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CHAPTER 1

DISTRIBUTIONS AND SOBOLEV
SPACES

1.1 Distributions

1.1.1 Definition. Let 2 C R™ be open, K C ) compact. We set
Dk () :={¢ € C(Q2): supp ¢ C K}.

On Dk (2) we define the following norms:

VYm € N: p(d) = |¢

m, K-

1.1.2 Remark. Those norms define a topology on Dy (€2), using the base

Une:=1{¢:pm(¢) <€}, >0, meN,

such that Dy () becomes a topological vector space, i.e., all the other neigh-
borhood bases are formed by translation. This topology is then generated

by the metric
‘(b - n’m

d = -

meN

1.1.3 Proposition. T' € Dk ()" is continuous, if and only if
Im eN Je>0Vp € Di(Q): (T, 0)| < cpm().
Proof. Exercise. O

1.1.4 Remark. Let K; " Q be an exhaustion, such that K; CI%Z-H. Then

C(Q) = | Dk, (Q) = D(Q).
€N



Let the topology 7 of D(2) be defined by the requirement
Vi € N: ﬁDKi(Q) C TDKi(Q).

The topology T does not depend on the exhaustion.
Proof. Exercise. ]
1.1.5 Definition. (i) A linear form 7T on D(f?) is called distribution, if it
is continuous. For the set of all continuous linear forms on D(£2) we write
D'(Q).
(ii) D'(Q) obtains the x-weak topology, i.e.

T, 5T & Y e D(Q): (Th,6) = (T, 6).
1.1.6 Remark. From the previous constructions we deduce

TeD(Q)e VKeQImeNIe>0Vp e D (Q): (T, d)| < cpm(e).

If m can be chosen independently of K, the minimal such m is called order
of T, ord(T).

1.1.7 Definition. A distribution of order 0 is called measure.

1.1.8 Remark. Let f € L} (9), then

loc
<ﬁ@=1ﬁ¢

defines a measure.

Proof. Exercise. O

1.1.9 Definition. Let 7' € D'(Q2), a € N". We define the a-th weak deriva-
tive or distributional derivative of T, DT by

(DT, ¢) := (—1)\°l(T, D*¢).
1.1.10 Remark. We have D*T € D'(Q) and ord(D*T) < ord(T) + |«|, if
both sides are defined.
1.1.11 Example. Let

1 t>0
ot)=4 0 7
1, t<0

Then, as one easily verifies, 6/ = 2.

1.1.12 Remark. According to the fundamental lemma of the calculus of
variations,

U: L (Q) — D'(Q)
is an embedding.
The derivative D%u of a function u € L}, (2) is always to be understood as
distributional derivative.

1.1.13 Remark. For W(L?

I (Q)) we simply write L} (£2) and consider this
to be a subspace of D'(Q).



1.2 Sobolev-Spaces
1.2.1 Definition. Let n > 1 and 2 C R™ be open, m € N, 1 < p < o0. By
H™P(Q) :={ue LP(Q): D*u € LP(Q) V|a| < m}

1
p

[ullmp = Z [D%ullp ], 1<p<oo,
laj<m
lullmoe = D I1D%ulloo,
lal<m

we denote the space of Sobolev functions of class (m,p). On H™2(Q) we
define the scalar product

(u,v) := Z / DYuD%v.
la|<m &
1.2.2 Remark. H™P(Q) is complete for 1 < p < oco.
Proof. Exercise. ]

1.2.3 Lemma. (i) Let uw € H™P(R"), 1 < p < oo and (ne) be a Dirac
sequence, then we have for

(a) V|a| < m: DY = (D%),
(b) ue = uw in H™P(R")

(ii) Let Q' € Q C R™ be open and uw € H™P(Q), 1 < p < oco. Extend u to R™
by 0. Then
ue — u in H™P(Q'), e < dist(', 09).

Proof. Exercise. O

1.2.4 Lemma. (Product rule)
Let f € H'"2(Q) and g € H"?' (), 1 < p < 00 and % + i = 1. Then

frge HY(Q)

and
D(fg)=Df-g+f-Dg.



Proof. By symmetry we may assume p < oo. Extend f, g to R” by 0 and let
fe be the mollified sequence as in 1.2.3. Let ( € C2°(2). Then there holds

/(Cfe)azg = - / (Calfeg + feazgg)
Q Q

Taking the limit ¢ — 0 via Hoelder’s theorem we obtain

¥ e O [ c(fog +aufo) = - [ fodc
Again by Hoelder’s inequality we obtain
D(fg) € L'(%).
O

1.2.5 Lemma. (Chain rule)
Let Q € R", g € C™(R) and |g|m < c. Then for uw € H"™P(Q) we have
gou € H™P(Q) and

D(gou) =g (u)Du.

Proof. Let m = 1 and 1 < p < oo. Let ¢ € C°(Q) and Q' € (, such that
¢ € CX(Y). Let ue € C*°() such that

lu = tellmp.0r =0

and
(ue, Due) — (u, Du) a.e
= [ (gou)D;¢ = hm (g ouec)Dip = lim < / g/(uE)DiueqS) (1.1)
Q/ Q e—0 /
There holds ¢'(u¢) — ¢'(u) a.e. and |¢’| < L.

= |¢g'(ue) Du| < L|Dul|g].
Dominated convergence implies
o |9 (ue) Dive — ¢'(u) Diug| < \gl(ue)(Dz‘ue — Diu)¢|
/ 9(u) — ¢ (@)]|Dyall6] 0.
(1.1) implies the chain rule. Furthermore we have

1
1p,0 T c|Q[?

lg o ullipor < cfu
= gouc H'P(Q).

From this estimate we deduce, using p — oo, the claim for p = co. For m > 1
use induction and the product rule. ]



1.2.6 Theorem. Let & € Diff™(,Q) such that & and ="' have a bounded
C"—norm and 1 < p < co.
Then the map

o H™P(Q) — H™P(Q)
u— G=uoz !
s a topological isomorphism.

Proof. We show this for m = 1, the rest follows by induction.
Let ' € Q, u € HYP(Q), ue — u in HHP(Q).

Ue = ueoifl

. Ok
i Ue kUe o7t
Let the sequence also satisfy
Ue — U a.e.
and
~ ;pk
D;u. — Dpu—— a.e.
iUe k 07

By the transformation theorem and the boundedness of the Jacobians we
have

e HP(Q)
and
v € Q: lally g < clu

‘Lp,ﬂ’
= llally 0 < cllullipeo-

By symmetry this also holds for the inverse. For p = oo the claim holds by
taking the limit. O

1.2.7 Lemma. Let u € H'P(Q), then
u = max(u,0), v~ = min(u,0) and |u]

are in H"P(Q) and a.e. there holds

Dut — Du, u>0
0, u <0

Du— — {Du, u <0

0, u >0
and
Du, u >0
Dlu| =<0, u=0.
—Du, u<0



Proof. Let € > 0.

ViZ+e2—e t>0
ge(t) ==

0, t<0.
Then g € C! and |g}| < 1.

ge — max(+,0) locally uniformly.
The chain rule implies

ue = geou € HYP(Q)

and
uDu
Du, = g.(u)Du = { Vur+e?’ w=0
0, u < 0.
Let n € C(Q).
/ ueDin = — / Djuen
Q Q
/ uD;u
= - =
{u>0} Vu? + €2
/ uDj;u R / D
=— | —]—/— — UM,
0 ViZ 12 X{u>0}" 0 X{u>0} /iU

Since the left hand side converges to

/ utD;n,
Q

we obtain the claim. Using

and

lu| = ut —u~
the other cases also follow.

1.2.8 Corollary. Let u € H'?(Q), c€ R, E := {u = c}.
= Dujp =0 a.e.

Proof. Wlog ¢ = 0. There holds u = u*+u~. Apply the previous lemma.



1.2.9 Theorem. Let Q € R", u € H'"?(Q) and let g € C**(R) such that
Lip(g) < L and suppose ¢’ has only at most countably many points of dis-
continuity. Let M be the set of those points. Then

v:=gou€ H"P(Q)

and we have

o [d@Du, @) ¢ M
0, u(z) € M.

Proof. Let g. be a mollification of g

= g. — g locally uniformly

and
g, — ¢ locally uniformly in M€,
as well as
lg.| < L.
Then
Ve i=(eOU E HLp(Q)
and

Dv, = g.(u)Du.
Let M = {t;: k€ H C N} and
Ek = {’U, = tk}, E = U Ek
keH
= Dujp =0 a.e.

There holds ¢'(u)Du € LP(Q) and for a.e. z € Q we have

lim g/ (u()) Du(z) = {g’(u(x))pu@), v ¢ E

e—0

0, reF.
O

1.2.10 Remark. This theorem also holds for arbitrary g € C%'(R), |¢'| < L,
c.f. Ziemer: Weakly differentiable functions.

1.2.11 Theorem. Let Q € R™ be open, 02 € C%'. Then there holds
Yu e CL(Q): / | < \/1+L2/ Dl +c/ lul,
o0 Q Q

where L is an upper bound for the Lipschitz constants of the boundary rep-
resentations.



Proof. (i) Let zy € 9 and ¢ be a local graph representation around 0 €
Rnfl,
I'={(z,¢(2)): [#] < p}.

Furthermore let 0 < a, such that
U={(&2"): ¢(&) <2" <a, &€ B,0)} Q.

For a function u having support in this chart we then have

/mzf wmmmm+wwsw+ﬂ/ .
r B,(0) By(0)

Also suppose, that u(-,a) = 0. Then

6()
u(®, ¢(2)) = Dyu(i, t)dt

:WMWK/IMK/IML
o(z) o(z)

i/wgﬁ+ﬂ/ u(i, 6(2))]
I BP(O)
< / / | Dl \/1—{—7[/2
By (0) J ¢(£)
:¢Hp/m¢
U

(ii) Now consider an open covering (B,,), 1 < i < N, of 09, such that 92N

By, can be represented as a graph locally and also such that the conditions

of (i) are satisfied.
Let (n;) be a subordinate finite partition of unity for 9. Then

N
U = Zuni on 0f).

=1

N N
o [ e [ und < S VIFER [ (D)
a0 — Joa — Q
N N
§\/1+L2/ |Du|Zm—|—V1—|—L2/|u|ZDm|
Q i=1 2 =
S\/l—i—LQ/ |Du\+c/ [ul.
Q Q



1.2.12 Remark.

(i) 92 e Ct = Vue C'(Y): [y lul < (1+e€) [oDul + cc [q |ul
(i) 92 € C? = Vu € CH(Q): [y lul < [ [Dul + ¢ [q |ul.

Proof. Exercise ]

1.2.13 Definition. We say 2 satisfies the H""P- extension property, if there
exists (0 C 29 € R™ and a continuous linear map

F i H™P(Q) — HI™(Q),

such that
Vu € H™P(Q): Fugq = u.

F is then called extension operator.

1.2.14 Definition. Let £ C R™ be measurable. Then the Sobolev spaces
H™P(E) and H)""(E) respectively are defined as the closure of

{ue C"(E): |lullmpr < oo}

and C!"(E) respectively with respect to the norm || - ||, p-

1.2.15 Theorem. Let Q € R™ be open and 02 € C™, then there holds for
1<p<oo

H™P(Q) = H™P(Q).
Proof. First choose a local boundary neighborhood U, such that 1.2.6 implies
H™P(U) = H™? (B[ (0)).
Let u € HZ"P(By(0) U {z" = 0}). Define
up(z,2") == u(z,z" + h), h > 0.

Then wy, is defined in Bf (0) — he,,. For small € = ¢(h) we then find

Up,e = up *ne € C(BF(0)).
Later we will show, that
llup, — wl|mp — 0, b — 0.

Thus we find
Up, o, — uw in H™P(B;(0)).

= u € H™P(B{(0)).

Using a partition of unity we obtain the claim. The other inclusions follow
immediately from the definitions. O

10



1.2.16 Lemma. (Lions-Magenes)
Let ¢y, ..., cma1 be solutions of the system

m+1 o
> (1Y =1,0<j<m.
k=1

Then

m~+1
a(z, ") = Z cpu(z, —kz™), 2" <0
k=1

defines an extension for u € C™(R™) N H™P(R") into all of R", such that
ue C™R")
and
[l prn < cllullmprr, ¢ = c(m,n,p), 1 <p< oo
Proof. Exercise O

1.2.17 Corollary. Let Q2 € R"™ be open and 02 € C™. Then  satisfies the
H™P- extension property for all 1 < p < oo.

Proof. Clear by the previous theorem and lemma. O

1.2.18 Remark. (i) Q € R" = H)""(Q) — H:""(R").

(i) 9Q € C%! = Q satisfies the H™P extension property (Calderon-Zygmund,
without proof).

(iii) For 1 < p < o0, 90 € CY! = H™P(Q) = H™P(Q).

Proof. (i) is clear and (iii) follows from (ii) immediately. O

1.2.19 Theorem. Let Q € R™ be open, 0 € C%'. Then there exists a
continuous trace operator

t:HYP(Q) — LP(0R), 1 < p < o0,
such that
HHLP(@)NCo(Q) = "|oQ-

Proof. Since we have HYP(Q) = HP(Q), it suffices to prove the claim for

uweC®(Q).
(i) For u € C*(Q) define t(u) = uj9q. We have

[l <V z [ puse | Jul
o0 Q Q

11



which also holds for Lipschitz functions by approximation. We apply this
estimate to |u|P yielding

/ uf? §p\/1+L2/ | D[P +c/ uf?
o0 Q Q

col ) ([) oo

= [[t(w)llpon < cllull1po-
(i) Let u € H'P(Q) and
Ue = U * Te GCEO(RN)
= ue — u in HYP(Q).

