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ABSTRACT. We consider spacetimes N satisfying some structural condi-
tions, which are still fairly general, and prove convergence results for the
leaves of an inverse mean curvature flow.

Moreover, we define a new spacetime N by switching the light cone
and using reflection to define a new time function, such that the two
spacetimes N and N can be pasted together to yield a smooth manifold
having a metric singularity, which, when viewed from the region N is a
big crunch, and when viewed from Nisa big bang.

The inverse mean curvature flows in N resp. N correspond to each
other via reflection. Furthermore, the properly rescaled flow in N has a
natural smooth extension of class C3 across the singularity into N. With
respect to this natural, globally defined diffeomorphism we speak of a
transition from big crunch to big bang.
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0. INTRODUCTION

In [3] we considered the inverse mean curvature flow (IMCF) in cosmological
spacetimes having a future mean curvature barrier and showed that the IMCF
exists for all time and runs directly into the future singularity, if and only if
N satisfies a strong volume decay condition.

Apart from the fact that the leaves run straight into the future singularity
no further convergence results could be derived due to the weak assumptions
on the spacetime.

In the present paper we consider spacetimes N satisfying some structural
conditions, which are still fairly general, and prove convergence results for the
leaves of the IMCF.

Moreover, we define a new spacetime N by switching the light cone and
using reflection to define a new time function, such that the two spacetimes
N and N can be pasted together to yield a smooth manifold having a metric
singularity, which, when viewed from the region N is a big crunch, and when
viewed from N is a big bang.

The inverse mean curvature flows in N resp. N correspond to each other
via reflection. Furthermore, the properly rescaled flow in N has a natural
smooth extension of class C® across the singularity into N. With respect to
this natural diffeomorphism we speak of a transition from big crunch to big
bang.

0.1. Definition. A cosmological spacetime N, dim N = n + 1, is said to be
asymptotically Robertson-Walker (ARW) with respect to the future, if a future
end of N, N, can be written as a product Ny = [a,b) x Sp, where Sy is a
compact Riemannian space, and there exists a future directed time function
7 = 20 such that the metric in N, can be written as

(0.1) A2 = 2P {—(dz°)? + 045 (2°, x)da'da? },
where Sy corresponds to 2° = a, ¢ is of the form

(0.2) D(2°,2) = f(@°) + (" 2),

and we assume that there exists a positive constant ¢y and a smooth Rieman-
nian metric ¢;; on Sy such that

(0.3) lirr%7 e =co A lirr%) 0i;(T,2) = 7;5(2),
and
(0.4) hH%) flr) = —o0.

Without loss of generality we shall assume ¢y = 1. Then N is ARW with
respect to the future, if the metric is close to the Robertson-Walker metric

(0.5) s = 2 {—dz"® + &, (x)da'da’ }
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near the singularity 7 = b. By close we mean that the derivatives of arbitrary
order with respect to space and time of the conformal metric e=2/ Jap in
should converge to the corresponding derivatives of the conformal limit metric
in when 20 tends to b. We emphasize that in our terminology Robertson-
Walker metric does not imply that (3;;) is a metric of constant curvature, it
is only the spatial metric of a warped product.

We assume, furthermore, that f satisfies the following five conditions
(0.6) - f'>0,
there exists w € R such that

(0.7) n+w—2>0 A lin%)\f’\Qe("W—?)f =m>0.

Set 4 = %(n + w — 2), then there exists the limit

(0.8) lim (1" +51f'[?)

and

(0.9) DR+ AP < eml fI™ 0 Ym>1,
as well as

(0.10) DI < el fI™ Ymz L.

We call N a normalized ARW spacetime, if

(011) / \/detarij = |Sn|
So

0.2. Remark. (i) If these assumptions are satisfied, then we shall show that
the range of 7 is finite, hence, we may—and shall—assume w.l.o.g. that b = 0,
ie.,

(0.12) a<Tt<0.

(ii) Any ARW spacetime can be normalized as one easily checks. For nor-
malized ARW spaces the constant m in is defined uniquely and can be
identified with the mass of N, cf. [4].

(iii) In view of the assumptions on f the mean curvature of the coordinate
slices M, = {2° = 7} tends to oo, if T goes to zero.

(iv) ARW spaces satisfy a strong volume decay condition, cf. [3, Defini-
tion 0.1].

(v) Similarly one can define N to be ARW with respect to the past. In this
case the singularity would lie in the past, correspond to 7 = 0, and the mean
curvature of the coordinate slices would tend to —oo.
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We assume that N satisfies the timelike convergence condition. Consider
the future end N, of N and let My C N; be a spacelike hypersurface with
positive mean curvature I, ~ > 0 with respect to the past directed normal

vector »—we shall explain in Section [2] why we use the symbols H and i and
not the usual ones H and v. Then, as we have proved in [3], the inverse mean
curvature flow

(0.13) i=—H"'v

with initial hypersurface M exists for all time, is smooth, and runs straight
into the future singularity.

If we express the flow hypersurfaces M(t) as graphs over Sy
(0.14) M(t) = graphu(t, -),
then our main results can be formulated as
0.3. Theorem. (i) Let N satisfy the above assumptions, then the range of
the time function ¥ is finite, i.e., we may assume that b = 0. Set
(0.15) i = ue,
where v = %:y, then there are positive constants cy,co such that
(0.16) —p<u<—c¢ <0,

and @ converges in C*(Sy) to a smooth function, if t goes to infinity. We shall
also denote the limit function by u.

(ii) Let g;; be the induced metric of the leaves M (t), then the rescaled metric
(0.17) 3
converges in C*(Sy) to
(0.18) (3m)* (~)¥ 355.

(iii) The leaves M(t) get more umbilical, if t tends to infinity, namely, there
holds
(0.19) H YR — LS| < ce™ .
In case n +w —4 > 0, we even get a better estimate

(0.20) \71{ _ %ﬁ(jﬂ < ce—i(n+w—4)t.

For a description of the results related to the transition from big crunch to
big bang we refer to Section
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1. NOTATIONS AND DEFINITIONS

The main objective of this section is to state the equations of Gauf}, Codazzi,
and Weingarten for space-like hypersurfaces M in a (n+1)-dimensional Lorent-
zian manifold N. Geometric quantities in N will be denoted by (Gus), (Ragys)s
etc., and those in M by (gi;), (Rijk1), etc.. Greek indices range from 0 to n
and Latin from 1 to n; the summation convention is always used. Generic co-
ordinate systems in N resp. M will be denoted by (z®) resp. (¢!). Covariant
differentiation will simply be indicated by indices, only in case of possible am-
biguity they will be preceded by a semicolon, i.e., for a function v in N, (ug)
will be the gradient and (ung) the Hessian, but e.g., the covariant derivative
of the curvature tensor will be abbreviated by Ragwg;g. We also point out that

(1.1) Raﬁv&i = Raﬁ'yé;exf
with obvious generalizations to other quantities.

Let M be a spacelike hypersurface, i.e., the induced metric is Riemannian,
with a differentiable normal v which is time-like.

In local coordinates, (%) and (£*), the geometric quantities of the space-like
hypersurface M are connected through the following equations

(12) LL‘% = hijya

the so-called Gauf$ formula. Here, and also in the sequel, a covariant derivative
is always a full tensor, i.e.

(1.3) r = a%; — Tlljxg + fgvmfx;’
The comma indicates ordinary partial derivatives.

In this implicit definition the second fundamental form (h;;) is taken with
respect to v.

The second equation is the Weingarten equation
(14) Via = hfgjga

where we remember that v{* is a full tensor.
Finally, we have the Codazzi equation

(1.5) hijik — hikj = Rapysv®a}z)z)
and the Gauf$ equation
(16) Rijkl = 7{hikhjl - hilhjk} + Raﬁfy(;x?x?zzz?.

