolic differential equation defined on the cylinder
(9.2) Or. =[0,T*) x Sy

with initial value ug = u; € C*%(S,). S, is a geodesic sphere equipped
with the induced metric. In view of the a priori estimates we have
proved in the preceding sections, we know that

(9.3) |ul2,0,5, < €
and
(9.4) F is uniformly elliptic in u

independent of ¢t. Furthermore, F is concave and thus we can apply the
regularity results in Krylov [10, Chapter 5.5] to conclude that uniform
C**-estimates are valid, leading further to uniform C**-estimates due
to the regularity results for linear operators.
Therefore, the maximal time interval is unbounded, i.e., T = oo.
Now, integrating (9.1) and observing that the right-hand side is non-
negative we obtain

(9.5) ult, )~ u(0,2) == [@ - o > - [@- ),
ie.,

(9.6) /|<I> —fl<oo  Vze€S,.
0

Thus, for any z € S, there is a sequence t;, — co such that (& — f) — 0.
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On the other hand, u(-,z) is monotone increasing and therefore
(9.7) tliglou(t, z) = u(z)

exists and is of class C**(S,) in view of the a priori estimates. We
finally deduce that 4 is a stationary solution of our problem and that

(9.8) lim (@ - f)=o.
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