= [t(ud)llpon < clluelipo-

Thus we can define
t(u) := lim ¢(ue).
e—0
(iii) Let uw € H*?(Q) N C°(Q). We may suppose u € H'P(R™) N C°(R™).
t(ue) — t(u) in LP(09)

and
ue — u in CO(Q)

imply the claim.

1.2.20 Proposition. u € Hy"(Q) = t(u) = 0.
Proof. Follows immediately from the preceding proof. O

1.2.21 Proposition. Let Q € R" be open and 0Q € C%'. Let m > 1,
1 < p < oo. Then for u € H™P(Q) all the DPu, |3| < m — 1, are defined on
0%} in the sense of traces.

Proof. All those functions are in HP(Q). O

1.2.22 Proposition. Let Q € R™ be open and 0 € CO'. For u,v €
HYP(Q) there holds

t(max(u,v)) = max(t(u), t(v))
t(min(u, v)) = min(t(u), t(v)).

Proof. By approximation. O

12



1.2.23 Lemma. Let Q € R", 99 € C%', uw € H'?(Q), 1 < p < co. Then
we have for large k

©) k:p/ lulP < kP11 + L2/ |ulP + ¢/ 1+ L? / (|Dul? + |ul?).
Q1
% 1+L

<>/ |u|<W1+L2/ ru|+c/ (1Du] + [u])
(1i4) limsupk/ lu| < \/1+L2/ lu| < ( 1+L2)hm1nfk/ [ul
Q1 Q1
&

k—o0 —00

k—o0

(tv) t(u) = 0 = limsup k:p/ lulP =0,
Q1

where

1, ifp=1
Cp —
P e, 09), ifp>1,

Qp ={r € Q:d(z,00) < k} and d = dist(-, 092).

Proof. (i) Let u € CY(Q), wlog supp(u) N Q C Bg(0) x (0,a) =: G. Let
% < min(a, R), then

0, NG = {(ae,xn) €Q: 3| < R A d(&a") < ]t}

V(#,2") € Q1 NG 3j € Bar(0): d(i,2") = V/|& — 9 +[(9) — 2",
where 80N Bag(0) x (0,a) = graph ¢. Thus for all (,z") € Q% NG we have

= [2" = o(2)] < [2" — o(9)] + [6(9) — ¢(2)]
< [z = ¢(9)] + LIz — 9]

< VI L2V |am = o) + |2 — g2
<E'W1+1L2

1
:>Q%OGC {(:i,x”):|£y<R, ¢(£)<x"<¢(§:)+% 1+L2}.

n

(e, 2 — u(@, 6(2))] </¢j Dy, )| dt.

< ") = (@, ¢(2))] + |u(®, ¢(2))|
u(@, 2")|P < 2°(Ju(E, «") = u(E, o(2)) P + [u(Z, ¢(2))[").

£
£
S
Z
AN
£
\v& >
S

13



Set

1, ifp=1
Cp =
P pter, ifp > 1.

Then we find

1+L 1+L
/;R /<75(1’)

u(z, z™)P < 1+L20kp/ / | DpulP
Br J$(2)

+ cpk” \/1+L2/ z,(2))P

2
(& +
< cpkp\/1+L2p/ / B | DulP

Br J¢(2)

+epk ™IV + L2/ |ul?.
o0

Furthermore we have

R R V14 L2
{(@0") € 0: il < B, 0(0) < a" < 6(3) + ) €0y
k
¢($ 1+L
= ul? < / / u(d, )P
QlﬂG BR ¢>

< kP14 L2 / | Dul|? (1.2)
1+L
+cpk™ \/1+L2/ |ulP.
o0

(ii) From

we deduce

1

b(&)+ 5 . P(2)+1
et ptetant< [0 @i ekt [ [ D,
B Br J#(2) Br J¢(z)

k:_l/a ]u|§k‘_/ |u(z, ¢(2))|V1+ L?
9]
S\/1+L2/ |u~|—k:_1\/1—|—L2/ |Dul.
Ql Ql
k k

(1.3)

14



This also holds for all u € H'?(Q) sucht that supp(u) NQ C G.
Let u € HYP(2) and consider a covering of Q_]% by u;, 1 < i < N, together

0
with a subordinate partition of unity (7;), such that (1.2) and (1.3) are
applicable to un;. Thus

/Q lulP < ck_p\/1+L2p/Q (|Dulf + |u\p)+cpk:_1\/1+L2Np/aQ|u|p
1
k

and

1
k

/\uygx/HL%/ ]uH—c/ (1Du] + u]).
o0 Q% Q1

3
(iii) and (iv) follow from (i) and (ii) easily.
O

1.2.24 Lemma. Let Q € R" be open and 0Q € CO', 1 < p < oo. Let
u € HYP(Q), t(u) = 0. Then there holds

ue HyP(Q).
Proof. d = dist(-,00) € C%Y(R") and |Dd| =1 a.e. Set
Nk := min(1, kd), k > 1.
Let Qi be the corresponding boundary strip. Then we find

e =11in Q\Q%

(i) Claim: u € H"P(Q) = uny, € H(%VP(Q)-
Proof: Let u € C%(Q)

= v :=un, € COH(Q) A ungjan = 0.
Let € > 0 and using a decomposition into v™ and v~ we may as well suppose

v > 0.
ve := max(v — ¢,0) € Cg’l(ﬂ) - H(}’p(Q)a

which follows from approximation. We have

Do, — Du, ?fv>e
0, ifv<e.

/ |Dv — Dv,|? :/ |Dv|P — 0, since |Q] < oco.
Q {v<e}

/|vv€p:ep/ 1+/ [vP — 0.
Q {v>e} {v=e}

15



Let u € H'?(Q), t(u) = 0. Then for a mollification u. we have
ue — u in HYP(R™)
= UMk — UM in Hl’p(Q).
= ung € Hy?(Q).

(ii) Furthermore we have

[ 1pu=Dtun) <k [+ [ (pal o,
Q Q 951
k k

by the preceding lemma.
p>1:

/|Du—D(unk)|p§2p/ ]Du\p—i-kap/ |ulP.
Q Q3 51

3 k

/u—unk]p</ |ulP.
Q Q1
k

Analogously

Thus u € Hy?(Q).
0

1.2.25 Proposition. Let Q € R™ be open and 92 € C%'. Let u € HYP(1Q),
t(u) <k a.e. on 0. Then

max(u — k,0) € Hy?().
Proof. t(max(u—#k,0)) = max(t(u) —k,0) = 0 and use the preceding lemma.

0
1.2.26 Corollary. Let Q € R" be open and 0Q € C*, u € HY(Q). Then
Q1 a0
k

Proof. For C' boundary it is possible to obtain L < € for all € > 0. O
1.2.27 Lemma. For h € R", v € LP(R"), 1 < p < oo define

vp(x) =v(x + h).
(1) This defines an isometry of LP(R™), ||v|l, = ||vallp,
(i) limp_o||v —vpll, =0 and
(11i) For Q@ C R™ and LP(Q2) — LP(R™) extending by zero we have

[onllp.e < llvllpe
and

[on = vllp.0 = 0.
Proof. Exercise. O

16



1.3 The difference quotient

In this chapter we consider for a given function w the so-called difference
quotient
u(x + hey) — u(x)

Apu(x) = Y ,

0+#heR.

Abusing notation, let
h = he,,.

1.3.1 Lemma. Let Q C R™ be open. For Q' € Q and h < dist(QY,09Q) we
have that
Ay LP(Q) — LP(Q)

18 continuous and
[Anullp0r < 2lh[ 7 ullp0-

Furthermore there holds
<Ahu’ U>L2 = —<U, A—hU>L27
if one of the functions has compact support in Q and h is small.

Proof. W.lLo.g. let supp(v) C © and €' = int(supp(v)). Then we have

(Apu,v) = /, wath) - u<x>v(m)dm

h

u(z + h)v(z)dr — flb// u(x)v(x)dz

J
_ _/Qu(y>v(y) - Z(y —M gy
J

u(y)v(y —h -,

—h
= —(u, A_pv)
0
1.3.2 Lemma. (i) Let Q € R™ be open, u € H*P(Q), 1 <p < o0, Q' € Q.
Then
VIh| < ho << 1: |Apullpor < ||Dnullpo (1.4)
and
lim ||Dpu — A r=0. 1.
lim ([ Dyt — Ay = 0 (15)

(ii) For w € HYP(R™) there hold
[ARul[prr < || Dnullpre (1.6)
and

[Anullprn = || Dnullp e (1.7)

17



Proof. Let Q' € Q" € Q and h < dist(99, Q").
(i) Since we can approximate u by u. € C*() N HP(2) and since (Apu)e =
Apue we have

Apue — Apu in HYP(Q),

as € — 0. Thus let u € CH Q)N HYP(Q). Let x € ' € Q, h > 0.

1 Tn+h
Apu(z) = h/ Dyu(z,t)dt,
Tn

thus

P

Tn+h
Apu(@)P < hP / Do, t)dt

Tn+h
< hPpr~t / | Dyu(z, t)|Pdt
In

Tn+h
_ / Dy, )Pt
Tn
Thus we have

h
/Q NApu(z)fdr < h! /0 /Q |Dnu(@, 2" + t)[Pdudt < | Dyullp o

For —h this holds, since A_pu(x) = Apu(z — h). Let € > 0. Choose v €
CH(Q) N HYP(Q) such that

€
o~ ullper < 5

Then
[ Dnu — Apullpor < | D — Dpvllp.ar + | Dnv — Apv|lp.ar 4 | A0 (u — ) ||p.0r-

The first and last term are less than g. The middle term s integrand con-
verges to 0 uniformly.
(ii) The proof is exactly the same, but instead of the uniform convergence in

the last argument use the decomposition
/ |Dpv — Apv|P < / |Dpv — Apv|P + / |Dpv — Apv|P
n BR |IE|>R

and that the functions are integrable.

O]

1.3.3 Lemma. Let Q € R"™ be open, u € H™P(Q), 1 < p < oo, m € N,
Q' € Q and let

Vla| <m: ||AD%lpor < ¢ V|h| < hy.

18



Then
D,u € Hm’p(Q')

and
[ DnD%ul|p 0 < c.

Proof. 1 < p < co = LP(Q) is reflexive. Thus there exists a sequence hy,
such that
Ap, D% — v, € LP(QY)

and
[vallp,o < liminf || Dy, D%ull, 0 < c.
k—o0

Let n € C(§Y). Then

(Vaym) = kli_glo(Athau,m = (=), D, D).
Thus, if || = 0 we have Dyu = v,.
If |a| > 1, we have D,,u € H™P(Q').
O

1.4 Sobolev embedding- and compactness theorems

1.4.1 Theorem. Let Q € R™ be open with H'P-extension property,
1 <p < n. Then there holds

H'P(Q) — LV (Q),

where £ =1 —
P P

Proof. We show

3=

de = ¢(n,p) Yu € Hl’p(Q): lullpe < cfjul|ip-

It suffices to show this for u € C°(R™). Let first be p = 1 and = = (&, %)
for all 4.

@] < [ Dl ol
1

n

= Ju(z)]7T < (/OO |Diu(iz-,t)]dt> "

i=1 —©

o0 n oo nil
= lu|7=Tdx! < </ |D1u(i:1,t)]dt>

1
oo M oo n—1
/ H(/ Dz-u(j;,-,t)|dt> dz!



The generalized Hoelder inequality implies

1

o0 n oo n—1
:,/ 7T dat < </ |D1u(:i1,t)|dt>
1

n oo o0 4 4 P
11 </ / ]Diu(ii,xz)]dxzdxl> .
j=p \J—ooJ—c0

For n = 2 this already implies

L= (L) (L e)

For n > 2 we repeat this argument to obtain

1
e 00 n 00 o n—1
/ / |u| =1 datda® < (/ / |D2u(£'2,x2)|dx2dxl>
. </ / |D1u(§71,l’1)|d$ldl'2>
—oo J —o0o

T mtes)

)

Successive integration implies

n 1 _n_
n n—1 n—1
fo e =T )™ = (120
Rn i1 \J/Rn R™

= Vu € CF(R™): [lul| o < ||Dull1.

Let now 1 < p < n: Define

p(n—1)
n—p

t:= >1, ue CFR")

= v:= |ul' € C}R")

n n’il
N (/ \m;) .
R™ Rn

n(p—1)
Dol < tlul 5 |Duj
p—1

n(p=1) _np_  p—l
> oz, <t 15 Dul < eDuly ([ ul)'

= [lullpe < t[Dullp.
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1.4.2 Corollary. Foru € Hy"(Q) there even holds

[ullp- < ¢l Dullp,
which also means, that ||[Dul|pq is a norm on Hé’p(ﬂ).
Proof. This follows from the extension property, i.e.
H' () = Hy () = H"(R")
and the previous proof. O

1.4.3 Theorem. Suppose 2 has the H™P- extension property. Then

H™P(Q) — LI(Q),

1_1 :
5:57%’ if mp < n.
Proof. Exercise. O

1.4.4 Proposition. Let Q have the H™P- extension property and || < oco.
Let mp =n > 2. Then

V1< q<oo: H"P(Q2) — LI(N).
Proof. (i) p > 1: Let p— € > 1. Then
H™P(Q) — H™P™(Q)

and
m(p —e€) <n.
Thus
H™P~¢(Q) — Li(Q),

where ¢. — o0.
(ii) p = 1: Then m > 2 and for u € H™!(Q) we have D™ 'y € HY(Q) —
L7771 (9Q). Thus

H™ Q) — H" b5 ().