Now, let us assume that IV is a globally hyperbolic Lorentzian manifold with
a compact Cauchy surface. N is then a topological product I x Sy, where I
is an open interval, Sy is a compact Riemannian manifold, and there exists a
Gaussian coordinate system (z%), such that the metric in N has the form

(1.7) ds% = ew{—dﬂco2 + 0i;(2°, 2)dz" dx? },

where 0;; is a Riemannian metric, ¢ a function on IV, and = an abbreviation for
the spacelike components (z*). We also assume that the coordinate system is
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future oriented, i.e., the time coordinate x° increases on future directed curves.
Hence, the contravariant time-like vector (£%) = (1,0, ...,0) is future directed
as is its covariant version (&,) = ¢*¥(-1,0,...,0).

Let M = graphu, o be a space-like hypersurface

(1.8) M={(2): 2" =u(x), €Sy},
then the induced metric has the form
(1.9) Gij = 62w{—UﬂL]‘ + O'ij}

where 0;; is evaluated at (u, z), and its inverse (¢%/) = (g;;) ! can be expressed
as

iy
1.10 R R
(1.10) g7 = e+ D,

L and

where (0%) = (0y5)~

u' = o"u;
(1.11) , S ,
v°=1-0c"yu; =1— |Dul”.

Hence, graphu is space-like if and only if |Du| < 1.
The covariant form of a normal vector of a graph looks like

(1.12) (Vo) = v te¥ (1, —u;).
and the contravariant version is

(1.13) (™) = Fote (1, u).
Thus, we have

1.1. Remark. Let M be space-like graph in a future oriented coordinate
system. Then the contravariant future directed normal vector has the form

(1.14) (™) =v te ¥ (1,u’)
and the past directed
(1.15) (V™) = —vte (1, u).

In the Gauf} formula (1.2) we are free to choose the future or past directed
normal, but we stipulate that we always use the past directed normal for
reasons that we have explained in [2, Section 2].

Look at the component o = 0 in ([1.2]) and obtain in view of (|1.15]

(116) e*wvflhij = _Uij — f(?ouiuj — fgjul — fgluj — fg
Here, the covariant derivatives are taken with respect to the induced metric of
M, and

o .
(117) _Fij =e whij7

where (h;;) is the second fundamental form of the hypersurfaces {z° = const}.
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An easy calculation shows

(118) hijeiw = 7%CTU — 1/.101‘]‘,

where the dot indicates differentiation with respect to z°.

2. THE EVOLUTION PROBLEM

When proving the convergence results for the inverse mean curvature flow,
we shall consider the flow hypersurfaces to be embedded in N equipped with
the conformal metric

(2.1) ds? = —(dz°)? + 0;;(2°, x)da'da? .

Though, formally, we have a different ambient space we still denote it by
the same symbol N and distinguish only the metrics gog and gag

(2.2) gaﬁ = ezwgaﬁ

and the corresponding geometric quantities of the hypersurfaces ﬁij, Gij, U resp.
hij, 9ij, v, etc., i.e., the notations of the preceding section now apply to the case
when N is equipped with the metric in (2.1)).

The second fundamental forms ivzz and hg are related by

(2.3) ¢"hl = hl + Dav®6]
and, if we define F' by

(2.4) F=¢YH,
then

(2.5) F=H—nof" +np,v®,
where

(2.6) v=v"1,

and the evolution equation can be written as
(2.7) i=—-F"1y,
since

(2.8) v =e"Yu.

The flow exists for all time and is smooth.

Next, we want to show how the metric, the second fundamental form, and
the normal vector of the hypersurfaces M (t) evolve. All time derivatives are
total derivatives. We refer to [2] for more general results and to [II, Section 3],
where proofs are given in a Riemannian setting, but these proofs are also valid
in a Lorentzian environment.
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2.1. Lemma. The metric, the normal vector, and the second fundamental
form of M(t) satisfy the evolution equations

(2.9) Gij = —2F " 'hyj,

(2.10) v=Vyu(-F ') =g9(-F")x;,

and

(2.11) hl = (=F~ 1] + Fﬁlhfhi + F*IRamguaacfﬂxigkj
(2.12) hij = (=F7Y)ij — F7 Wby + F ' Ragosval val.

Since the initial hypersurface is a graph over Sy, we can write

(2.13) M (t) = graphu(t) vtel,

Iso

where u is defined in the cylinder R, xSy. We then deduce from ([2.7)), looking
at the component « = 0, that u satisfies a parabolic equation of the form

)

(2.14) i =

|

where we use the notations in Section [l and where we emphasize that the
time derivative is a total derivative, i.e.

9 .
(2.15) i = a%eb +oud,

Since the past directed normal can be expressed as
(2.16) (V™) = —e Yo (1, uh),
we conclude from ([2.14))

ou v
2.17 — = —.
( ) ot F

Sometimes, we need a Riemannian reference metric, e.g., if we want to
estimate tensors. Since the Lorentzian metric can be expressed as

(2.18) Japdr®dz’ = —(dz®)? + oyyda'da?,

we define a Riemannian reference metric (§og) by

(2.19) Japda®de® = (da°)* + o;jda’da’

and we abbreviate the corresponding norm of a vectorfield n by
(2.20) ol = Gagn®n®)'/2,

with similar notations for higher order tensors.
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3. LOWER ORDER ESTIMATES

We first draw a few immediate conclusions from our assumptions on f.

3.1. Lemma. Let f € C%([a,b)) satisfy the conditions

(3.1) lin}) f(r)=—-
and
(3.2) limb\f'\QeQW =m,

where v, m are positive, then b is finite.

Proof. From (3.2) we deduce that f’ tends to —oco and

(3.3) lim(—f'e7) = /m.
Moreover,
(3.4) T — el = / V' < 35T =),
To

if 79 is close to b in the topology of R and 7 > 7y. Hence b has to be finite. O

3.2. Corollary. We may—and shall—therefore assume that b =0, i.e., the
time intervall I is given by I = [a,0).

A simple application of de L’Hospital’s rule then yields
(3.5) lim — = —9y/m
From this relation and we conclude

3.3. Lemma. There holds

(3.6) eV +/m ~ er?,
where ¢ is a constant, and where the relation
(3.7 o ~ecr?
means

_o(r)
(3.8) llino 2

Proof. Applying de L’Hospital’s rule we get
1 Af /oy " <1 £112\ A f
mfe tvm :lim(f +Alf e = —cyv/m.
T

(3.9) i -

1.2
3T
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3.4. Lemma. The asymptotic relation
(3.10) AT =1~ er?

1s valid.

Proof. The relation yields

(3.11) eV AT ~ e,

or equivalently,

(3.12) Ff'm = 1) 4 VmAT 4+ T ~ 7.
Dividing by 72 and applying de L’Hospital’s rule we infer

S —1 v 5 4+ 5 eV
m T e YA A

1 li
(3.13) ! T2 T 372
hence the result in view of (3.5)) and (3.6). O

After these preliminary results we now want to prove that there are positive
constants ¢, co such that

(3.14) —a<u=ue" < - <0 VteER,,

1

where u is the solution of the scalar version of the inverse mean curvature flow,

i.e., u is the solution of equation .

We shall proceed in two steps, first we shall derive
(3.15) lueM| < e(N) Y0 <A<,
and then the final result in the limiting case A\ = ~.

This procedure will also be typical for higher order estimates in the next
sections.

3.5. Lemma. For any 0 < A <7, there exists a constant c¢(\) such that the

estimate (3.15) is valid.
Proof. Define ¢ = ¢(t) by
(3.16) o(t) = inf u(t,x).

€Sy
Then ¢ is Lipschitz continuous and

0
(3.17) o(t) = ait‘(t,xt) for a.e.t,
where z; € Sy is such that the infimum of w(¢,-) is attained. This is a well-
known result, for a simple proof see e.g., [3, Lemma 3.2].

Let
(3.18) w = log(—¢) + ¢,

then, for a.e. t, we have

(3.19) w:¢*1¢+A:u*1%+A,
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where u is evaluated at (¢,2;). In x; u(¢,-) attains its infimum, i.e., Du = 0
and —Au < 0.

