TRACES AND EXTENSIONS OF BV-FUNCTIONS

CLAUS GERHARDT

ABSTRACT. We give a simple proof of Gagliardo's trace and extension theorem for BV-functions.

Contents

1. Introduction1References4

1. Introduction

Definition 1.1. We say a sequence $u_k \in BV(\Omega)$ converges in the BV sense to $u \in BV(\Omega)$, if

$$(1.1) \qquad \int_{\Omega} |u - u_k| \to 0$$

and

(1.2)
$$\int_{\Omega} |Du_k| \to \int_{\Omega} |Du|.$$

Lemma 1.2. Let $\Omega = B_1^+(0)$ be the upper half ball and let $u \in BV(\Omega)$ have compact support with respect to the spherical boundary. Define for 0 < h

(1.3)
$$u_h(\hat{x}, x^n) = u(\hat{x}, x^n + h),$$

then u_h is defined in $\{x^n > -h\}$ and the mollification $u_{h,\epsilon}$ with an even mollifier is well defined in Ω if $0 < \epsilon < \epsilon_0(h)$. There are sequences (h_k, ϵ_k) converging to zero such that u_{h_k, ϵ_k} converge in the BV sense to u.

Proof. Let $\eta^i \in C_c^{\infty}(\Omega)$, $\|(\eta^i)\| \le 1$, then

(1.4)
$$\int_{\Omega} u_{h,\epsilon} D_i \eta^i = \int_{\Omega} u D_i \eta^i_{-h,\epsilon} \le \int_{\Omega} |Du|,$$

if $\epsilon \leq \epsilon_0(h)$, since

(1.5)
$$\eta_{-h,\epsilon}^i \in C_c^{\infty}(\Omega)$$

 $Date \hbox{: July 20, 2019.}$

2000 Mathematics Subject Classification. 35J60, 53C21, 53C44, 53C50, 58J05. Key words and phrases. Traces, extensions of BV-functions, Gagliardo's theorem.

for those ϵ , where we may consider only η_i the support of which is uniformly compact with respect to the spherical boundary in view of the assumption on u. This proves the lemma.

Lemma 1.3. Let u, Ω be as above, then the approximating functions u_{h_k,ϵ_k} , or any other sequence $u_k \in C^1(\bar{\Omega})$ converging in the BV sense to u, define a unique trace of u, $\operatorname{tr} u$, on the hyperplane such that the divergence theorem holds

(1.6)
$$\int_{\Omega} D_i u \eta = -\int_{\Omega} u D_i \eta + \int_{\partial \Omega} u \eta \nu_i$$

for all $\eta \in C_c^1(\Omega_\epsilon \cup \partial \Omega)$, cf. Remark 1.6.

Extending u as an even function to the lower half space

(1.7)
$$\tilde{u}(\hat{x}, x^n) = \begin{cases} u(\hat{x}, x^n) & x^n > 0, \\ u(\hat{x}, -x^n) & x^n < 0, \end{cases}$$

there holds

$$(1.8) \qquad \int_{B_1(0)} |D\tilde{u}| \le 2 \int_{\Omega} |Du|$$

and

$$\int_{\partial\Omega} |D\tilde{u}| = 0.$$

Proof. Let $\eta^i \in C^1(B_1(0))$, then

(1.10)
$$\int_{B_{1}(0)} D_{i}\tilde{u}\eta^{i} = \int_{B_{1}^{+}} D_{i}u\eta^{i} + \int_{B_{1}^{-}} D_{i}\tilde{u}\eta^{i} + \int_{\Gamma} D_{i}\tilde{u}\eta^{i}$$
$$= -\int_{B_{1}(0)} \tilde{u}D_{i}\eta^{i} + \int_{\Gamma} (u^{+} - u^{+})\eta^{i}\nu_{i} + \int_{\Gamma} D_{i}\tilde{u}\eta^{i}$$

hence

$$(1.11) \qquad \int_{\Gamma} D_i \tilde{u} \eta^i = 0.$$

Moreover, if $\|(\eta^i)\| \le 1$, we conclude from [2, Theorem 10.10.3] and (1.10) the estimate (1.8).