Now (i) is applicable. O
1.4.5 Remark. 1.4.4 does not hold for ¢ = oo.
Proof. Choose Q = B% (0) CR™, n>2and
u(z) = log(—log |z|) — loglog 2.
There holds

1 1 x
U = —_—
log |z| [z| |z
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and

1
2 1 1
[1pur =15t [F -
Q 0 log" r r™

1

2 1
— Sn—l - -1
| | 0 |10gn7“’r
1

[o.¢]
:c/ —ndt< 0.
log 2 t

1.4.6 Theorem.
H™(RY) = H (R,

if 1 <p<oo.

Proof. We only prove the case m = 1, the rest follows from induction. Let
0<n<1,neCPR"), such that

1, |z[<1
:[j g
() {o, 2] > 2
and
[Dn| < c.
Set .
ne(z) =n (%) :

For u € H'P(R") define
Uup = uny € Hé’p(]R").

There clearly holds uy — w in LP(R"™).
Furthermore Duy, = Duny, + k~'uDn — Du in LP(R™). O

1.4.7 Theorem. Let 2 € R™ have the HYP- extension property. Let p > n,
then for a =1 — % we have

HY(Q) = C%(Q)

and
Yu € HyP(Q): [ula.q < ¢l|Dull,.

Proof. Without loss of generality let v € Hé’p (Q0), 2 € Qo, and we will
show
vu € Hy () |ulo.0q < c| Dull,.
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Let 1,22 € Qo, 0 < p = |21 — 32|, ¥ € B,(¥5%2) = B,(0). Then we have
for u € CH(Qo)

1
u(z) — u(z;) = /0 %u(wZ +t(x —x;))dt
= /1 Dyu(ay) (z® — zF)dt
0

1
<2 [ 1Du(a).
0

Thus
1
][ u — u(z;) §26p1_”// |Du(z; + t(x — z;))]
B, 0o JB,
1
<2ep [ [ (Dus)
0 ngt(:ri)
1 -1 —
< 2cp1_”/ t_”HDqu,QOp”th”pT
0
1_n Lw
<! F Dl [ ¢
0
1—n
< ¢(n, p)||[Dullp.aop 7.
Finally

u(e1) = u(zz)| < +

u(zy) —]{B u

P

]{3 u — u(z2)

P

< c||Dul[p|z1 — 2|*.
Choosing z9 € 09y we find u(x3) = 0 and thus

[ulo.0, < c||Dul|,(diam®)®.

1.4.8 Theorem. Let Q) € R™ have the H™P- extension property. Then

H™P(Q) — ijo‘(Q)7 meN, 1<p<oo,

m=k+j and
(i) (k—1)p <n < kp, a=k-"
p

(@) (k—1)p=n, VO<a<l.
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Proof. Exercise. O

1.4.9 Theorem. (Interpolation theorem)
Let1 < p; < p<py <oo, l:p%—}—llj;‘,()<oz<1 and ) be a measure

p
space. Then

Vu € LPH () N LP2(Q): [Jull, < Hu”%”“”iga

Proof. There holds

1

1-— .
aps + (1 — a)py (apip2 + (1 — a)p1p2)

p:

Thus

(1-—a)
/|uyp:/ [P St (oap |gu|P2 527 (-0
Q Q

apy (I1—a)py
S </ ’u|P1) apo+(1—a)py (/ |u|p2> apo+(1—a)py ‘
Q Q

1.4.10 Theorem. (Kolmogorov)
Let Q € R". A subset M C LP(Q2), 1 < p < oo, is precompact if and only if

O]

(1) M is bounded and
(i) M is equicontinuous in the mean,

1.€.
Ve>030>0Vue M:0<h<d=|lu—uplpa <e

Proof. Let M be precompact. Then M is clearly bounded. Let ¢ > 0. Then
there exist (u;)1<i<n such that

N

M C | Be(w).
=1

Let uw € M, then u € Be(uj,).

= [lu(- + h) = ullpo < lul- + 1) = uiy (- + h)||
+ ”uio(' + h) - ulo” + Huio - UH < 3¢,

if we choose h small enough. Note that a finite collection of functions is
equicontinuous.
Now let (i) and (ii) hold. Let € > 0 and for § > 0 let ns be a Dirac sequence.
Let

Us = U * 1.
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p

Jus(x) — u(z)|” = dy

/ n6() (u(z — y) — u(z))
Bs(0)

< /B G ) —u@)Pdy

Y / ns(y) / u(z — y) — u)Pdedy
Rm B;s(0) "

(1) = Jlus — ullp < s lu(z —y) —u(2)ll, <e
yl<

if 4 is small.
We now claim that My := {us : u € M} C C%(Q +6) =: E is precompact in
E. We have

usta)| < | ) P () Wlu(z — )ldy

< < /B PROCIES y>|p>

1
< sup [ns] 7 [[ull, < ¢

Bs
Thus M; is bounded.
Furthermore
1—1 1
Jus(w + h) — ug(a)]| < /B o e R =) = = )y
5

1
< sup ns[7 [[u(y +h) — u(y)lp-
Bs(0)
Thus M; is equicontinuous and by Arzela-Ascoli there exists an e-net

(u§)1<i<n in E. We now claim, that this net is also an e-net in LP(). Let
u € M and 1 <i<N. Then

/ |uuf5|p§2p/ |UU5|p+2p/ lug — ub|P < ceP.
R" R™ R

1.4.11 Proposition. (Kondrasov)
Let Q € R™ have the HYP- extension property, 1 < p < co. Let }% = %D — %,
then for q < p*

O]

HY(Q) — LI(Q)

18 compact.
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Proof. Let u. € H'P(2) be bounded. Suppose
Ve: ue € HYP(Q)

and
[well1p,00 < e

= Ve >0 Jv. € C°(Qo) : ||ve — uel| <e.

Thus it suffices to show, that the v, are precompact in L4(£y). By the
interpolation theorem this will follow from the case ¢ = 1. We use the
Kolmogorov characterization. The boundedness is clear.

1
d
Ve(x + h) —ve(x) = / —v(x + th)dt
o dt
1
= / Dve(x + th)h'dt
0
and thus

1
| et ny =@l <l [ [ Ded < pjipud.

O
1.4.12 Corollary. Let Q have the H™P- extension property, % > % -,
q>1. Then
H™P(Q) — LI(Q)
is compact. In cases mp = n this holds for all 1 < ¢ < oc.
Proof. The case m =1 has been proven. There holds
u, Du € H™1P(Q) — L"(Q),
where
I 1 m-1
roop n
Thus u € HY" () < L(Q), being compact, if
1 1 1 1 1 m
g ™ g n p n
The second claim follows by interpolation. O

1.4.13 Lemma. (Interpolation of Hoelder spaces)
Let Q € R™ be open and 0 < B < a < 1. Then there holds

B 1_8

[ulpa < [uls - (osc(u))!"
B _B

< [ulg -2 fuly
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Proof.

< [u]2 o (osc(w))14.
O

1.4.14 Corollary. Let Q € R™ be open and 0Q € C%', 0 < B < a.. Then

the embedding
CFe(Q) — CFF(Q)

18 compact.

Proof. Let u. € C**(Q) be bounded. By Arzela-Ascoli there exists a subse-

quence
ue — u € CP(Q) in CH(Q).

Set
ve =D — D'u=v

for some multiindex ~. Inserting this into the interpolation theorem yields
the result. O

1.4.15 Theorem. Let Q € R™ be open and 0 € C%', mp > n. Then
H™P(Q) — 9P (Q), 0<B<a,
s compact, where j, a are as in the Sobolev embedding theorem.
1.4.16 Lemma. Let Q € R™ be open and 0Q € C%'. Then
oL (Q) = HY>(Q).

Proof. Let u € C%'(Q). Then a mollification u. converges in C%1(Q) to u
for all Q' € Q. Thus u € HY*°(Q). Let u € H->°(Q). Since

lu(z) —u(y)| < [[Dulleoalz -y,

we obtain the result locally. For z,y € Bs(xg) N Q, xo € I, we can use a
coordinate transformation to convert the problem into the convex set Bl (0).

O
1.4.17 Proposition. Let Q € R"™ be open and 02 € C!
= H™P(Q) — H™'P(Q), 1<p<oo, m>1,

18 compact.
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Proof. Follows immediately from the other embedding theorems. O

1.4.18 Proposition. Let Q € R” be open and 092 € C%', m > 1 and
1 <p<oo. Then

Ve >0 3cc € RVu € H™P(Q): [ulm-1p0 <€ Y [ID%Ullp0 +celulpe.

|a|=m

Proof. Use the compactness lemma for Banach spaces and absorb the lower
order norm in the left hand side. O

1.4.19 Corollary. Let Q € R™ be open and 0Q € C%L. Then the norm

lull = > [ID%ullpe + ullp0, 1<p<oo,

lal=m
is an equivalent norm on H™P(Q).

1.4.20 Lemma. Let Q) € R". Then

[ull = D™ ullp.0
is an equivalent norm on Hy"P ().
Proof. ¥|y| <m —1: DYu € HyP(Q). O

1.4.21 Theorem. Let Q € R" be open and 0Q € C%'. Then the embedding

HY(Q) < LI1(0N)

is compact for 1 < p < nandl < q < (nn_i_lp)p and it is continuous for
_ (n=1p
9= "7 -

Proof. Let |lugl1p0 < c. Then a subsequence converges in L(Q),
up — u € LY(Q).

Since, by reflexivity, we have u € H'?(Q) we may assume u = 0.

Let € > 0.
/ el < [ 1Dw +ce/ e
o0 Qe Q

5 op1
g(/ |DUk|p> 005 +ec [
QO Q

—1
limsup/ lug| < c]QE]pT —0, e—0.
o0

k—o0

Thus

28



= H'P(Q) — L'Y(0Q)
is compact. Let ¢ = (Zilp)p and set v := |ul? € HY(Q)

n(p—1)
—-P

= |Dv| < |Dullu| =

- [ (o) ()

-1
< cllul?e 0.

p—1
P

= H'P(Q) — L1(00).
O
1.4.22 Theorem. (Poincare-inequality)

Let Q € R™ be connected with HYP- extension property, 1 < p < n. Then
for all measurable subsets E C Q, |E| > 0, there exists a constant cg > 0,

such that
1 1
Vu € HYP(Q): </ |u—uE|p>p <cp </ \Du|p> ,
Q Q

where up = ﬁfEu
V= {uEHl’p(Q): /u:()}.
E

Proof. Set
Suppose the inequality did not hold, then there existed a sequence ug € V
such that

|ukll1p0 =1
and
ullpo > kllDugllp,o-

By compactness we have a subsequence converging to u € LP(2). Thus
[ Dul| =0
and so u = const, which is a contradiction. ]

1.4.23 Theorem. For  C R™ open, the spaces H™P(Q) are reflexive for
1 <p<oo.

Proof. Exercise. O
1.4.24 Theorem. Let 2 C R”™ be open and 1 < p < co. Then
Hy"P(Q)* = H™P(Q) =< > DVfy: f, € IF(Q) p € D(Q).
[v|<m

Proof. Exercise. O
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1.5 L? regularity for weak solutions

1.5.1 Theorem. (Interior estimates)
Let Q € R" and let a* € C1(Q x R x R™) satisfy

i

V(e up): '“(ac,u,p)\ < ea(l+ Ju] + )

ox
da’ n da’ <.
ou op;j| —
and
ij da’ n 2 ij
av = IX >0 VE e R": ME|I* < a&¢;.
Op;

Let u € H(Q) be a weak solution of the equation

loc
Ay = —(ai(x,u, Du)); = f € L2(Q),
i.e. we have equality in H_l’Q(Q). Then we have
ue H 2 ()

and for all Q' € Q" € Q

ull2,2,00 < c(|lfll2,0, l|ull1,2,07,ca, A).

(1.10)

Proof. We use the method of difference quotients. Let h = he;, for a fixed
1 <k < n. Let hy be small enough to ensure Q' + h € Q" for all |h| < ho.