From the parabolic equation (2.17)), we obtain in
0 1 1
(3.20) u_ - -
ot  F H—nf —n

The mean curvature H can be expressed as

(3.21) H=-Au+H=-Au+0"h;; = —Au— 15"5;;.
Thus we deduce
1

(3.22) @ > - —

ot = —nf —nmp — 3065
and

1
< - — + A

—nflu— (np — 2096 )u

(3.23)

l—nflul - (ny — 10%96,5)Au

—nf'u— (np — 50965

Now, we observe that the argument of f’ is u and

(3.24) lim inf u(t,z) =0,

t—oo €Sy
cf. [3, Lemma 3.1]. Hence
(3.25) lim flu=4"1,

t—oo

in view of Lemma and we infer that the right-hand side of inequality (3.23))
is negative for large ¢, t > t,, and therefore

(326) w S w(tA) Vit Z t)\,

or equivalently,

(3.27) —ueM <)) VteR,. O
3.6. Theorem. Let u be a solution of the evolution equation (2.14)), where

f satisfies the assumptions and , then there are positive constants
c1,co such that

(3.28) — <a=ue" < —¢y <.

Proof. We only prove the estimate from above. Define

(3.29) o(t) = sup u(t,z)

z€So

and

(3.30) w = log(—¢p) + 7t.
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Arguing similar as in the proof of the previous lemma, we obtain for a.e. ¢

Cy
o> Lo nfluy — (09— 57_”%)%6.
—nfu— (n — 20%6;5)u
Since ¥ = n7y, we deduce from Lemma that the right-hand side can be
estimated from below by cu, i.e.,

(3.32) W > cu > —cepe M

(3.31)

for any 0 < A < . Hence w is bounded from below, or equivalently,

(3.33) i< —cy <0. O

3.7. Corollary. For any k € N* there exists c¢i, such that
(3.34) |F®] < cpet,

where f) is evaluated at .

Proof. In view of the assumption (0.10]) there holds
(3.35) [FO < enlf]" = ealf/|Futatetr.
Then use Lemma [3.4] and the preceding theorem. O

4. C'-ESTIMATES
We want to prove estimates for © and || Da||, where we recall that
(4.1) o = uet.

Our final goal is to show that || D4/ is uniformly bounded, but this estimate
has to be deferred to Section [5] At the moment we only prove an exponential
decay for any 0 < A < 7, i.e., we shall estimate || Dul|e*.

The starting point is the evolution equation satisfied by 2.
4.1. Lemma (Evolution of #). Consider the flow (2.7)). Then v satisfies the
evolution equation
b — F2A0 = —F2||A|]?0 + F2Ropralu’
— F72(2H — nf'd + ntpav®)nasrv?

(4.2) g -

— F_2(na57uaxfx;’g” + nagxf‘xfh”)

— F2(=nf"|| Du||?o — nf'5pu® + nipasr®z?u’ + npazd hiub),
where n = (no) = (—1,0,...,0) is a covariant unit vectorfield.

Proof. We have
(4.3) b = 1.2
Let (£%) be local coordinates for M (t); differentiating © covariantly we deduce

(4.4) By = Naprl v + nard,
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and

(4.5) Oij = nag,yx?x;’yo‘ + naﬁl/;‘xf + nagl/al/ﬁhij + Navij-

The time derivative of v is equal to
1L) = nalgya"tﬁ + ’I’]aDa

4.6
(4.6) — —naﬁzﬂyﬁF_1 + F_QnaFkxg.

13

From these relations the evolution equation for v follows immediately with
the help of the Weingarten and Codazzi equations, the Gaufl formula, and the

definition of F.

4.2. Lemma. The following estimates are valid

(4.7) Napr V| < c@®[|nagsll,

(4.8) Dapy v} 2] g7 | < co®|[nass .

(4.9) Napr®zgu®| < cllnasl®,

(4.10) [Yazihfu’| < c|| Dyl | Al|57,

(4.11) apada B7] < cllnasll | AllT?,

and

(41 |Rapv®ziuk| < co®|Ropi®| + co|Rool || Dul|?
+ C@3|Rij’lliaj|,

where

4.13 ' = o,

( j

Proof. Easy exercise.
We can now prove that ¢ is uniformly bounded.
4.3. Lemma. The quantity v is uniformly bounded
(4.14) v <ec.

Proof. For large T, 0 < T < o0, assume that

(4.15) sup sup v = 9(to, To)-
(0,77 M (t)

O

Applying the maximum principle we shall deduce that either v < 2 or that ¢,

is a priori bounded

(4.16) to < Tp.
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In (tg,xo) the left-hand side of equation (4.2) is non-negative, assuming
to # 0. Multiplying the resulting inequality by F? and using the estimates in
Lemma [£2] we conclude

(4.17) 0 < —||A]120 — nf"||Dul|®* + ¢(1 + | f'])T + c|| A2
If o > 2, then
(4.18) | Dul|* > eod?

with a positive constant eg, and if 3 would be large, then — f” would be very
large; recall that lim,_o(—f") = cc.

In view of (0.8), —f” is also dominating |f’|, hence © is a priori bounded
independent of T'. O

Before we can show that || Du|| decays exponentially, we need the following
lemma

4.4. Lemma. For any k € N there exists ci, such that
(4.19) lInasll < cxlrl®.

Corresponding estimates also hold for ||nas+ |, IDY|, | Rasn®|l, or more gen-
erally, for any tensor that would vanish identically, if it would have been formed
with respect to the product metric

(4.20) — (dz®)? + 55da’da? .

Proof. We only prove the estimate in detail. The remaining claims can
easily be deduced with the help of the arguments that will follow; in case of
D] we use in addition the assumption that all derivatives of ¢ of arbitrary
order vanish if 7 tends to 0.

Let (£%), (x®) be arbitrary smooth contravariant vectorfields and set

(4.21) © = 1asE"X".
Let us evaluate ¢ in (z%,z), z € Sy fixed. Then we have
dyp a a a
(4.22) 520 = Mletvé XN+ 10" X7 + 1ap X n

Since (n,g) is a tensor that vanishes identically in the product metric, we
conclude that % vanishes identically in the product metric, and by induction

we further deduce

(4.23) lim_ Dfip=0 VkeN
and
(4.24) |DFop| < e VkeN.

The mean value theorem then yields

(4.25) o (7, 2) = (70, 2)| < sup [Daogl|T — 70,

[7,70]
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and, by letting 7y tend to 0, we conclude

(4.26) lo(7, )] < SUI;|DIOSDHT|-
7,0
Applying now induction to | D,o¢| yields the result because of the arbitrariness
of (£), (x*)- O
4.5. Lemma. There exists € > 0 and a constant c. such that
(4.27) | Dulle < c. VteR,.
Proof. We employ the relation
(4.28) o® =1+ ||Du?
and the fact that ¢ is uniformly bounded to conclude that for small || Dul|
(4.29) 2log ¥ ~ || Dul|?,

i.e., we can equivalently prove that log 7e?* is uniformly bounded.

Let € > 0 be small and set

. = log ve

(4.30) ¢ = log e,

then ¢ satisfies

(4.31) O —F 240 =070 — F2A0)e*! + F2||Dy||® + 2¢p.

To get an a priori estimate for ¢ we shall proceed as in the proof of
Lemma [£.3] For large T', 0 < T < oo, assume that

(4.32) sup sup ¢ = ¢(to, zo)-
[0,7] M(t)

Applying the maximum principle we infer from (4.31)), (4.2]), Lemma and
Lemma after multiplying by F?,

0 < — ||A||2€25t 4 C||A|||u|€26t 4 C|u‘2626t 4 nf//”DuHQeQetﬁ
+ clul [ Dulle*" + || All| Dulle® + cl| Dul[?e*" + 2¢F2p.

Now, we have

(4.33)

F2 _ H2 +n2|f’|2f)2 +77«2W1a1/a‘2
— 2nH 0+ 2nHpov® — 202 f' oo,

hence ¢ is apriori bounded, if € is small enough, 0 < € << 7.