Theorem 1.4. Let Ω be as in the theorem below, then $u \in BV(\Omega)$ can be extended to \mathbb{R}^n with compact support such that, if the extended function is called \tilde{u} ,

(1.12)
$$\int_{\mathbb{R}^n} |D\tilde{u}| \le c \int_{\Omega} (|Du| + |u|)$$

and

$$\int_{\partial\Omega} |D\tilde{u}| = 0.$$

Proof. Let U_k be a finite open covering of $\bar{\Omega}$ with the usual conditions for the boundary neighbourhoods and let η_k be a subordinate finite partition of unity, then each function $u\eta_k$ can be extended to \mathbb{R}^n with compact support such that, if \tilde{u}_k is the extended function,

$$(1.14) \qquad \int_{\mathbb{R}^n} |D\tilde{u}_k| \le c \int_{\Omega} (|Du| + |u|).$$

The function

$$\tilde{u} = \sum_{k} \tilde{u}_{k}$$

is then an extension of u with the required properties.

The above theorem is due to [1].

Theorem 1.5. Let $u \in BV(\Omega)$, where $\partial \Omega \in C^{0,1}$ and compact, and let $u_k \in C^1(\bar{\Omega})$ converging in the BV sense to u, at least in a boundary neighbourhood, then $\operatorname{tr} u_k$ converges in $L^1(\partial \Omega)$ to a uniquely defined function depending only u and not on the approximating functions; we call this limit $\operatorname{tr} u$. If $u \in BV(\Omega) \cap C^0(\bar{\Omega})$, then

$$(1.16) tr u = u_{|_{\partial\Omega}}$$

Proof. It suffices to prove the uniqueness of the trace, since u can be extended to \mathbb{R}^n , and hence also be approximated by mollifications.

Let u_k and \tilde{u}_k be $C^1(\bar{\Omega})$ approximations of u and let $v_k = u_k - \tilde{u}_k$, then

$$\lim \int_{\Omega_{\epsilon}} |v_k| = 0,$$

where Ω_{ϵ} is a boundary strip of width ϵ such that

$$(1.18) \qquad \qquad \int_{\{d=\epsilon\}} |Du| = 0$$

and

(1.19)
$$\limsup \int_{\Omega_{\epsilon}} |Dv_k| \le 2 \int_{\Omega_{\epsilon}} |Du|.$$

Now, there holds for any $\epsilon > 0$

(1.20)
$$\int_{\partial\Omega} |v_k| \le c \int_{\Omega_{\epsilon}} |Dv_k| + c_{\epsilon} \int_{\Omega_{\epsilon}} |v_k|,$$

hence

$$(1.21) \qquad \qquad \limsup \int_{\partial \Omega} |v_k| \leq 2c \lim \sup \int_{\Omega_\epsilon} |Du| = 0,$$

where the last equality is due to the fact that |Du| is a bounded measure in Ω_{ϵ_0} and the Ω_{ϵ} are monotone ordered such that

$$\bigcap_{0 < \epsilon \le \epsilon_0} \Omega_{\epsilon} = \emptyset.$$

Remark 1.6. By approximation we also obtain

(1.23)
$$\int_{\Omega} D_i u \eta = -\int_{\Omega} u D_i \eta + \int_{\partial \Omega} u \eta \nu_i$$

for all $\eta \in C_c^1(\Omega_\epsilon \cup \partial \Omega)$.

Remark 1.7. The definition of $BV(\Omega)$, when $\Omega \subset N$, where N is a Riemannian manifold is analogous to the case $N = \mathbb{R}^n$, namely,

(1.24)
$$\int_{\Omega} |Du| = \sup \{ \int_{\Omega} u D_i \eta^i \colon g_{ij} \eta^i \eta^j \le 1, \ \eta^i \in C_c^{\infty}(\Omega) \}.$$

Even in the Euclidean case it is sometimes desirable to use the invariant definition of the total variation.

References

- [1] Emilio Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova 27 (1957), 284–305.
- [2] Claus Gerhardt, Analysis II, International Series in Analysis, International Press, Somerville, MA, 2006.

Ruprecht-Karls-Universität, Institut für Angewandte Mathematik, Im Neuenheimer Feld $294,\,69120$ Heidelberg, Germany

Email address: gerhardt@math.uni-heidelberg.de URL: http://web.me.com/gerhardt/