Let n € C°(2"), such that
7]|Q/ =1.
Multiply the equation by

—A_p(Apun?) € Hy? ()

to obtain

| Ao, D)) Bt )s = = [ A (B,
Q Q

We have

Apat(z,u, Du) = h=Y(a!(z + h,u(z + h), Du(z 4+ h)) — a'(z, u(z), Du(x)))

30

1

h—l/ %ai(m+th,tu(x+h)+(1—t)U(w),--.)dt
0

hfl

(@ (u(z + h) — u(x)); + b (uw(z + h) — u(x)) + 'h),



where

0 3pj’ 0 8U7 ’ 1 0 al’k

By the assumptions we have
€' < ca(l+ |u(@)] + [Du(@)| + [A||Apul + || Ay Dul),
la¥| + |b| < ¢
as well as the uniform ellipticity of a*/. There holds
/(@ij(AhU)j + b Apu + ) (Apun?) = —/ FA_n(Apun?)
Q Q
< £ 2, 1 A un?) 2
< fF+ | D(Apun”)],
2 2¢ 9]

QII

/a“(AhU)j(Ahuﬁz)i:/aij(AhU)j(AhU)mQ
0 Q

+2/ aij(Ahu)ijhun.
Q
We have
.. € .
[ o @l < 5 [ o @) (Bn)?
0 2 /o
) (1.11)
+26/Qa”77i77j|Ahu|2-

But

/Qaijnmj|Ahu|2 < ¢(Dn) /Q” |Dku|2,

[ vyl < [ WlAl(DAwul? +2 Al D) (112
and
| canuntyl < [ (@ ful+ 1Dl + 1Al + DAyl )

- (|DARuln? + 2| Apul||Dnn).

(1.13)

For small € we obtain, also absorbing the |[DApu| in (1.12) and (1.13),

A / IDARf? < & / a% (Apu)i(Apu) iy’
2 Jo 2Ja

<e / (f2 + 1Duf> + [ul? +1) V]h| < ho.
Q//
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2
i/"wpwfgg/(ﬁ+umﬁ+mﬁ+n
Q/ A Q//

= ue H?*(Q).

loc

O]

1.5.2 Remark. Now we want to prove boundary estimates. Since a diver-
gence writes in coordinates

4 1 0 ,
—a; = ———(y/ga’
2 \/g 81‘7’ (\/g )
we even may suppose that the differential operator is given in terms of co-
variant derivatives, after possibly multiplying the right hand side by /g and
the vector filed by \/§_1. Thus we are given a function on both sides and are
free to consider the equation on B (0) without loss of generality.

1.5.3 Theorem. (Local boundary estimates)
Let 0 < p1 < p2 < p, mo € O and B,(x9) NOQ =T € C% Let u € HY?(Q)
be a solution of

—(ai(x,u,Du))i = f7 Ul = ¢ € H272(Q)7
where a* satisfies (1.8), (1.9) and (1.10). Then
u € H**(QN By, (20))

and

ull22.0, <cllullize,[[flzo ll¢l22.a0,,,ca,p1,p2, [T]2),

where Q,, = QN By, (x0).

Proof. Without loss of generality the equation holds in Q = B (0) with
zo = 0. Choose
0<ne CSO(BM), B, = L.

Define with abuse of notation
h=h-e, 1<k<n-—1.
Multiply the equation with
—A_y(Bn(u— @) € Hy* ().
Then

/ Anai Di(Ap(u— o)) = — / PO (An(u— )?).
Q Q
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As in the proof of 1.5.1 we obtain

A /|DAhu|2n2<c</ £ [ pswep+1+ [ <1Du|2+u2>>
Q Qpy Qpy Qpy

i’/ > ’DiDju|2§C</ f2+/ !DAh¢!2+1+/ (!Du\2+u2)>-
Q Qpq Qpy Qpy

P1 i+35<2n
—D;a'(x,u, Du) = f
da®  Oa’
o " ou
Using o™ > A, we obtain the claim. O

= —a”uij —

1.5.4 Theorem. Let a”,b',c € C™(Q), f € H™*(Q) and u € H 2 (Q) be
a weak solution of - '
— (a"uj)i + bu; +cu=f, (1.14)

then
= Hm+272(Q)

loc
and for all Q' € Q" @ Q we have

lullmrz,0 < el fllm20r + llulliz,00),
where ¢ = C(‘aij‘m,LQ”, ‘bi’mJ,Q”, ’C’m,l,Q”7 Q/7 Q//),

Proof. By induction. For m = 0 this is theorem 1.5.1 So let m > 0 and
suppose the claim holds for m — 1. For 1 < k < n choose v = u, € H"2(Q).

loc

. . Ha¥ . _
= —(a"vj)i +b'vi+cv = fi, + (M) uj — bfcuj- +cpu=F € H;ZC I’Q(Q).
(2

Let ' € Qe Q.
= [[ollmtr2,00 < c(1F ), 100 + I0ll2,07)

[0l 2.6 < lull g0 < el fllz.0r + lulli2.0)

and

[l —126 < clflimzor + lullnia20) < cllflmaor + lulliz.on)-
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1.5.5 Theorem. (Local boundary estimates of higher order)
Let 0 < p1 < p2 < p, ,x0 € 0, By(x0) NQ =T € C™2. Let u € H2(Q)
be a solution of

—(a"uy); + V'ui + cu = f, upg = ¢ € H™22(Q),
f € H™(Q), a¥,b',c € C™(QN By(x)). Then
ullmi22.0, < clllfllm20,, + lulli20, +10lni220,,),
where ¢ = c(|a" 1,00, [V |m,1,07, [€lm,1,00, Y, Q7).

Proof. By induction, where m = 0 has already been proven. Let m > 0 and
suppose without loss of generality Q = By (0), zo = 0. Set

I'=B1(0) N {z" = 0}.
Let 1 <k<n-—1and
v=u € H"*(Q,), v = ¢k € H™12(Q,).
Then

3 A 9l A
—(aYvj); + Vv +cv = fi, + R (Vuj) — cpu=F € H"H2(Q,,).

Let 0 < p1 < p < p2

= [[vllm+1,20,, < cll[Fllm-1.2,0; + [vl12,0, + [9llm+22.0;)-

For k = n we again use the differential equation to obtain
n—1

lwnnllm2.0,, < cllullmrzg,+ D luklmerz0; + [ Dllniz2.0, + 1 lm20,).
k=1

O

We now consider L?-estimates for the Neumann boundary value problem.

1.5.6 Theorem. Let Q € R" be open, 0Q € C? and let u € H"%(Q) be a
weak solution of

—(a"(x,u, Du)); = f in Q, —a'v; = ¢ on 0N,

where f € L*(Q), ¢ € H>*(Q) or ¢ € CO1(00Q), a' € CH(Q x R x R") and
let (1.8), (1.9) as well as (1.10). Then we have u € H*%(Q) and

lull22.0 < c(ll@ll22.0 + 11 £]
in case ¢ € H*2(Q) and

20+ [[ull120+1)

[ull22.0 < c(lfllza + lullzo + 1),

where ¢ now also depends on |¢|o1,00-
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Proof. We only prove the boundary estimates, since the interior estimates
are theorem 1.5.1. Let Q = B (0), I' = {2" = 0} N 9. Then the weak
formulation of the equation reads

Vn € H1’2(Q) ﬂHg’Q(Bl(O)): /aim —{—/qu = / fn.
Q r Q
Let 1 <k<n-—1, h=h-e; be small and
i =—A_n(Apun?), 1 € C;(Bi(0)).

Then

/ Ahai(Ahwf)i + Ah(;ﬁAhu’n2 == —/ fA_h(Ahunz).
Q Q

o0N

(i) If ¢ € CO1(99), we have
/F|Ah¢Ahw72\ < L/F | Apun?|

< L/ D(Apun?)| +c/ Apu?],
Q Q

which can be absorbed by € in the left hand side.
(ii) If ¢ € H>2(Q), we have

/ INTIN /Q ID(ApdApur?)| + ¢ /Q AndApur?].
T

O

1.5.7 Theorem. Let Q € R" be open, 02 € C? and let ™, b*, c € L>(Q),
c>co >0, a¥ uniformly elliptic, f € L*(Q) and ¢ € H"?(Q). Then
—(aijUj)i + biui +cu=fin
faijujui = ¢ on O
has a weak solution u € H%?().

If additionally 0Q € C™*2, o ¢ C™H(Q), bl,c € C™(Q), f € H™2(Q)
and ¢ € C™1(0Q) or ¢ € H™T22(Q), then we have

= Hm+2,2(Q)

and

[ullmiz2.0 < cll@llmiz20+ [ flm2a +ulize),
if ¢ € H™T22(Q). If ¢ € C™1(09Q), then the constant also depends on
|Plm, 1,00

Proof. Exercise. O
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1.6 Eigenvalueproblems for the Laplacian

In this section we want to solve the eigenvalue problems

—Au=Auin Q)
(1.15)
ujpn = 0,
—Au=Auin
@ 0 (1.16)
ov
and
— Au = Au in M, (1.17)

where M is a compact Riemannian manifold.
We will reduce each of these problems to an abstract eigenvalue problem in
a suitable Hilbert space.

1.6.1 Assumptions of this section. In this section we use the following
assumptions:

(1) H is a real, separable Hilbert space.

(2) K is a symmetric, continuous and compact bilinear form on H, such that

Vu #0: K(u) = K(u,u) > 0.

(3) B is a symmetric, continuous bilinear form on H, which is coercive
relative K, i.e.

Jeg, ¢ > 0Vu € H: B(u) = Blu,u) > cf|u)|®* — coK (u).
We will solve the abstract eigenvalue problem
0F#ue HAeRYve H: B(u,v) = AK(u,v).

1.6.2 Lemma. Let {0} # V C H be a closed subspace. Then the variational
problem

B(v) » min, v € W: =V N{K(v) =1}

has a solution u, which is also a solution of

B
K((Z)) — min, 0 £v e V.
Setting
A= mf B0
0#£veV K (v)

then we have

Vv € V: B(u,v) = AK (u,v).

36



Proof. By coercivity we see, that B is bounded below in W and that a
minimal sequence u, is bounded above. Thus we suppose

u. — u € V.

= K(ue) - K(u) = 1.

B is lower semicontinuous, because B + ¢gK is an equivalent norm on H.
Thus the first two claims follow. The eigenvalue problem is the first variation
of

B(v)

K(v)’

U —

1.6.3 Theorem. The eigenvalue problem
Vv € H: B(ui,v) = MK (uj,v)
has countably many eigenvalues of finite multiplicity. If we write
A< <,

we find

lim A\; = oco.
1—00

The eigenvectors (u;) are complete in H. They fulfill the orthogonality rela-

tions
K(ui, Uj) = (Sij

and
B(us, uj) = NiK (ug, uyj),

as well as the expansions

B(u,v) = Z N K (ui, u) K (ug, v)

and
K(u,0) =Y K(uj,u)K (u;, v),
The pairs (i, u;) are defined by the variational problem

) B(u) o
)\i:B(Ui,Ui):lnf{K(u)i 0#ue H K(u,uj) =0V1 <j Szl}.
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Proof. 1. Solve the variational problem

B(u)
K (u)

— min, 0# u € H.

By the previous theorem there exists a solution u; and there holds
Yo € H: B(ui,v) = MK (ug,v), K(uy) =1,

such that Ay is the infimum.
2. Let ¢ > 1 and let there be solutions for 1 < j7 <+¢— 1. Set

Vi= (u1, ..., ui—1)
and let V- be the orthogonal complement of V relative K. Again, by the

previous theorem

Ju; € Vi Bu) = N :inf{flj((z)): u € VL}

and
Vo € V1 Bug,v) = MK (ug, ).

For 1 < j <i—1 we have
B(uj,ui) = )\jK(uj,ui) =0.

Thus
Yo € H: B(u;,v) = A\ K (ug,v),

since

H=V;, &g Vi
Let v € H and set

m
U = ZK(uan)Ui € Vint1.
i1

= U= Uy + (U — Up) € Vi1 © Viryq.-
The u; satisfy the orthogonality relation
B(u;, uj) = NK (ui, uj) = Adjj.
3. Suppose now the eigenvalues were bounded. We have
B(u;) = A
and

K(’U,Z> = 1,
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and thus
coK (u;) + B(u;) = N\ + co,
so that
Jui]| < e

= 2= K(u; —ui+1) = 0

for a subsequence, which is a contradiction. By the same reasoning the
multiplicity must be finite.
4. We prove the completeness. Let u € H.

m m
Uy, = Z K(u,u;)u; = Z:czuZ
=1

=1

Set
Um = U — Uy,
Um S V'rr%—‘,—l
and thus
Am+1K (vm) < B(vp,).
K(vm) =K(u) =Y ¢
i=1
and .
B(vy) = B(u) — Z \ic?
i=1
imply
B(vy) <c
and thus
K(vy,) — 0.

Furthermore there holds -
Z \ic? < oo.
=1

Let m < n.

B(vp, — ) = Z \ic? < e.
i=m+1
Thus the (vy,) form a Cauchy sequence in H and by K(v,,) — 0 we find

Um — 0.

Thus the (u;) are complete and

B(u) = i ic?.
i=1
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1.6.4 Theorem. (Minimaz principle)
For a subspace V. C H define

d(V):inf{f{((g:o#uevl}.

Then X; is characterized by
Ai =max{d(V): V C H,dimV <i-—1}
where the mazimum is attained at
(Ul ey Ui1),
where the u; are defined as in 1.6.3.

Proof. For ¢ > 2 let
V; = <1)1, ...,1}2'_1>.

For ¢ = 1 the claim has already been proven. We show
d(sz) S )\i = d((ul, ...,ui,1>).
Set

i
u = ZCJ‘U]‘, cj € R
j=1
and solve
K(u,v) =01<j<i—1.