(4.34)

Here we also used the boundedness of ¥ so that
(4.35) p < ce®,

as well as the boundedness of @ = ue?.
To control the term

(4.36) en’| f'*9%p
we employed the assumption yielding
(4.37) —c< f" AP <e
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as well as the estimate
(4.38) log — &1 Dul?| < ¢ Dul*
because of (4.28). O

After having established the exponential decay of ||Du|, we can improve
the decay rate.
4.6. Lemma. For any 0 < \ <y there exists cy such that

(4.39) | Dulle* < c.

Proof. As in the proof of the preceding lemma set
(4.40) ¢ = logve?M.
Let T, 0 < T < o0, be large and (tg,xg) be such that

(4.41) sup sup ¢ = (to, o)-
[0,T] M (t)

Applying the maximum principle we then obtain an inequality as in (4.33)),
where ¢ has to be replaced by A.

The bad terms which need further consideration are part of

(4.42) 2AF?p,
especially

(4.43) 2AH? ¢
and

(4.44) 2202|252 .

The quantity in (4.43]) can be absorbed by
(4.45) — [l A2,

since ¢ = log ¥e?* and log ¥ decays exponentially.
The second term is dominated by

(4.46) — nf"||Dul|?e* v,

because of (4.28), (4.37), (4.38), the exponential decay of ||Du||, and the as-
sumption that A < ~.
Thus we see that ¢ is a priori bounded independent of 7. ([l
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5. C2?-ESTIMATES

The ultimate goal is to show that ||A|le?t is uniformly bounded. However,
this result can only be derived by first establishing some preliminary estimates.
Let us start by proving that F' grows exponentially fast. From the evolution

equation we deduce
(5.1)  H-—F2AF = 2F3||DF|]? + F2(J|A||> + Ropv*v?)F,
where we have used that
(5.2) H =6k
Replacing H by F in the evolution equation and observing that
F=H-—nf'"s?F ' + nf'nasr®v’F~!

(5:3) +nfulFF? — leagl/al/BF71 + nipox® F1F~2
we obtain

F— F2AF = 2F73||DF||> + F72(J|A||?> + Rapv*v°)F
(5.4) + F72(—nf"9? + nf' masvv® — npasr®vP)F

+ F2(nf'u; + nipax®) F°.

5.1. Lemma. There exist positive constants § and cs such that

(5.5) cse’ <F  VteR,.
Proof. Define

(5.6) @ = Fe

Let T, 0 < T < o0, be large and (tg, xg) be such that
5.7 inf inf o = (¢t .
(5.7) inf, inf o ¢(to, zo)

Applying the maximum principle we deduce from ({5.4)
(5.8) 0> ||A||? + Rapr®v? + nf'asv®v? —nf"t — nipasrv® — §F?,

and we further conclude that, for small J, ¢ty cannot exceed a certain value in

view of the relations (4.34) and (4.37)), hence the result. O
Replacing in (5.1)) F' by H we obtain an evolution equation for H
H - F2AH = —2F3||DF||* + F2(||A||?> + Ropv°v?)F
+ F2(nf"9*H — nf"5g" hij — nf""||Dul|*s — 2nf”77(wuaziﬁui
+dnf" hijutu? — nf’nag.yuo‘:c?x]gij - 2nf'hijnagxf‘m?
— gV fTH — nf'| A0 + nf Hyu® + nf’ Rogv®aiu®)
+ nF_Q(qpamuo‘xfa:}g” + Yapr® VP H + 2¢a5m?xfh”
+ AP arv® + Yo HY + Ragr®a)ra g*).

(5.9)
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In deriving this equation we used the Weingarten and Codazzi equations,
the definition of F' and the relation

(5.10) oH = —Au+ g7 hyj,

where h;; is the second fundamental form of the slices {° = const}.
5.2. Lemma. H is uniformly bounded from below during the evolution.

Proof. Let T, 0 < T < o0, be large and z¢ = z(tg,&p) be such that

11 inf inf H = H(xg).
o i ity 11 = )

Applying the maximum principle and some trivial estimates we deduce from
(©-9)
0> —2F3||DF||? + F2(||A||* + Rapv®v®)F
+ F2(nf"oH — o| /|2 = 3/ Al*5 — c(1 + [|A]12)),

where we have used Corollary [3.7] Lemma [£.4] Lemma [£.6] and assumed that
H(xo) —1.

(5.12)

To estimate the term involving | DF||? we note that
IDF|* = |DH|* + n®| f"[*[| Dul|*3* + n°| f'[*| Do
+ 12| D(hav®)||? — 2nf" Hyu*o — 2n f Hy,o"
+ 2nH (v + 202 f ' 0o
— 202 "5 (hav )k — 202 f (1hav®) 0"
DH vanishes in zo, and because of (£.4), Lemma and Lemma we

have

(5.14)  |[D5]| < cllmasll + AN Dull < ex(1 + [[A)e™ VO <A <.

(5.13)

Combining these estimates with the exponential growth of F' we conclude
(5.15) FHDF|?* < e(1+ |f"| + |A%),
hence the a priori bound from below for H. O

Next we shall show that the principal curvatures of M(t) are uniformly
bounded from above, i.e., we want to estimate k] from above.

Let us first derive a parabolic equation satisfied by hz from the evolution
equation (2.11)).

Using the definition of F' we immediately obtain
hl — F2H) = —2F 3F,F7  F~'hyh™
(5.16) + F ' Rypysv ™) By al gk
+ F72(=n(f'0)] + n(var®)))
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and conclude further
hi — F72Ah] =
— 2F3F ) 4 F hh® + F~ Rogysv®al vz g
— F72| A0 + F2Hhiph™ + 2F “2hM Ropsafal o) alg"
—F~ ( klRaﬁmgx ka"’x hmg” + gklRaﬁ,W;(E m'g .x?hmﬂ
+ Ragyayﬁhg — HRyp 5" xfzﬂx‘s g™
(5.17) + F72gM Ropsc(Voaya) alal g™ + veal e xd x5 g™)
+ F 2 (nf"nlo? + nf”vnaga:‘”‘xfgkj nf" uul o
—nf" (v + 2 u;) — nf Mgy ™ xfmlg + Nap i xﬁh’”
+ DV h] + hERL D — hg;kuk + Ragysval e ad g uy))
+ nF 2 (opy ) 709" + Gopr Vo] + Yagzial B
+ Yapr) g hf g + Yo hah™ + Paziihlgh),
where we used the relation
(5.18) hij0 = —ugj + ﬁij = —u;; — naﬁxf‘m?,
equation as well as the Weingarten and Codazzi equations.

5.3. Lemma. The principal curvatures r; of M(t) are uniformly bounded
during the evolution.

Proof. Since we already know that H > —c, it suffices to prove an uniform
estimate from above.
Let ¢ be defined by

(5.19) ¢ =sup{ hyn'n’ : |Inl| = 1}.
We shall prove that
(5.20) w =logp + AU

is uniformly bounded from above, if A is large enough.
Let 0 < T < oo be large, and xyp = xo(tg), with 0 < tg < T, be a point in
M (tp) such that

(5.21) supw < sup{ sup w: 0 < ¢t < T} = w(xg).
M, M(t)

We then introduce a Riemannian normal coordinate system (£%) at zg €
M (to) such that at xo = (tg, &) we have

Let 77 = (77%) be the contravariant vector field defined by
(5.23) i =(0,...,0,1),



THE INVERSE MEAN CURVATURE FLOW IN ARW SPACES 20

and set
R
9ig 1y

(5.24) ¢ = A @ =log @+ Ab.

w is well defined in neighbourhood of (to, &), and @ assumes its maximum
at (to,&o). Moreover, at (tg,&p) we have
(5.25) ¢ = hy,

and the spatial derivatives do also coincide; in short, at (t,&o) @ satisfies the
same differential equation (5.17) as h]'. For the sake of greater clarity, let us
therefore treat h; like a scalar and pretend that w is defined by

(5.26) w = log h' + A\v.

