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Preface

This is the second and last part of an introduction to analysis which is
based on my beginner’s course Analysis I–III and the more advanced course
Tensoranalysis that I use to give in Heidelberg from time to time.

The present volume comprises material for a four semesters course. It
starts with a fairly comprehensive introduction to functional analysis, which
might serve as a basis for a separate independent lecture.

In the next two chapters the theory of differentiation in Banach spaces
and the fundamental existence theorems in analysis are treated in great detail
and generality.

In Chapter 9 we develop the existence and regularity theory for ordinary
differential equations in Banach spaces always having in mind to apply these
results later to differential equations of arbitrary order in semi-Riemannian
manifolds.

The last three chapters, Chapter 10–12, contain some fairly advanced top-
ics from measure theory and differential geometry. In addition to providing
the basic definitions and results of these theories we included material that is
of great importance from an analytical point of view like covering theorems,
Hausdorff measures and vector valued measures, or a thorough treatment of
submanifolds, tubular neighbourhoods, the Riemannian and Lorentzian dis-
tance functions with respect to a hypersurface, and solving evolution equa-
tions in manifolds.

The only topic that is missing, at least from my point of view, is the treat-
ment of partial differential equations, especially looking at partial differential
equations in manifolds. However, after reading the material in Chapter 11
and 12, anyone, who knows the PDE theory in Euclidean space, should be
able to apply this theory to PDE problems in semi-Riemannian manifolds.

I would like to thank Heiko Kröner for proof reading large parts of the
final manuscript and Shing-Tung Yau for accepting the manuscript for the
International Series in Analysis.

Heidelberg, April 2005 Claus Gerhardt
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