Let u be a solution with K (u) = Z;:1 c? =1.

d(V;) < IB;((Z)) = ;Ajcﬁ <\

O]

1.6.5 Example. Let 2 € R™ and consider (1.15). This eigenvalue problem
is realized in the above setting by

H = Ho™*(),

B(u,v) :/Dl-uDiv
Q

K (u,v) = /qu.

Those bilinear forms obviously satisfy the assumptions of the abstract eigen-
value problem. Furthermore we have:

and
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1.6.6 Theorem. The smallest eigenvalue, A1, has multiplicity 1 and a cor-
responding eigenfunction uy has a strict sign.

Proof. Exercise. O

1.6.7 Example. Let Q € R™ be open and 952 € C%', H = H'2(Q). Con-
sider (1.16). This eigenvalue problem is realized by setting

B(u,v) :/DiuDiv
Q

and

K (u,v) = /qu.

1.6.8 Example. To solve (1.17) we define the bilinear forms as in the pre-
vious examples on the space H = H'2(M).

1.6.9 Definition. Let f: M — R be a function.
(a) f is called measurable on M, if f is measurable in coordinates.
(b) We say f € LP(M), if f is measurable and

[ 1<

(c) Let w € LP(M) and (n') € C°(M,R"). Define the weak derivative of
first order of u, (D;u), to be a tensor satisfying

/ Diuni:—/ udivn.
M M

(d) Let
H™P(M)={ ue LP(M): / Y D IDeuDul? | < o0
M=o \ |aj=k

1.6.10 Lemma. Let u € C?(M). Then —A is the Euler-Lagrange operator

of the functional
1
J(v) = / | Dof2.
2 m

Proof.

Vne C(M): 0=46J(u;n) :/ uin'.
M

O

1.6.11 Theorem. Let Q € M, then the Sobolev embedding theorems also
hold for H™P(Q) and Hy"" ().
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Proof. The case m =1 is an exercise and the rest follows by induction. [

1.6.12 Theorem. Let M be compact. Then there are countably many eigen-
values A\; of —A,
O=X <A < <. — o0

The eigenfunctions are complete in L2(M) as well as in H“?(M). The kernel
of —A is spanned by a nonzero constant function.

Proof. The claim follows from the above examples and by 11.8.16, Analysis
II. O

1.6.13 Theorem. Let u be harmonic and homogeneous of degree k in a
neighborhood of S"™. Then wgn is an eigenfunction with eigenvalue A = k(k+
n — 1) Of —Agn.

Let u be an eigenfunction with eigenvalue A = k(k+n —1) on S™ of —Agn,
then we have

u e C(S").
In R™ 1 define
x
) =u () lal
||
then
ARTL+1U == O

Proof. Let M C R™! be a hypersurface, u € C?(2) and M C Q c R**!
open. Let
A=Ay A A:ARn+1

and '

(%), (§")
coordinates for the ambient space and the hypersurface respectively. Then
we have

«

_ a,.fB
Uij = UapT; Tj + UaZy;

= uaﬁsvf‘:r:? — hijuqr®.
= Au = gijul-j = uagx?mfgij — Hun,v™.
Choose, in a given point, coordinates such that
gij = 0ij,
such that in this point we have
uagxf‘x?gij = uaf;éiaéj@gij

B

= g uag — uoo
B

= gaﬁuag — UagV V.
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= Au=Au — uagl/o‘uﬂ — Hu,v®.

Set A=k(k+1—1). On M =S™ we have H = n. Let u be homogeneous of
degree k in a neighborhood of S™, then

u(z) = |zfu <|‘;> .

Let (z%) be euclidian coordinates, then
UV = ugz® = ku.
= kngB = uagx"‘xﬁ + quB
= k(k — Du = (k — Duga? = ugpz®a”

—Au = —Au+ k(k — 1)u+ nku
=—-Au+k(k+n—1)u

1.7 The Harnack inequality

1.7.1 Assumptions of this section. Let (2 € R" be open, n > 2. In this
section we investigate the linear divergence form equation

Lu = —(a“u;); + b'u; + cu = 0,

where o
a’,b',c e L™(Q),

la]loo + 118"loo + llelloo < M

and -
N> 0VE € R™: a5 > N¢2

1.7.2 Theorem. Let 0 <u € Hlloz(Q) and Lu < 0, then for all Bag(xo) C

Q. g > 1, we have
1
1 q
sup u<c n/ ul |
Br(zo) R /g, p(0)

where ¢ = ¢(Y,n, g, \, M).
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Proof. In this proof we use the so called Moser iteration technique.

(1) Suppose first that
u € LOO(BQR(.’E[)))

Let p > 1,
n € COY(Bagr(zo)), 0<n <1,

us = u+ ¢ and use ug_lnz as a test function. Then
_92 _
0=1) [ 1Duf 07 < ¢ [ 1Dul|Dafu; ()
+c/ | Dulu; H(n*uldx) —|—c/ ubn?
Q Q
ce c
<5 [ i+ o [ 1DaP
ce
+ 2/52\Du|2u6 2772u§ / n-ul + / u(an.
Setting € = % implies

p=1) [ Dt < S [ (Daf g

Set
v =ugn”.

[ee]
/ Dv| < p / Dl 2 + 2 / o Dl
Q —00
2 2 2 2 1 P2
< D -
<cp=1) [ 1DuPu - L [y

+2 /Q ul| Dnn.

Setting e = R and observing
HY(Q) = L771(Q)

we conclude

n—1
n " o 2 1
</ u§”‘1n2n—1> <ec ( p_ . + 1) /(R!Dn\2 +7°R + E?f)ug.
Q p Q

For r € N we set p = qx", k = -5 and

R
=R+ 5
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Choose

0, =¢B,,
such that
|D | < 1 2r+1
7 p Pr+1 R
= ( / §“T+1> < 68 —
Bpr+1 B
1 / qK/T+1 " T
= = <8 — an
(Rn Bp, 11 ’ R B, ’
- ( 1 / qn”’l) # < L8 T ( 1 / ql-cr>’€1r
- 5 < CrT 8 kT - H
Rn Bp'rJrl Rn B/’T‘

This inequality is of the form
Vr € N: Iy < car 8+ 1,

which implies
s 1 T 7
Iy < C2oi=0 T §25i=0 7T T

and thus

1 q
supu5 < Cor Ug-
Br R Bagr

0 — 0 implies the claim.

(2) We now prove that u € L§°
Define

().

loc

V1 <p<oo:v=log(u+1) e L (Q).
Let p > 2, then for € C2'(€2) we have the test function

v in? e Hy?(Q).

p—1) /Du DuvP~ 2% < /]Du||D17]vp ! +c/ | DujoP~t?
Q

+c/ P in2y
Q

= (1) /Q Do 22+ 1) < ¢ /Q (D2 + 72 (0P + oP) (u + 1).

As in (1.18) we obtain
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HYHQ) — L%(Q) implies
n—1

( [wpas u))nZ) T ety [ Do)
+C/QUP_I|D77|17(’LL+1) (1.19)
P12 Dy l(u .
—l—c/ﬂv n°|Dv|(u + 1)

Thus

( / <vp1n2<1+u>>n’—%) " S clp1) [P ) ),
9] Q
Note that .

vP(u+1) <P H(u41)7-1

and
P2 <Pl 4,

since p > 2. Thus

n—1

(/Q(vp—ln2(1+u))n”1>" Sc(p—l)/g(Dn‘2+n2)(1+vp—1)(u+1)nnl.

Choose 7 as in part (1), p, = R+ 57, k = —2=.

-(

There holds

(),

v(pl)”(1+u)”> §c(p—1)8’"/ (140" ) (1 + )",
B

Pr4+1

(®P=DF £ 1)(1 + u)“)

Pr41

Then

<Rln [ e W) S8 (Riﬂ J,

Set p—1=k". For

Pr41



we find
41 < (E) " ’f’j8’7[r«

As is part (1) we conclude, using (1.19) with p = -5 + 1,

1
supv < c— ((v—i—l)%(l—i—u))”
Bgr R /B,g

/ (I4+u)?
Bar

< C*H“Hl 2,Byp-
Il

1.7.3 Theorem. Let 0 < u € Hllof(Q) and Lu > 0. Then for all Bop C 2
and for all g < 0 we have

1 <
infu>c (/ uq) ,
Bgr R Bog

Proof. Let § >0, us =u+dandp<1.Let 0 <ne CS’I(BQR) and multiply
the inequality by

where ¢ = ¢(L, q,n).

-1, 2
uf

As in the previous theorem we conclude

—2 2 |L77|2 P
P—l/Du52up n° < /( Us.
’ ‘ ’ ‘ ) ‘ 1| |P 1’ é

As in the proof of the previous theorem we obtain, using the e-trick, that

n—1 2
PRty o\ ™ D 2, 2 L 9\ »
U n—1 <c +1 /<RD +n°R+ — >u
(o) T el o) [ (mont o g o
1.

Choose ¢ <0, k = -5, p=qx", 7 € N. Using Moser iteration we obtain

1
q q
supu; < ¢ ( / U >
Br ° R"™ /B,y 0
and since ¢ < 0 we have

1
1 q
1Er}1fu(g>c(Rn/BQRu§> )

For § — 0 we obtain the claim. O
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1.7.4 Lemma. Let 0 < u € H"*(Q) and Lu = 0. Let Byr C Q. Then for

loc

all 0 < g < 1 with the property

VTGN:q<n> 41
n—1

()
supu < c | — u ,
Br Rn Bsr

Proof. Set k = -"5. Let 79 be minimal, such that

we have
where ¢ = ¢(L,n, q).

g™ >1, R=2R.

Let

Pr:R"‘QT
and
p=qr", 0<r<rg—1.

Let 1 be as in the proof of 1.7.2. Using (1.20) we obtain, using R instead of
R, as well as Lu > 0,

1

1 S\
I,y1<cl, =c / u?® .
r r <Rn 5,
—
(1/ uq"“m)qﬁo < C(l/ uQ>
R® Bagr R® Byr

By 1.7.2 We obtain, using Lu < 0,
1
<(w /")
supu < c| — u .
Br Rr Byr
1.7.5 Corollary. Let 0 < u € H.*(Q), Lu = 0 and Byg C Q. Then for all

0 < g € R we have
1
supu <c| — U
Br R Byr ’

Proof. Since the estimate holds for all ¢ > 1 and for a dense subset of
{0 < ¢ < 1}, we obtain the claim using the Holder inequality. O

Thus

Q=

O

where ¢ = ¢(L,n, q).
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1.7.6 Theorem. Let B = Bp and suppose that u € HY'(B) satisfies

VB,(x0),x0 € B,0 < p < 2R: / |Du| < Ap™ 1. (1.21)
BNB,(xo)

Then there exists ¢ = c¢(n), such that

1
Vo< b< —: / eblu—up] < ¢|B],
CA B

where ug = ﬁfBu.

Proof. Let u € CY(R"), z,y € B. Without loss of generality suppose z = 0
and choose polar coordinates around = to obtain

|yl
u(z) —u(y) = —/0 uy dr.

1 ¢ Iyl
wx)— — | ul < — Du(r, drd
o)~ iy [ = g [, IDutr sy
2R 2R
cR™" / / ¢t / |Du(r, €)|x pdrdtdH,
Sn=1.J0 0

2R 2R
D
cR_”/ / t”_l/ Tn—1| un(:g)‘XB
sn—1Jo 0 r

2R
_ 4 [ Du(y)|
=cR "/ t" / —
0 BNByg(zo) |z — |

o A2l
B |z —y[n 1
Thus we have

Yu e HY(B): /B|u—uB|p§cp/B< M(:‘/)’Y. (1.22)

B |z —y|" 1

IN

We have
1 1
[Du(y)| _ [Du(y)|” [Du(y)|”’ -
z— gyt =1, 1 n-1_1 PZ 4
N e
Thus
p—1
/ lu —ug|P < cp/ / _ P T / [Dul T
B B\/B |z —y|" T2 B g —y[* T2

(1.23)
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Set Du(y) = 0 for y # B define for z € B,a > 0
D
w) = [ AL
B |z —yl
:/ [ Du(y)]
lz—y|<2R |3j - y‘n—l—a

e [Du(y)|
_tz:;/ y|n 1—«

<~4-

Ai n 1- a(21 tR)

t=0

_ ARaQn—l Z g—at

t=0

— ARl L
1—2-a

The last integral in (1.23) is [ D (u),p > 2. There holds
2(p—1
1
Vp>2: ————— < cop,

1—2 20-1

because: X
Set t = 1. We have 1 — 272/ =1 — ¢~ ¢ > 0. Since
p—1

1— efat

— a,
t

we have

1—c¢ —“t> —t,
27

from which the claim follows. Thus

I 1+ < AR legp

2(p—1)

In (1.23) this reads

/\u—uB]p<c pPLAPT 1R2/ | Du(y) /
Blr—y

Vp > 2: / lu —upl? < c1R"(ccoAp)P.
B
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—0 |lz—y|<21—tR

dx

|n71+%

) |

(1.24)



Using the potential estimates, (1.21), (1.22) to handle the case p = 1 and

(1.24) that
()
/ eb\u7u3| — Z/ g;’u_uB‘p
B p—0/B P

> beeo Ap)P
SchR"MHB!
p:
p=1

Let becgA < %, then the series converges by the quotient criterion and

V0 < b < by: / eblu—usl < cpn.
B

O
1.7.7 Lemma. Let 0 < u € Hllof(Q), Lu > 0 and v = log u. Then there
holds for all By, C Q and p < 1, that

/ |Dv| < Ap™ L.