At (to, &) we have w > 0, and, in view of the maximum principle, we deduce

from (5.17) and (:2)
0 < =M[AIPT + A + [|A]| + | ']~ 27 Al)
(5.27) +e([HIB + £/ [B2 + ) + n "5
+ | f'[|Dlog hip|| | Dul| + | Dlog hiz||? + ¢l| D log iz,

where we assumed A > 1, and in addition used (4.4]) and the known exponen-
tial decay estimates for || Dull.

Since Dw = 0 in zg, we have
(5.28) 1D log hyy[| = A[[ D3]] < Ac(1 + [|A[[[[Dul).

Hence, if X is chosen large enough, we obtain an a priori bound for A} from
above. O

An immediate corollary is

5.4. Corollary. There exist positive constants cy1,co such that

(5.29) 1 < Fe " <.

Proof. Since H is uniformly bounded we conclude
(5.30) Fe "'~ —nfle™ 5 = —nfu(ue’) o

and the result follows from Lemma [3.4] and Theorem [3.6 O

We can now prove an exponential decay for || A].

5.5. Lemma. For any 0 < A\ <y there exists cy such that
(5.31) [|Alle™ <ex  VEeR,.
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Proof. Let ¢ = ||A?, then

. —2 _ —2 2 17 —2 I\ 7,7
(5.32) ¢ — F*Ap = —F"*|DA|* + (h] — F~*Ah])hj,
where
(5.33) IDA|? = hijh® ,g*.

Define w = pe? with 0 < A < 7. Let 0 < T < oo be large, and zg = ¢ (to),
with 0 < ¢y < T, be a point in M(ty) such that

(5.34) supw < sup{ sup w: 0 < ¢t < T} = w(xg).
Mo M(t)

Applying the maximum principle we deduce from and
0 < —||DA|?e* — 2F 'R F;Fje®™ 4 2n f" 5% w
+eee” U f[| Al + el | (w + 1) + 20 F 2w,
with some small positive € = €()); here we used Lemma and Corollary

It remains to estimate the second and the last term in the preceding in-
equality. The only relevant term in 2AF%w is

(5.35)

(5.36) 2202 £/ |2 0% w;
combining it with 2nf"” 52w gives
(5.37) 2nf" 02w 4 2202 | f'|20%w < —2n%(y — N)|f[20%w + cw,

in view of (4.37).

The remaining term can be estimated
(5.38) — F W9 FiFje®* < ce || DA|2e*M + c | f'|Pe || Al + (1 + w),
with some positive € = ().

Inserting these estimates in (5.35) we obtain an a priori bound for w. O

Though we now could prove an a priori estimate for || A/, let us first
derive a corresponding estimate for ||Dulle”*. The estimate for the second
fundamental form is then slightly easier to prove.

5.6. Theorem. Let @ = ut, then ||Dul| is uniformly bounded during the
evolution.
Proof. Let ¢ = ¢(t) be defined by
¢

(5.39) @ = sup log 927",
M(2)

Then, in view of the maximum principle, we deduce from equation (4.2))
(5.40) ¢ < ce” + F2(nf"||Da|*v 4 2y F2p)

for some positive €, where we haved used the known exponential decay of || A||
and || Dul| as well as Lemma[4.2] Lemma[4.4] Corollary[5.4]and the inequalities

(4.37) and (4.38)); the inequality is valid for a.e. t.
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The second term on the right-hand side of (5.40) can be estimated from
above by

(5.41) ce” (14 @),

in view of (4.37), (4.38) and the known decay of ||A||, ||[Du| as well as the
result in Corollary Hence we conclude

(5.42) ¢ <ce 1+ ),

i.e., ¢ is uniformly bounded. a

5.7. Theorem. The quantity w = %||A||2627t is uniformly bounded during
the evolution.

Proof. Define ¢ = ¢(t) by

(5.43) © = sup w.
M(t)

Applying the maximum principle we deduce from that for a.e. t
¢ < —F_2||DA||262'7t + F_?’(—thjFiFjeQW _ an"'hijﬁiﬁjf))
(5.44) + F 2 (nf"0%p + 7 F2p) + ce (14 ¢)
+ F_lRag,y(;Va(Ei V“’x?hije%t

The last terms on the right-hand side of this inequality can be estimated as
follows

F3(=2n F;F;e®" — nF f" h'a,0;0) <
(5.45) F3(=2[f"12 + f/f"h9aa;0*n® + cF 3| DA%
+ece (14 ).

Now, we observe that

(5.46) (" AP = 1+ 25 = CF

where C is a bounded function in view of assumption , and hence
(5.47) 2|f//|2 o f/f/// — 2|f//|2 + 2,7|f/|2f// o C|f’|2,

ie.,

(548) |2|f//|2_f/f///| S c|f/|27

and we conclude that the left-hand side of ([5.45)) can be estimated from above
by

(5.49) ce” (14 ) + cF 2| DA| e
Next, we estimate

(5.50) F2(nf"9? + yF?)p < ce” o,

and finally

(5.51) F_1Ra375Va$i u”w?hije%t <ce (14 )+ F_lROiojhijeQ'ytf;Q,
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but
(5.52) |Roioj| < clul,
cf. Lemma [£4]
Hence, we deduce
(5.53) o <ce 1+ )
for some positive € and for a.e. t, i.e., ¢ is bounded. O

6. HIGHER ORDER ESTIMATES
After having established the boundedness of
(6.1) | A]Ze**

corresponding estimates for the derivatives of the second fundamental form
will be proved recursively.
Our starting point is the equation (5.17)). It contains two very bad terms

(6.2) —nF 2"l v,
and another one which is hidden in the expression
(6.3) —2F 3F,F9,

To handle these terms we proceed as in the proof of Theorem by com-
bining the two crucial terms in

(6.4) F3(=2F;F9 — nF f"uu’)
to
(6.5) F_3(—2‘f”|2 =+ f'f"’)uiujnzﬁQ

and observing that
(6.6) =2+ 1" =" ALY =20 AP

In view of our assumption and Corollary we conclude that the
spatial derivatives of ¢ can be estimated by

(6.7) 1D 0| < em(1 A+ ||allm—1)P"* (1 + [[D™a[)e**  ¥meN,
for some suitable p,,_1 € N.

Let us introduce the following abbreviations

6.1. Definition. (i) For arbitrary tensors S,7T denote by S x T any linear
combination of tensors formed by contracting over S and 7. The result can
be a tensor or a function. Note that we do not distinguish between S xT" and
¢S xT, ¢ a constant.

(ii) The symbol A represents the second fundamental form of the hyper-
surfaces M(t) in N, A = Ae?t is the scaled version, and D™A resp. D™A
represent the covariant derivatives of order m.
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(iii) For m € N denote by O,, a tensor expression defined on M(¢) that
satisfies the pointwise estimates

(6.8) 1Omll < em(1+ | Allm)"™,

where ¢,,, p;, are positive constants, and

(6.9) [Allm = > DAl
loe|<m

Moreover, the derivative of O,, is of class O,,4+1 and can be estimated by
(6.10) DO < em (1 + [|Afln)Pm (1 + |D™FA])
with (different) constants ¢, ppm, .

(iv) The symbol O represents a tensor such that DO is of class Oy.

6.2. Remark. We emphasize the following relations

(6.11) DOy = O,, Vm e N,
(6.12) F'DF=F'DA+ O,
(6.13) DFe " =e "DA+ O,
(6.14) F1'0,=0, VYmeN,
and

(6.15) |R0i0j| < cm|u|m Vm €N,
cf. Lemma [£4]

With these definitions and the relations (6.5) and in mind we can write
the evolution equation for A in the form
(6.16) Wl — F~2Ah) = F*DAx DA+ F-20« DA

' + F 30y« DA+ F20,+ F 10,

where the right-hand side is considered to be a mixed tensor of order two
though we omitted the indices.
Using the fact that
(6.17) gij = —2F hyj = —2F e h; = F20,
we can rewrite in the form
615) A—F2AA=F DA« DA+ F0xDA
+F 300« DA+ F 20, +F'O

regardless of representing A as a covariant, contravariant or mixed tensor.
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Differentiating this equation covariantly with respect to a spatial variable
we deduce

D(DA)~F2ADA=F'0y+ F3D*A« DA+ F*0xD*A
(6.19) + F*DAxDAx DA+ F 30« DAx DA+ F2DAx 0O,
+F*DAxDA*Oy+ F3DAx DOy + F3D?*A % O,

where we used the Ricci identities to commute the second derivatives of a
tensor.

Finally, using induction, we conclude
D(pm+t1A) - F2AD™ M A= F~'0,, + F*D™ A% DA
(6.20) + F 2D A% O, + FT3D™ 2 A% O
+OF 3D A« DMF1A,
for any m € N*, where © = 1, if m = 1, and © = 0 otherwise.

We are now going to prove uniform bounds for 1|[D™+!A||? for all m € N.
First we observe that

D(L|D™H1A|?) — F2AL | D™ A% = —F 2| D™ 2 42
+ FO,, D" LA+ F3D™ 24« DAx D™+ A
+ F 2D A% O, « D™ A+ 3D 24 % Oy % D™ 1A
+OF 3D A« D" A« DA,

(6.21)

if m € N*, in view of (6.20), where similar equations are also valid for %HAHQ

and 3||DA|?, cf. (6.18) and (6.19).

6.3. Theorem. The quantities %HD’”AHQ are uniformly bounded during the
evolution for all m € N*.
Proof. We proof the theorem recursively by estimating
(6.22) p =log 3| D" AP + pg | D™ AP + Ae T,
where p is a small positive constant
(6.23) 0<p=p(m)<<l1,

and A large, A = A(m) >> 1.
We shall only treat the case m = 0, since then the structure of the right-hand
side is worst, at least formally, cf. (6.19).

Fix 0 < T < oo, T very large, and suppose that
(6.24) 2sup|A||* < sup sup ¢ = p(x(to, &)
0,T] M(t)

for 0 < tg < T, where e~ 7% should be small compared with pu, i.e., ty has to
be large.
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Applying the maximum principle we deduce
(6.25) 0 < p?F 2| D || AIP|* — 3F 2| D> AP DA| 2 — Sye™
' — 4F 2| DA|P + cF ' DA,

Now, we observe that
(6.26) IDZIAIP|| < el DAIPIA]* < c| DA
and hence the right-hand side of inequality (6.25) would be negative, if p is
small, A large and t( large.

Thus ¢ is a priori bounded.

The proof for m > 1 is similar. [l

7. CONVERGENCE OF 4% AND THE BEHAVIOUR OF DERIVATIVES IN ¢t
Let us first prove that @ converges when ¢ tends to infinity.

7.1. Lemma. @ converges in C™(Sy) for any m € N, if t tends to infinity,
and hence D™ A converges.

Proof.  satisfies the evolution equation

. pet et -
(71) u = T +yu = 7 (1 —fyf/u-i-v’yHe*’Yt _‘_U’yn?/}ayaefﬁt)’
hence we deduce
(7.2) || < ce™ 2,

in view of Lemma 3.4 and the known estimates for H, F and ¢, i.e., & converges
uniformly. Due to Theorem|[6.3] D™ is uniformly bounded, hence @ converges
in C™ (So ) .

_ The convergence of D™ A follows from Theorem and the convergence of
hij, which in turn can be deduced from equation ([5.18]). ([l

Combining the equations (6.18)), (6.19)), (6.20), and Theorem |6.3| we imme-
diately conclude

7.2. Lemma. ||%Dmfl|| and |2 D™A|| decay by the order e="" for any
m € N.

7.3. Corollary. %DmAe'ﬂ converges, if t tends to infinity.

Proof. Applying the product rule we obtain
(7.3) bDpmA=LDpmAert +yD™A,

hence the result, since the left-hand side converges to zero and D™A converges.
O
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In view of Lemma f'u converges to 41, if ¢ tends to infinity, moreover,
because of the condition (0.10) and the estimates for w resp. @, we further
deduce

7.4. Lemma. For any m € N we have

(7.4) D™ (fu)ll < em.

Proof. We only consider the case m = 1. Differentiating f'u we get

(7.5) (f'u)r = fuug + flup = fu?u  ug + fruutuy,
but
(76) uiluk = iflﬂk

and hence uniformly bounded in view of Theorem [3.6] and Theorem [5.6f O

7.5. Corollary. We have
(7.7) |ID"F~ Y <enF™'  YmeN.

Proof. Recall that

(7.8) F=H-—nof + np,v®
and hence
(7.9) (F Y = —F2(Hy, — nip f' — nof"up + n(tbav®)i).

Now, writing
(7.10) FY(Hy — g f' = 00 f"up + n(Yar®)i) =
. (Fu)™ ' (uHy, — nop f'u — ndf " uug, + n(ar®)xu)

we conclude that the expression is smooth in z with uniformly bounded
C™- norms.

The estimate (7.7)) follows by induction. O

7.6. Lemma. The following estimates are valid

(7.11) | Di]| < ce ™,

(7.12) | 4F ) <P,

and

(7.13) 9] + |9| + | DD|| < ce 2.
Moreover, e and et converge, if t goes to infinity.
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Proof. “  The estimate follows immediately from

(7.14) =

’TLjv\ S

in view of Corollary
»(7.12)*  Differentiating with respect to ¢ we obtain
(7.15) A = —F72(H —niof —nof"i+nd(yar®))
and the result follows from (7.13) and the known estimates for |i| and F.
»(7.13)¢  We differentiate the relation v = n,v® to get
L a8 .
V= Nagl” 2"+ NalV
(7.16) .
= —NagV VUV’ F 7 + (F7)ku
yielding the estimate for ||, in view of Corollary and the decay of 7,3.

Differentiating ((7.16]) covariantly with respect to x we infer the estimate for
||Dv||, while the estimate for ||v]| can be deduced after differentiating ([7.16|)
covariantly with respect to ¢, in view of ([7.11)).

The convergence of 9e27* and ve"* can be easily verified. O

Finally, let us estimate i/ and A
7.7. Lemma. k) and izf decay like e~ ¢,

Proof. The estimate for hf follows immediately by differentiating equation
(5.17) covariantly with respect to t and by applying the above lemmata as
well as Theorem

Observing the remarks at the beginning of Section [6] about rearranging

crucial terms in (5.17)), cf. equations (6.4)) and (6.5)), we further conclude
(7.17) 1h2]| < ce™ . O

Using the same argument as in the proof of Corollary [7.3] we infer
7.8. Corollary. The tensor hf et converges, if t tends to infinity.

The claims in Theorem are now almost all proved with the exception of
two. In order to prove the remaining claims we need

7.9. Lemma. The function ¢ = e u~" converges to —3/m in C>®(Sy), if
t tends to infinity.
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Proof. ¢ converges to —y+/m in view of (3.5). Hence, we only have to show
that

(7.18) |ID™ |l < cm Vm e N*,
which will be achieved by induction.
We have
i =3V Fluut — a2,
(7.19) L

= (3 f'u — D)u u,.
Now, we observe that

7.20 ulu=a"tq,

(7.20) i

and f’u have uniformly bounded C"- norms in view of Theorem Lemmal7.1
and Lemma [T.4]
The proof of the lemma is then completed by a simple induction argument.

7.10. Lemma. Let (g;;) be the induced metric of the leaves of the inverse
mean curvature flow, then the rescaled metric

2
(7.21) en'Gi;

converges in C*(Sy) to
~ 1 ~\2 _

(7.22) (5m)* (—i) 5,
where we are slightly ambiguous by using the same symbol to denote u(t,-) and
lima(t, ).
Proof. There holds
(7.23) Gij = 1 e (—usuj + oy5(u, ).