P

Proof. Let € >0, v, =log(u+¢€),0<n¢€ Cg’l

—~

By,) such that

ns, =1 A [Dn| <

D=

Multiply Lu > 0 by (u + ¢)~'n? and set ue = u + €.

/Q |DucPuz?? < e /Q |Ducluz" | Drlny

+c/ ]Dug\uelnz—kc/ 7
9) Q

1
= ]DUEIQSC/ 2—1—0/ 1<cp 2.
Bp BQp p BQp

1

3
:>/ |Dve| < ¢ / |Duc|? | p2z <ep”t
B, B,

For ¢ — 0 we obtain the claim. O

1.7.8 Lemma. Let 0 < u € Hllof(Q) and Lu > 0. Then there exist a,c > 0
such that for all By, C £ and p <1

1 _1
() = ()
P JB, P JB,
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Proof. Set v =log u. Then by 1.7.6 and 1.7.7 we have

/ eb|v7v3| < cpn
By

for small b. Thus

/ 6b(v—vB) < Cpn A / e—b(U—UB) < Cpn'
B, B,

Multiplying those inequalities we obtain
1 1 -
— ub§c<n/ ub> .
P JB, P JB,

1.7.9 Theorem. (Weak Harnack inequality)
Let 0 <wu € HLQ(Q) and Lu > 0. Let By, C 2, p < 1. Then there is p > 0,

loc
such that )
1 P
— / uP < cinf u,
p" B, By,

O

where ¢ = ¢(n, L, p).
Furthermore there holds

1.7.10 Theorem. Let 0 < u € HZIOS(Q), Lu = 0. Then for all By, C Q and
0 < p <1, there holds

supu < cinfu, c¢=c(n,L)
B, By

and for connected Q' @ Q we have

supu < cinfu, c¢=c(n,L,Q).
Q/ Qf

1.7.11 Theorem. Let 0 < u € H1’2(Q), Lu > 0 and Q connected. If for

loc

B C Q we have infgu = 0, then u =0 in Q.
Proof. Follows immediately from the previous theorems. O

1.7.12 Theorem. (Strong maximum principle)
Let Q be connected and u € H.;2(Q), Lu < 0 and ¢ > 0. If for a ball B C Q
we have supg u = supq u > 0, then u = const.

Proof. Set M = supqu > 0, v = M —u > 0. Then Lv > 0, since ¢ > 0.
Then the previous theorem implies the claim. O
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CHAPTER 2

HOLDER CONTINUITY OF WEAK
SOLUTIONS

2.1 Solution of the homogeneous equation
2.1.1 Lemma. Letw € L{X (0, po) suffice
w(p) < aw(4dp) + kp®
forO0<dp<ps<1l,0<a<1, k>0,0<a<]1. Then we have
VO<R<pp3Ie>030<A<aV0<p<R:wp) <cpd, A= \a,q).

Proof. Choose 0 < 3 < 1 and ag, such that a4® = ay < 1. Set A = min(c, 3).
Let % < p < R and

M = sup @
T<p<R
Then R
VZ <p < R:wlp) < Mph.
Let £ < p < & Then
= w(p) < aw(4p) + kp*
< aM(4p)* + kp*

= (aM4* + k)p*

|

By induction we then have in 41-% <p<g

w(p) < (M(#a) + k" 47a)p,
j=0
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since it holds for ¢ = 0 and if it holds for ¢ — 1, then for 41% <p< % we
have

w(p) < aw(4p) + kp’
<a(M#a) '+ k> 4al)(4p)* + kp
j=0

wlp) < (M(Ea) + 1Y #a)?
§=0

< (M+k Z al)p
=0

= (M +k ) Y0 < p <R,

1*&0

since every p lies in a % <p< 451. O

2.1.2 Theorem. Let 2 € R™ be open, n > 2, and let u € Hlloz(Q) be a
solution of the equation

Lu = —(aijuj)i + blu; =0,

where a',b° € L™(Q) and a¥ is uniformly elliptic. Then u € C%Y(Q),
a=«an,L).

Proof. By the previous lemma it suffices to derive an estimate for the oscil-
lation of wu,

wp = sup u — inf u,
By By

for every ball By,(z) C €2, such that
VeeQ30<a<1Vp<1:w, < awg.
So let By, € €2 and define

m(p) =infu A M(p) = supu.
By B,

=v=DM(4p) —u>0in By,.
Thus v is a nonnegative solution and by the Harnack inequality we obtain

supv = M (4p) — m(p) < cinfv = (M (4p) — M (p)).

o p
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Similarly for w = v —m(4p) > 0 we find

Supw = M(p) —m(4p) < c(m(p) — m(4p))

and thus
wap +wp < c(wap — wp)

c—1
:>wp§0—|—1

Wap.

2.2 Local Hoelder continuity

2.2.1 Assumptions of this section. Let 2 € R” be open, n > 2. We
consider solutions u € H llof(Q) of
Lu = —(aiju]-)i + blug 4 cu = —(f*);,
where o
a’,b',c e L™(Q),
(fY € LP(Q,R™), n < p < o0

and a¥ is uniformly elliptic. Furthermore we define the operator

L=L-—c

2.2.2 Theorem. Let u € Hllof(Q) be a solution of Lu = —(f%);. Then u is
locally bounded.

Proof. Will be proven more generally in a later theorem. O

2.2.3 Lemma. (Stampacchia)
Let 0 < ¢: [ko,00) = R be a nonincreasing function satisfying

Vh> k> ko 6(h) < o (k)” (2.1)

(h—h)
with positive constants a, 3, ¢, then there hold
ap
(1) B>1= ¢(ko +d) =0, where d* = cg (ko)1 - 251,
(2) B=1=Yh>ko: ¢(h) < ep(kg)e*"F0) where a = (ec)fé and

(3) B <1 A ko> 0= ¢(h) < 217 (T + (2ko) "¢ (ko) ", where p = 1%

Proof. (1) Consider the sequence

ki=ko+d—d27% ieN.
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By (2.1) we obtain

o(i+1)
P(kiv1) < “ T (ki)
= k) < ¢(ko) o

since it holds for ¢ = 0 and

220D ¢(ko)P (ko)
d(kit1) < 7o B = 2FDa

(2) Consider

ki = ko + i(ec)é.
By (2.1) we have

Hlko) < (ki ).
Let h > kg. Then there exists an 7 € N, such that

Q=

ko + (i — 1)(ec)a < h < ko +i(ec)a.

$(h) < d(ko + (i — 1)(ec)=) < e V(ko) < ee™ PR (kg), a = (ec) =,

(3) Let
B
Y(h) = ¢(h)—
cl-7p
By (2.1) we have for all h > k > ko >0
sy e e
- Cl% (h — k) krB

h := 2k implies
¥(2k) < 2"9(k)”

B(2k) < (k)P W
since it holds for ¢ = 1 and we have
P(2) < 2 (2k)°
< w(k)ﬁi“guiﬁ;é BT ou
_ ¢(k)ﬁi+12#23-:0 Bj‘

£ < 1 implies

sup U(k)” <14 sup (k) < 1+ g(ko)(2ko) e T

ko<k<2ko ko<k<2ko
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= Y(2'k) < (14 @lko)(2ko)'e T7 )25 (2.6)

Each number h > 2kg is of the form h = 2k, k € [ko, 2ko]. Thus by (2.6) we
have ) )
sup ¥ (h) < (1 + ¢(ko)(2ko)!c™ T7)2"T=7

2.2.4 Theorem. Let u € H2(Q2) be a solution of
f/U, - _(fi)i7

then there holds
(1) If o' = 0 or |Q| < eg = €o(n, L) << 1, then

11
|ul < sup [u] + ¢f| f]lp[Q[" 7.
a0

(2) Otherwise there holds

|ul < o+ cll fllp|€2™ >

11
where co = co(n, supgq |ul, [|ul/1).
Proof. Let k € R and set
A(k) = {u > k}.
Let ko = max(supyq u,0). For k > ko define
n = max(u — k,0) € Hé’Q(Q)

as test function. Then

/ Dyl < e / Dy + ¢ / Dl

Q Q Q

:>/!D77\2§0/ !f\2+6/ nf?
Q A(K) A(K)

n>3=2"=2n,

n—2

2
/ nl? < / D2\ A(k)|%.
A(k) Q

For n = 2 we have

/A(k) n|* <ec </Q |D77>2 < c/Q |Dn2| A(k)).
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For small |Q| we find

Vk > ko: / | Dn|? gc/ |£|2.
Q A(k)

If Q is arbitrary, ko has to be chosen large enough, depending on ||ul[; and

N RN Ty
A(k) Ak) K 0

) 2 2 2 1-2
k> ko / Dl < c / I < el FI21AGR) 5.
Q A(k)

(/Q??"ﬁl>nnlSc/ﬂanléc</ﬂ|Dn|Z)%\A(k”

= ( / n) "< AR A

n—1

IXE ( / n) " AR)E < AR £
Q Q

Now for all h > k > kg we have

(h— B A(h)| < /

A(h)

n, since

Then

N

(u—k) < /Qn < || flpl Ak

Forﬁzl—i—%—%>1wehaveby2.2.3

’A(k() + d)‘ =0,
11
where d = | fll,|A(ko)| " 7
= u < ky+d.
Analogously this holds for —u, which implies the claim. O

2.2.5 Theorem. Let u € Hllof(Q) be a solution of

Lu = —(fi)i, fie LfOC(Q), p>n,

then u € C%%(Q).

Proof. If u € L§2.(Q), we may consider

loc

Lu=—cu— fl=g— fl.
Let Q = Q' € Q, then we claim:

Jw € CO¥HR™): — Aw = g = — (6 w;);.
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Proof: Extend g identically 0 to R™ and call the mollification g.. Set
We = 7Y * Je,

where 7 is the Newtonian potential. Then we have
—Awe = ge

and
| Dw,| < const.

As € — 0 we obtain a limit
we s weCh(Q): —Aw=y.

Thus without loss of generality we may assume g = 0.
Now let By, €  and p so small that L coercitive in H (B4p), ie

Vu € Hy?(Bup): (Lu,u) > cl[ull} ,.
Then solve
I—/U} = —(fl)z in B4p =B
w|aB4p = 0.

Therefore define B
a(u,v) = (Lu,v)

and
¢ € Hy*(B)'

(11, v) / fo

Then a induces a linear operator A € L(H ?(B)). Thus the above equation
reduces to

by

(Aw,v) = (¢,v) Vv e Hy*(B).

There exists a solution by Exercises 13. Thus by the previous theorem we
obtain for such a solution

1_n
lwl < ¢l fllpp™ 7.

Set v = u — w, then .
Lv=0in B4p.

Let w, = osc(v), then as in the proof of theorem 2.1.1 we obtain

wy(p) < awy(4p), 0<a< 1.
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wu(p) < wy(p) +wu(p)

and
wy(4p) < wu(4p) + wuw(4p)

= wa(p) < awy(4p) + cllfllpp' ¥

—0<a<l-2V0<j<2:wy < i
p

2.2.6 Lemma. (Stampacchia)

Let 0 < ¢(k, p) be a real function, k > ko, 0 < p < Ry such that

(1) ¢(-, p) is monotonely decreasing,

(2) ¢(k,-) is monotonely increasing and

(8) Vko < k < h¥0 < p < R < Ro: ¢(h,p) < 5= gy |0 (ks R)I7,
c,a, B,y >0,6>1.

Then there holds

VO<o<1: ¢(k‘0—|—d,R0(1—0‘)) =0
with

e OlE, B
(ﬂRg ’

Proof. Consider k; = kg + d — %, pi = Ry —ocRy + 02}?0. Then there holds

¢(ko, Ro) = o+

) <
¢(k17pl) — 21“ ’ B _ 17

since it clearly holds for i = 0 and

$(kit1, piv1) < c(ko, Ro)P210id e . 20D (et 1) o= g

¢(ko, Ro)
ou(i+1) -

O]

2.2.7 Theorem. Let Q2 @ R™ be open and 0 € COL. Let u € HY2(Q) be a
weak solution of

Lu=—f!, ff€LP(Q), p>n.
Then there hold
(1) sups, [ul < e(lulz, . 11flps 79, L) VBay € © and
(2) Let xzg € 09, Q,(x9) = QN By(xo), I'y = 0Q N By(xg) and suppose
supr,, [u| <y < oo, then there holds

sup [ul < c(y, [|fllp, lull2.0,, L p, 7).