Thus, it suffices to prove that
(7.24) e2fent — (gym)%(—ﬂ)%

in C*°(Sp). But this evident in view of the preceding lemma, since

2

(725) 1k = (L =

Finally, let us prove that the leaves M (t) of the IMCF get more umbilical,
if t tends to infinity. Denote by h;;, 7, etc., the geometric quantities of the
hypersurfaces M (t) with respect to the original metric (Go) in N, then

(7.26) e lVﬂ = hg +1ﬁau"5g,
and hence,

G20 AT - LS = P - LS < e
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In case n +w — 4 > 0, we even get a better estimate, namely,

) |hl — %Fléﬂ = e_¢e_fe_%t\hg - %Héﬂe%e(%_'y)t
(7 8) (n+w—4)t

1
< ce 2 ,

in view of (7.24]).

8. TRANSITION FROM BIG CRUNCH TO BIG BANG

We shall define a new spacetime N by reflection and time reversal such that
the IMCEF in the old spacetime transforms to an IMCF in the new one.

By switching the light cone we obtain a new spacetime N. The flow equation
in N is independent of the time orientation, and we can write it as

(8.1) i=—-H'v=—(—H)"Y(-v)=-H'p,

where the normal vector 7 = —7 is past directed in N and the mean curvature
H=-H negative.

Introducing a new time function z
(%) by setting

(8.2) =2 3 =2t

0 — —2% and formally new coordinates

we define a spacetime N having the same metric as N—only expressed in the
new coordinate system—such that the flow equation has the form

(8.3) i=—H'p,
where M (t) = grapha(t), 4 = —u, and
(8.4) (0*) = —ve (1, 4")

in the new coordinates, since

(8.5) aoz-diégjzyo
and
(8.6) D= i,

The singularity in £° = 0 is now a past singularity, and can be referred to
as a big bang singularity.

The union NUN is a smooth manifold, topologically a product (—a,a)xSo—
we are well aware that formally the singularity {0} x Sp is not part of the union;
equipped with the respective metrics and time orientation it is a spacetime
which has a (metric) singularity in 2% = 0. The time function

0 in N
(8.7) ﬁ:{ oo

—z”, in N,

is smooth across the singularity and future directed.
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N UN can be regarded as a cyclic universe with a contracting part N =
{#° < 0} and an expanding part N = {2° > 0} which are joined at the
singularity {2° = 0}, cf. [5 [6] for similar ideas.

We shall show that the inverse mean curvature flow, properly rescaled,
defines a natural C3- diffeomorphism across the singularity and with respect
to this diffeomorphism we speak of a transition from big crunch to big bang.

Using the time function in the inverse mean curvature flows in N and
N can be uniformly expressed in the form
(8.8) t=—H1p,
where (8.8) represents the original flow in N, if 2° < 0, and the flow in (8.3)),
if 20 > 0.

Let us now introduce a new flow parameter

{—’yle”ft, for the flow in N,

s =

8.9 .
(8.9) ~~te=  for the flow in NN,

and define the flow y = y(s) by y(s) = &(t). y = y(s,§) is then defined in
[y, 771] x 8o, smooth in {s # 0}, and satisfies the evolution equation

—H 'pet, s<0,

8.10 I = = N
(8.10) V=Y { H0et, s>0.

&=

8.1. Theorem. The flowy = y(s,&) is of class C* in (—y~1,v71) x Sy and
defines a natural diffeomorphism across the singularity. The flow parameter s
can be used as a new time function.

The flow y is certainly continuous across the singularity, and also future
directed, i.e., it runs into the singularity, if s < 0, and moves away from it, if
s> 0.

The continuous differentiability of y = y(s,£) with respect s and £ up to
order three will be proved in a series of lemmata.

As in the previous sections we again view the hypersurfaces as embeddings
with respect to the ambient metric

(8.11) ds® = —(dz°)* + 04 (2, z)dz' da? .
The flow equation for s < 0 can therefore be written as
(8.12) y = —F tyert

8.2. Lemma. y is of class C* in (—y~1,~v71) x Sp.
Proof. Here, as in the proofs to come, we have to show that y and y; are
continuous in {0} x Sp.

Now, we have
(8.13) y0(s) = 2°(t), y'(s) = (1) Vs <0,
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and

(8.14) yO(s) = —2°(t), vy'(s) = x'(t) Vs >0,

hence y is continuous across the singularity if and only if
cd, 0 _ 1. d. 0

(8.15) 18%1 Y = lim gy,

and
coodi 1 d i

(8.16) lim 3oy" = —lim 309"

Furthermore, we have to show that

. 0 __
(8.17) 181%1,% =0
and
1 limv? = lim?.
(8.18) imy; = limy;

The last two relations are obviously valid.

To verify (8.15) and (8.16) we observe

8.3. Remark. The limit relations for (D™y, %> and (D™y, %>, where
D™y stands for covariant derivatives of order m of y with respect to s or &,

are identical to those for (D™y, v) and (D™y, x;), because v converges to —%,
ifs10.

Thus, in view of (8.10) and (8.12)), it suffices to prove the convergence of
Fe™t if t goes to infinity. But this has already been shown in the proof of

Corollary cf. equation ([5.30). |

Let us examine the second derivatives.
8.4. Lemma. y is of class C? in (—y~1,471) x Sp.

Proof. ,y!“ The normal component of y} has to converge and the tangential
components have to converge to zero.

We may only consider the behaviour for s < 0. Then

(8.19) y = —F ey
and
(8.20) Yl = F2Fe'v — F ey,

The normal component is therefore equal to
(8.21) F2(H; — i f — nof u; + nwaguo‘x?, +nthovs)
which converges to

(8.22) lim —F~2e® n ;0" = v,
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The tangential components are equal to
(8.23) — Flevthk,

which converge to zero.

3

»Yi;“  The Gaufl formula yields
(824) yij = hijl/,
which converges to zero as it should.

»y”"“  Here, the normal component has to converge to zero, while the tan-

gential ones have to converge.
We get for s < 0
y// — _%(F—ly)(a?\/t _ F_ll/’}/EQ’Yt
(8.25) 1. 2+t 2 24t 1, 2+t
= —F 0" + F*vFe"" — F~ uye ",
The normal component is equal to
(8.26) F22NH — nof' — nof"i + nipapv®i? + nipav® — yF).

F~2e27t converges, all other terms converge to zero with the possible ex-
ception of

(8.27) —nif'i—yF = —F 'n(0®f" + 24F?)
which however converges to zero too, in view of (4.37) and the estimate for
|H|.
The tangential components are equal to
FIDy(F~Ye?"t = —F 32" (H; — nty f' — nofuy
(8.28)
+ nwaﬂyaxi + nq/)a’/zq)a
which converge to

(8.29) lim F=3e3" no a0 2, O
8.5. Lemma. y is of class C3 in (—y~1,~v71) x Sp.
Proof. ,y;;r* Now, the normal component has to converge to zero, while the

tangential ones have to converge. Again we look at s < 0 and get
(8.30) Yij = hijv,

(831) Yijk = hijkl/ + hijl/k.
Hence, y;;1, converges to zero.

,,ygj “  The normal component has to converge, while the tangential ones

should converge to zero.
Using the Ricci identities it can be easily checked that, instead of ygj, we
may look at %(yij), since

(8'32) ROin — O,
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cf. Lemma [1.41
From (8.30) we deduce

(833) %yij = }.LijVefyt + hijlﬁewt,

and conclude further that the normal component converges, in view of Co-
rollary and the tangential ones converge to zero, since © vanishes in the
limit.

/1

WYi The normal component has to converge to zero and the tangential
ones have to converge.

From we infer
y// _ _F—362'yt(Hk _ nf}kf nf"uk + n( O‘)k)xk
(8.34) + 72N H — b f' +nB (var®))y
' + 3 (—n@®[f7 + A f'P] = A[H? + 0P (Yar®)® — 20H f'5
+ 2nHopov® — 202 f' 50 (v )v
and thus
yl = —(F 3 (HY —nid® f' — nf"uF + (mpor™)F))iz,
_ -3 Q’Yt(Hk _ "kf f” k (nwal/ ) ) ikV
+ (F2e¥(H — no f' + 2 (npav™)))iv
(8.35) + P2 (H = nif' + B(nar®))v;

+ (F2 (=nd® [f" + )] = A[H? + (npar®)® — 2nH f'0
+ 2Hnov® — 2nf'onpav®)))iv

+ F3e (—n@?[f7 + 31 fP] = y[H? + (npar®)? — 2nH f'0
+ 2Hnpov® — 2nf'onav®))y;.

Therefore, the normal component converges to zero, while the tangential
ones converge.

»y'""“  The normal component has to converge, while the tangential ones

have to converge to zero.
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Differentiating the equation we get

"= 3F AP (HE — nt® f — nf"uF 4+ (npor®)

— 29F 2 (HE —ndh f = nf"u* + (npar®)F)

— F3e3D(HY —nih ' — nfub + (npar®)*)

— F3e3M(HY —no* f — nf"ub + (npar®)F) iy,

—2F 3 (H — nof + T D (napv®))v

+29F 2N (H — nof' + F(npar®))v

+ P2 B(H —nof' + B (mpav®))v

+ P2 (H —nof' + Z(npar®))p

— 32V (—n@?[f7 4+ A ] = A[H? + (npar®)? — 2nH f'D
+ 2Hnpov™ — 2nf'onpav®))v

+ 29F 2 (=n@? [ + A1) = A[H? + (npar®)? — 2nH f'0
+ 2Hnpov® — 2nf'onpav®])v

+ e G (—nd? [ + A1) = A [H? + (mpar®)? — 2nH f'0
+ 2Hnpov™ — 2nf'onpov®))v

+ F2SM (=t [f" + 3| fP] = A[H? + (mpav®)? — 2nH f'
+ 2Hnpov™ — 2n f'onpav®))w

k)CEk

Tk

(8.36)

Observing that

(8.37) iy = F 2Fuw—F iy,
and
(8.38) up = F~'0, — F20F,

and taking the results of Lemmal[7.6, Lemmal[7.7} and Corollary|[7.8|into account
we conclude that the normal component converges.
The tangential components contain the following crucial terms
SF 22| £ [Pub i + 2y F 33 g fuk
(8'39) +F™ 3 3fytnvf/// ku + 5 S'yt U3|f//|2uk,

which can be rearranged to yield
(8.40) F=o3 o (4" (f" + A1) = 1/ + AL P)).
Hence, the tangential components tend to zero.

The remaining mixed derivatives of y, which are obtained by commuting the
order of differentiation in the derivatives we already treated, are also continuous
across the singularity in view of the Ricci identities and (8.32). O
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9. ARW SPACES AND THE EINSTEIN EQUATIONS

Let N be a cosmological spacetime such that the metric has the form as
specified in Definition though, with regard to f, we only assume at the
moment that f is smooth and satisfies

(9.1) liir%) f(r) =—oc0
and
(9.2) lirr%) f' = —o0.

The conformal metric
(9.3) ds? = e*¥(—(dz®)? + 0y;(2°, ) dx'da?)

should satisfy the conditions in Definition and, in addition, the partial
derivatives of 1 as well as the second fundamental form of the coordinate
slices {2° = const} and its derivatives should be integrable over the range
[a,b) of 2°.

In contrast to the previous sections we suppose that the Einstein equations
are valid

(9.4) Gaﬁ = HTa57
where k is a positive constant, and the stress-energy tensor is asymptotically

equal to that of a perfect fluid.

9.1. Definition. Let 2° be a time function such the preceding assumptions
are satisfied. A symmetric, divergent free tensor (T, 3) is said to be asymptot-
ically equal to that of a perfect fluid with respect to the future, if the mixed
tensor (7g") splits in the form
(9.5) Ty =Tg + 1§,
where (Tg‘) is the stress-energy tensor of a perfect fluid, i.e.,

(9.6) 1o =—p, T7 =07p;

0 < p is the density and p is the pressure, and (TE) as well as its partial
derivatives of arbitrary order are supposed to vanish, if 2° tends to b, and they
should be integrable over the range [a,b) of 2°. Moreover, Tg‘ f’ should vanish
and be integrable as well.

Let us assume an equation of state

(9.7) p=1%2p
holds, where w € R is a constant such that
(9.8) n+w—2>0.

We shall now show that, because of the Einstein equations, f has to satisfy
the conditions stated in Definition [0.1} even slightly stronger ones.
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First, we prove

9.2. Lemma. There exist 7o and ¢ > 0 such that

(9.9) p(r,z) >¢>0 Y1 > 19, Vo € Sp.
Moreover,
(9.10) lin})p = 0.

Proof. We use the Einstein equations

(9.11) Goo = KToo

to conclude

(9.12) Inn—1)|f'P+3iR+e= kpe?? + kT,

where we recall that R is the scalar curvature of the metric in (9.3)), and where
€ represents terms that converge to zero, if 7 tends to b, or equivalently,

(9.13) in(n— 1)|f’|2672¢ + %R(;M tee 2 = kp+ KTY.

Hence, we have

(9.14) kp ~ In(n— D) fPe,
which proves the result, in view of (9.1)) and (9.2). O

9.3. Lemma. Let ¥ = §(n+w—2), then there exists a constant m > 0 such
that

(9.15) lirr%)|f'|262w =m
and
(9.16) D™ f| < el f/|™ Vm e N.

Furthermore, the limit metric (G;;) must have constant scalar curvature R.
The function

(9.17) p=f"+3fP
converges to

(9.18) lim ¢ = ——=R,

T—b n—1
where v = %’y, and in addition

(9.19) 1imem<p=0 Vm € N*.
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Proof. “  Since (Tnp) is divergent free, we deduce

0="Tg,, =Tg, + 7,15 — Ig, T

(9.20) ,
=—p—(n+wyp - 56,1+ 2)p+C,

where C tends to zero and is integrable over the range [a,b) of x°.

In view of Lemma [0.2] we deduce

(9.21) 4 logp = —(n+w) +C,
where we still use the same symbol C, and hence, for fixed x,
(9.22) p(r, 2)eMHINTD) = o/ g)enr@)d(r @) [l C.

Thus, we conclude, first, that p(r, x)e(”Jr“’)w(T’T“) is uniformly bounded, and
then, that it converges to a positive function, if 7 tends to b.

At the moment the limit can depend on the spatial variables x, but we shall
see immediately that it is a constant.

Now, multiplying equation ((9.13)) with (") we deduce

(9.23) 1im\f/\2€(n+w_2)f = n(n2—1)/€hm pe(’”'“’)f,

i.e., the limit on the left-hand side exists, and the limit on the right-hand side
is a constant.

»(9.16)“  We consider the contracted version of the Einstein equations
(9.24) Go = kTY
and infer with the help of equation (9.13)
R= Zokp(l —w)+C

=alf'Pe (1 -w)+ 3ty

(9.25) o ]
Re™?Y(1 —w) +ee?¥ 4,

and we further conclude
(9.26) LR+ i+ w—2)|f)? = e+ Ce.
The estimate in (9.16)) now follows immediately by induction.

»(9.18) and (9.19)¢ One easily checks that
(9.27) lim R = R,

T—b
where R is the scalar curvature of (7).

The relation implies that ¢ is uniformly Lipschitz continuous and
bounded, hence there exists a sequence 7, — b such that (73) converges,
from which we deduce that R has to be constant. Therefore, ¢ = f” + 7| f|?
converges.

Moreover, after having established the relation (9.15)), we can apply the
result of Lemma [3.1] i.e., b is finite, and without loss of generality we may
assume that b = 0, which in turn allows us to conclude that derivatives of



THE INVERSE MEAN CURVATURE FLOW IN ARW SPACES 39

arbitrary order of the right-hand side of (9.26) tend to zero in the limit, cf.

Lemma [4.4]

This completes the proof of the lemma. O
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