P
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Proof. We only prove part (2), since the first part works identically. Let
0<p1 <p2<2p<1and

0 <€ Cyl (B (o)),

such that

ns, =1 A |Dn| < oy — o

Furthermore let ky > max(~, 1), v = log v on {u > 0} and
v = max(v — k,0), k > ko.
Thus, if vy > 0, it follows u > 1. Multiply the equation by
vk772 € H5’2

Then, using the e-trick,

/ | Doy *n?u < c/ |b\|ka|vku772+c/ ven*u
Q Q Q
e [ 171Dodds? +c [ 171Dl

+ c/ log|?| D .
Q

Define
A(k,n) = {vkn® > 0}, A(k, p) = {v > k} N B,(x0)

as well as the measure
Alen)| = [
A(k,m)

/ Doy < ¢ / 207 + Dy

+c/ |f|2u177\2+c/ .
A(k,m) Q

)

</Q Ika!2n2u>é < p2i,01 ( (/A(M) UZu) |A(k,n)|2~
+ ( Jo \f|p) Ak mIE

" (/Qku) Ak
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n

Setting x = "5 and applying the Sobolev embeddings we obtain
1
</ (vlm2u)”> < c/ (| Dvg|n?u + vi| Dn|nu + wvgn?| Dug)|)
Q

<(/ Doy ) Ak, )
S/ vw)T Ak, )
o /Qm,ﬁpnzu)%( [ )

7

VLU k, -3
S (/A(W k> ALk, )|
1
P % 1—-1_1
1l + o (/ kun) Ak,
(km) Q

[NIES

+c

Thus

([ wrar)

1
vZu) Ak, )|
k,n)

S /\

Since V1 < r < oo we have

it follows

Choose r such that L1

h >k > kg we find

™

——|A(k, p2)|” YO < p1 < py<1.

A(h
[A(h, p1)| < p_plh ’

Then by 2.2.6 we obtain
|A(ko +d, p)| =0
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with

5 _|A(kg,2p)P1
g = 4755 Ao, 2p)|
p
= supu < kg + d.
By
The same for —u implies the claim. O

2.3 Hoelder estimates near the boundary

2.3.1 Assumptions of this section. Let 2 € R™ be open, n > 2. We
consider solutions u € H'2(Q) of

Lu = —(a“u;); + b'u; + cu = —(f*);,
Ujpn = ¢7

where o
a’, b’ ce L*(Q),

(f) € LP(QR"), n < p < o0,

¢ € C%*(090),0 < a < 1 and a¥ is uniformly elliptic. Furthermore we define
the operator 3
L=L-c

2.3.2 Definition. We say, 0N2 satisfies an exterior cone condition, 02 € (K),
if for each zy € 9N there is a cone with uniform angle starting in zg, such
that for a uniform p > 0 we have

K,(x0) = K N B,(xg) C Q°.
2.3.3 Example. 0Q € 0% = 00 € (K).
2.3.4 Remark. 0Q € (K) = Jep > 0 Vxg € 0Q: ‘B”(‘;fw > €.
2.3.5 Theorem. Let 0 < u, Lu >0, g € 022 and R > 0. Set
m = inf{u(z): x € 0N N Byr(zo)}

and
B min(u,m), x € QN Byr
u =
m, S B4R\Q.

Then there holds for all p < 0

1 1
g
(n/ a”) < cinf u,
R Bagr Br

c=c(n, L, p).
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Proof. Letp<1,n¢€ C’g’l(BgR), 0 >0, a5 = u+3d and mg = m—+4. Multiply
Lu > 0 by the test function

(@ —ml n? e Hy?(Q).

As in the proof of 1.7.3 we obtain

_ Dnl?
=11 [ |pusPal i < | ('”’ +772> .
Q a \Ip—1

We also may integrate outside €2 in the full ball. Using the e-trick and
Sobolevs embedding, kK = -2, R < 1, we obtain

n—1"

1 2
K 1
(/ 12?772“) <c ( P + 1> / (R\D17|2 + 772 + 7772)1]? (2.8)
Bar lp—1] Bor R

Let ¢ < 0 and p = ¢k", » € N. Then by iteration we obtain

1 1
<n/ a§> < cinf .
R Bsgr Br

6 — 0 implies the claim. O

2=

2.3.6 Lemma. Under the assumptions of the preceding theorem let 0 < q <
1. Then there is p > 1, such that
1
1/ u‘l) ! ,
Rr Bsr

1
1/ p>
— U <c
<R” Bor

Proof. Tt suffices to prove the claim for almost every 0 < ¢ < 1. So let
0 < g < 1 such that gs" # 1 for all r € N, Kk = _*5. Choose ry minimally

such that p = ¢x"® > 1 then by (2.8) we obtain using iteration
1 1
P 1
— a’ ) <e(—= ul)a.
<Rn /BQR ) Rn Bir

2.3.7 Lemma. Under the assumptions of the preceding lemma let Qup =
QN Byr(zo) and v = log(u). Then

-]
N

c= c(n7L7p7q)'

O

VBay(y) C Bin(ao): / Dv| < AL,

P
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Proof. Let 0 <n € 08’1(ng), ns, =1, |Dn| < % and € > 0. Let furthermore
e = U+ € and v = log 4. Using the test function

(@+e)™ = (m+e )

we obtain
[ 1pafacte <c [ 1Dada; ! Daly
Q Q
+c/ | Da|a;  n?
Q
+c/ ?72
Q
and thus

Q Q

:>/ |Du| < Ap™~L.
BP
O

2.3.8 Lemma. Under the assumptions of the preceding lemma there exist
a >0 and ¢ > 0 such that

1 1
(@ f,) =elw f,)
R™ |, — \R" /B, .
Proof. As 1.7.8. O

2.3.9 Theorem. (Weak Harnack inequality)
Let 0 < u, Lu > 0 and m,u as wn the preceding theorem, then there exist
p>1 and ¢ = c(n,p, L), such that

Proof. (i) 3¢ > 0 such that

1 1
_ Uq S _ u q
<Rn Bagr Rn Bor

N
3|~
5
=
2
S~
S =
(VAN
o
7N
3|~
5
5
2
~——
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2.3.10 Corollary. Under the assumptions of the preceding theorem there
holds

ﬁ B u < Cléllf U.
2.3.11 Theorem. Let u € HY2(Q) be a solution of the equation
Lu=0 in Qr, = QN Bry(xo),

xg € 00. Let T' = Bp, NI € C*! and ¢ = ur € C% 0 < a< 1. Then
there exists 0 < a < 1, such that for 0 < p < % and for

wip) = sup |u(z) —u(y)|
z,y€Qp(20)
and
O(p) = sup |u(x)— u(y)|
89N B, (20)
we have
w(p) < aw(4p) + @(4p).
Proof. Let

M(p) = supu, m(p) = infu,
o p
M(p) = sup u, m(p) = inf wu.
(®) 0NB, (®) 8aNB,

(i) Consider v = M(4p) —u > 0 in Qy,, then we have
Lv = 0.

Thus by the preceding corollary we have

1 _ e
/ v<ecinfv
p" By, By
= p "0|B,\Q| < ciélfﬁ < ciélfv < c(M(4p) — M(p)).
P P
Since 02 € (K) we have

M(4p) — M(4p) < c(M(4p) — M(p)).
(i) Set v = u — m(4p) > 0 in Qy,. Then Lv = 0. Thus we again have
L[ 5 < cinfo < cinfo < e(m(p) — m(4p))
— v < cinfv < cinfv < ¢(m(p) — m(4p)).
p" B, By Qp

= m(4p) — m(4p) < c(m(p) — m(4p)).
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(iii) Add the two inequalities to obtain

w(4p) — @(4p) < c(w(dp) —w(p)), c>1

= w(p) < S uldp) + -o(dp).

O

2.3.12 Theorem. Let 00 € C%' and u € HY(Q) be a solution of the
Dirichlet problem

Lu=—f]
ujpn = ¢,

where f' € LP()), p > n.
Let g € 09, Tyr = 0Q N Bygr(xo) and ¢ € CO(Tyr), then there holds

ue CONQUTR),
0 <A <min(a,1— %)
Proof. (i) By 2.2.7 we have u € L*(Q2g). Solving
—Aw = —cu
we obtain . A ‘ ‘
Lu=—(f"4+ D'w); = —f;.
(ii) Having extended the data to Bg,, solve
Lw = —f! in Bg,
wipBs, = 0,
for such small p < 1, that L is coercitive.
= sup [w] < cp' 77| £,

Setting
v=u—w,

we have .
Lv=20
in {g,. Thus by the preceding theorem we have

wy(p) < awy(4p) + wu(4p).

= wy(p) < awy(4p) + aww (4p) + Gu(4p) + @u(4p)
< awy(4p) + cllflpp' "7 + c[glap®
By the De Giorgi lemma we obtain

wyu(p) < CPA .
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2.4 Application to nonlinear equations
Consider a general elliptic PDE of second order
F(-,u, Du, D*u) = 0,

_OF
N 8uij

a¥ > 0,

where F' is uniformly elliptic in compact subsets of the domain of definition
of F. If the regularity of the equations admits, we may differentiate for xy
to obtain

0= a"juk' + aiuk + 8—Fuk+ ai
Y ap; Y Ou oxy,’
which is a linear equation for v = wg. If it is a priori possible to obtain
C3 estimates, we thus obtain v € C>® by Schauder theory. Obtaining C?
estimates is quite difficult in general. The results of Evans, Krylov for the
elliptic case and Krylov, Safonov for the parabolic case ensure C*® estimates
only knowing C? bounds and the concavity of F(-,u, Du,-). We now turn
our attention to quasilinear equations.

2.4.1 Assumptions of this section. Let 2 € R™ be open. We consider

the quasilinear equation
Au = —(a(u, Du)); = f 29)
Ujpn = ¢7

where

B da’
apj

is locally uniformly elliptic, f € LP(Q), p > n > 2, 92 € C? and o' €
CHQ xR x R™).

CLU

2.4.2 Theorem. (i) Let u € C%Y(Q) be a solution of (2.9), ¢ € H*P(Q),
f e LP(Q). Then we have
u € H*P(Q).

(i3) Suppose furthermore f € C%*(Q), ¢ € C*%(Q) and 0N € C%<, then we
have B
u € C*(Q).

For the proof we first need several things.

2.4.3 Theorem. Under the assumptions of the preceding theorem, (i), we
have

u e Ch(Q),

forsom60<a§1—%.
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Proof. (i) u € C%(Q) = a'(-,u,p;) = a*(-,p;) and
AEP > a€&; > NEPP, X > 0.
The L? estimates imply v € H*2(Q) and
ull22 < e([lfll2 + lJull2)-

(i) Let 1 <k <n,v=mu € H"3(Q). Use (; as test function to obtain

g 9a’ 9a’ 4
~aiui— (o) = () = f= Ly

1A
19

ft € LP(Q2). By the De Giorgi-Nash results we obtain v € C%%(Q) with
corresponding a priori esimates.

(iii) Boundary estimates. By local flattening we may assume the equation
reads

= —(CLij’Uj)Z‘ = —

Au= fin Q = B{(0)
ur = ¢,

where I' = 90 N {z" = 0}.

Let 1 <k <n—1and v =wug. Then v solves the Dirichlet problem
—(a“v;); = —ff in Q

v = ¢y, € COP, (2.10)

8=1-— %. De Giorgi-Nash implies

v € C"(B}(0)),

0<R<I1.
(iv) In order to prove
upn € CO*(BY(0)),
2

we have to prove a so-called Morrey condition for Du. Let v be defined
as in (iii). Let 0 < R < 1 and £ € B£(0). Choose 0 < p < 1, such that
By,(€) C Br(0) and let n € Cg’l(ng(ﬁ)), such that 7z, = 1 and [Dn| < %.
Distinguish two cases:

(1) B2,(§) NT # (0. Then we choose & € By,(§) NT' and multiply (2.10) by

(v = dk(&0) — ¢k — Dr(é0)))n” = (v = dp)n* € Hy (), @ = B (0).

(2) Bap(ey € Bf(0), then we multiply (2.10) by
(v = v(©))n*.
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In both cases integrate by parts. We only consider case (1).

= [v — ¢r(&o)| = [v —v(&o)| < clz — &o|* < ep®
and
o1 — dr(&0)] < clz — &P < ep? < ep.

/aijvwﬂf S/aijvjﬁﬁka
Q Q

9 / av;(v — (o) — 6k — Si(E0)))min

/fz ¢kz
+2 /Q fH(v = (&) — (o — dr(&0)))min

By the standard e-trick we obtain

/ Duf? < ¢ / D26 + cp~? / (o — o(€) > + b5 — bu(E0) )
B, ()N Bay(e)NQ Ba,NQ2

2 2 112
+c/32m<\f| T D%P)

+ cpl/B . | fI(Jv = v(&)| + [ér — dr(80)])

=h+L+I3+ 14

We have
L <dgllz,0" 7,
Ir < c([v]2 + [De]2)p" 22,
n_2n
Iy < c(||fll7 + ID?¢l5)p
and

L < el fllpp" " F

= ‘DU’Z < CLan—Z-i-Q)\7
B,NQ
A= min(a,1—2) and L2 = [6J3, + I£12+ ]2 + [DGJ2 + ||, This is the
Morrey condltlon
Now we show, that v = u,, satisfies a Morrey condition as well. We use the
equation:

g da'  dat
0. . L —
—aQ Uy — —— — —U; = [|.
Y9zt Ou /
- |unn|2 < Cszn_2+2/\.
B,NQ
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Using the following lemma we obtain
v e CONBE(0)).
4
O

2.4.4 Lemma. (Morrey)
Let Q = Bg(0) or Q = B£(0) and suppose for u € H'P(Q) and 1 <p <n
there holds

/ |DulP < cLPp" PTPA X >0 (2.11)
B, (&)

for all 0 < p < & and for all ¢ € Br(0) or for all &€ € B}; 0) respectively.
1
B R
Then - !
ue C‘“(Bg(o))

or
ue CONB

.(0))

M:JJr

respectively and
[u]x < cL.

Proof. Prove only the case Q = Bg(0). Let u € C1(Q) and z,¢ € Bz(0).
4

Set
=g
5

P= S +0),

For y € B,(z) we then have
1 . .
/u (=09 = [ (- ).

1
= |B,(z)| ! /B )~ < 2015, @) /O /B Dty =09,

Transform
z=ty+ (1 —0)¢ z=tx+ (1 —1t)¢

to obtain

// |Du(ty + (1 — t)&)|dydt = /t_/ |Du(z)|dz
Bp Btp

1 _
<cf f”(tm"Tl( [ upy
0 Bip(2)

1 -1 n
< c/ " (tp)" 7 L(tp)»
0



and analogously for z = &.

= Ju(z) —u(@)] < IBp(x)ll/B (Ju(y) = u(@)] + |u(y) — w(@©)]) < cLp™.

p(Z)

O]

Now let 9Q € C%2, ¢ € C?2(Q), f € C¥¥(Q) and u € C>*() be a solution
of the problem (2.9). If we are able to prove C° and C! estimates, then
by De Giorgi-Nash we obtain C%® coefficients, bounded by |ul1,o. Schauder
theory then yields C?® estimates.

We now prove that Lipschitz solutions are already classical solutions.

2.4.5 Theorem. Let Q € R" be open and let 90 € C>,
at,a € CH(Q xR xR, ¢ € C*¥(Q) and u € CO(Q) a solution of

Au+a(-,u,Du) =0

2.12
Uon = ¢a ( )

then we have

ue C*P(Q),
for some 0 < 8 < a.

Proof. (i) Let ug € C%(Q) be a solution and let

Let 8 = 0(t) be a real function

t, it < M
o(t) =
(M +1), [t|>M+1,

6> 0.
(ii) Let w, g be real functions

1, 0<t<2M
w(t) =
0, t>3M
and
(0 = 0, 0<t<M
T =Vt —k, t>oM,

such that g is convex.
(iii) Set | | |
i (w,t,p) = a'(x,0(t), p)w(lp|) + kg (|pI*)p',
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where k is large. Furthermore set

a(z,t,p) = a(z, 0(t), p)w(lpl?).

There holds
la(z,t,p)| < c(1+ |p|)

and % is uniformly positive definite. Thus the corresponding operator
Au+ a(-, u, Du)

is a uniformly elliptic differential operator. If v > 0 is chosen large enough,
then )
Qv := Au+ a(-,u, Du) + v(u — ugp)

is coercitive i.e. for ui,us € H%?(Q2) such that u; = ug on 9 we have
2
(Puy — Pug,ur —uz) > cllur —ual|f 9, ¢>0.

Using the exercises we obtain u € H%?(12), solving

du =0
(2.13)
upn = ¢-
By L? estimates and De Giorgi-Nash we obtain
u e CH(Q) N H>2(Q).
There holds
Ddug = Aug + CL(’, ug, DUO).
Thus, if (2.13) has a C*® solution u, then we must have u = ug.
(iv) (2.13) has a C%P(Q) solution. The linearization reads
—aYu; + al-,u, Du) +y(u —ug) =0
i ( ) +( 0) (2.14)

upn = ¢

with 92+ 4 > 0.

First, we need an a priori estimate:

(1) By the maximum principle we obtain a C? estimate.

(2) Using Thm 15.2 in Gilbarg-Trudinger we obtain a C' estimate, also cf.
Chapter 3.2.

(3) L? estimates yield u € H?%(Q) and by De Giorgi-Nash we obtain u €
CM o< A< 1.

(4) Schauder theory then yields C%“ estimates.
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(v) We now employ the Leray-Schauder fix point theorems, cf. next chapter,
to obtain a solution. Let 0 < ¢ < 1 and consider

Au + oa(-,u, Du) + (1 — a)a—a(-, u, Du) + vy(u — oug) =0

o (2.15)

u|39 = 0¢.

For this equation we also have to prove C*“ bounds. Choosing v large
enough, then (2.15) is also coercitive and we obtain estimates independently
of 0. Leray-Schauder then implies , that there is a solution for ¢ = 1. O

2.4.6 Proposition. Let a’,a € C1(Q x R x R") and let ug € C**(Q) be a
weak solution of

Au+a(-,u,Du) =0
up = ¢ € H*P(Q), p>n.

Then we have
Ug € H2’p(Q).

Proof. The same proof as the one of the preceding theorem is applicable.
However, we have to use the LP-theory of Calderon-Zygmund instead of
Schauder theory. O
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CHAPTER 3

(QUASILINEAR OPERATORS AND
LERAY-SCHAUDER THEORY

3.1 Fixed point theorems, Leray-Schauder theorem
and applications
3.1.1 Theorem. (Schauder’s fized point theorem)

Let V' be a Banach space, K C V compact and convex and T: K — K
continuous. Then T has a fixed point.

Proof. We use Brouwer’s fixed point theorem. Let k € N, then there exist
(ui)1<i<n, u; € K, such that

N
Kcl/J By (u;).

i=1

Set
B; := B% (u;).
Let
Sk := conv(uq, ..., un)

and define

Jk(u): K — Sk
SN | dist(u, K\ B;)u;
S dist(u, K\B)

U —r

There holds

SO dist(u, K\By) (u; — u)
SN | dist(u, K\B)

| Jeu — ul| = <

1
k
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and since Ji o T: S — Sk is continuous, it has a fixed point vi. By com-
pactness there is a subsequence vy — v € K. There holds

1
lop, — Ty = |JTve — Tog|| < T

=v="Tv.

O

3.1.2 Corollary. Let V' be a Banach space, K C V closed and conver and
let T: K — K be continuous and T(K) precompact. Then T has a fized
point.

Proof. (i) Let A be a precompact set, then conv(A) is also precompact,
because:
Let € > 0, then

N
Jo; € A,1<i < N: AC | Be(wi).

=1

y=>_ M-
k

Then there exist x;, : yx € Be(z;,) and thus

ly = > Meall < D Awllyr — il < e
k k

Now let y € conv(A),

= Vy € conv(A) 3z € conv(z;): ||y — 7| <e.
N
=y € | Bacmi),

i=1
since conv(x;) is precompact.
(ii) Let i
C =conv(T(K)) C K.
Then T: C' — C has a fixed point. O
3.1.3 Theorem. (Schaefer)

Let V' be a Banach space, T: V — V continuous and compact. Suppose there
is an M > 0, such that for all solutions of

u=0clTu, 0<o<1,

so-called quasi fized points, we have ||u|| < M, then T has a fized point.
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Proof. Without loss of generality we may assume M = 1, for otherwise
consider M 1T M. Define

» Tu, ||Tul] <1
T u=19 p,
TTul? [Tul| > 1.
Then
T*: Bl — Bl
is continuous and 7*(B1) is precompact. Thus T* has a fixed point

u="T"(u).

If ||Tu|| > 1 we obtain
1

= _Tu,
[ Tul

which contradicts the a priori estimate. Thus ||[Tu|| < 1 and so

u

u = Tu.
O

3.1.4 Lemma. Let V be a Banach space and B = B1(0). Let T: B — V be
continuous, T(B) be precompact and T(OB) C B. Then T has a fized point
in B. If T(OB) C B, then the fived point lies in B.

Proof. Define

. Tu, |Tul] <1
T*u = Tu
mraye Tl > 1.

Then T*: By — By is continuous and T*(Bj) precompact. Thus
Ju e By: T u = u.
= Tu = u,
for otherwise we had ||T'ul| > 1. O

3.1.5 Theorem. (Leray-Schauder)
Let V' be a Banach space and T:V x [0,1] — V continuous and compact.

Suppose
VueV:T(u,0)=0

and suppose
IM>0V0<o<1l:u=T(u0)= |ul| <M.
Then
JueV:iu=T(u,l).
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Proof. Without loss of generality let M =1, i.e.
u="T(u,0)=|lul| <1. (3.1)

Let 0 < € <1 and let T*: B1(0) — V be defined by
T'u =T u = { (

Thus T* is continuous, T*(B1) is precompact and T*(0B) = {0}.
Thus there exists u. such that

) e <ol <1
), Ju <1 —e

ue = T u,.

Defining

o e M1 —lucll)y 1—e<lu <1
L luell <1 =,

we obtain

T( 70-6)a 1_€§||u6||§1
e = TucT

T(.00,  Ju <1 -
€ — 0 implies that for a subsequence we have
(e, 0¢) = (u,0), 0 <o <1.

There clearly holds
u="T(u,0).

Furthermore o = 1, for otherwise we would find
[[uel — 1

and thus
ul] =1,

which is a contradiction. O
3.1.6 Theorem. Let Q € R" be open with 0Q € C*>*, 0 < a < 1. Let
at € C?(A xR xR?), a € CHQ xR x R, a* elliptic and ¢ € C>*(Q).
Suppose that for all 0 < o < 1 and for all solutions of the boundary value
problem

da’
Au + oa(-,u, Du) + (1—0)8 (yu, Du) =0 (3.2)
U = 0P
there holds
|u| + |Du| < M.
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Then the Dirichlet problem
Au + a(-,u, Du) =0

3.3
upn = ¢ (33)

has a solution u € C%%(Q).

Proof. Let v € C1%(Q). Consider the equation

—a"(- D).._aiai(. D)._ii(. Dv) + a(-,v, Dv) =0
a” (v, Dvjuig — 2, v, Dv)us — =5 (v, Dv) + al:, v, Dv) = 0.
Write )

a'L
%(', v, D’U)Ul
Then L is a uniformly elliptic differential operator with hoelder continuous
coefficients. From Schauder theory we conclude, that the boundary value

problem

Lu = —a"(-,v, Dv)u;j —

o )
Lu+a(-,v, Dv) + —a(-,v,Dv) =0

oxt (3.4)

upn = ¢

has a solution u € C%() and

[ul2,0,0 < c(|fl2,a + V[1,0,0),

_ _ i
where ¢ = c(A, |aly 6= |v]o,olo] [ Dvlo, Dvlo]* 1@ |2,0x [ [0, [v]0] x [ | Dlo,| Dvlo])-
Define

T: CH(Q) — C**(Q)
vi=u="Tuv,
where u is a solution of (3.4).

T is compact: Let (v*) be bounded, then u* = Tw* is bounded. Thus we
obtain subsequences, such that

vF = v in CF

and

u® — u in C2.

su=Tv

and by uniqueness the whole sequences must converge.
T is continuous: Write (3.4) in the form

Luk = f*

U = ¢-
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Let v — v and denote the u* to be the corresponding solutions. Then

uf — ul solves

aij(',’vk,D’Uk)(’u,k . Ul)ij _ ga (',’Uk,D’Uk)(’u,k . ul)i
u

+(a¥ (-, 0", DY) — a¥ (-, v, DVF))ud

ij
oa’
am

Efk—fl—i-Fkl

(-, Ulel) — (?)a(.’ vk, ka))ué
U

and thus
|uk - Ulb,a < C(|fk - fl|0,a + |Fkl’0,a) — 0.

We have to show that all quasi fixed points are a priori bounded. So let
u = 0Tu, 0 <o < 1. This means
da’ da’

—a" (-, u, Du)ujj + oa(-,u, Du) + 0%(-,% Du) + %(',u, Du)u; =0
u‘aQ = J(b.

By assumption we have |u| + |[Du| < M;j. Thus by the L? estimates and
DeGiorgi-Nash we find
lul1.n < Mo.

Schauder implies
[ula,x < M3

and repeating those arguments we find
[ul1,0 < My.

Setting
M=M;+1

implies the claim.

3.2 Gradient bounds

3.2.1 Theorem. Let a’,a be the coefficients of the modified operator in the
proof of Theorem 2.4.5.

Au+ a+y(u - ug) = —(a'(,u, Du))i +a(-,u, Du) + 7(u — ug),

a € O, a € OV a® uniformly elliptic, a = 0 for |Du| > M and (ggi, %‘5) =0
for |Du| > 1. Let 02 € C?, ¢ € C*(Q) and for u € H"*(Q)

Au+a+v(u—wug) =0
u|8Q:¢7

then |Du| < c.
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Proof. The L? estimates imply u € H??(Q).
Let |Du|sq < ko, then
|Du| < c(ko, ...).

Let 1 < k < n and v = u;. Differentiate the equation for x; to obtain

_(aiju.). + iaiv + aai
A oxt

+ Dya +y(v —vg) = 0.
Multiply this equation by
vg = max(v — k, 0),

where k > kg.

é/aijDiUDjvk—l—'y/vvkE/ka, feLrL™.
Q Q Q

By the Stampacchia method we obtain
v<ko+d

and analogueously from below.
Bounds up to the boundary: Choose a tubular neighborhood 2, with 0 <
d € C?(Q.). Define an upper barrier w = w* by

w=¢+ Ah(d), 0<d<e.
= Wij = ¢ij + Ah/dij + Ah”didj.
—aijuij =fe L™.

Choose h(d) = log(1 + ad), where « is large. Choose e = 1. Then h” is the
dominant term and thus -
—a”w,-j > f.

Wig=e} = ¢ + Alog 2 > u
=u < w.

Bound it from below by using w™ = ¢ — Ah(d). O
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