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Chapter 1

Distributions and Sobolev
spaces

1.1 Distributions

1.1.1 Definition. Let Ω ⊂ Rn be open, K ⊂ Ω compact. We set

DK(Ω) := {φ ∈ C∞c (Ω): supp φ ⊂ K}.

On DK(Ω) we define the following norms:

∀m ∈ N : pm(φ) = |φ|m,K .

1.1.2 Remark. Those norms define a topology on DK(Ω), using the base

Um,ε := {φ : pm(φ) < ε}, ε > 0, m ∈ N,

such that DK(Ω) becomes a topological vector space, i.e., all the other neigh-
borhood bases are formed by translation. This topology is then generated
by the metric

d(φ, η) :=
∑
m∈N

2−m
|φ− η|m

1 + |φ− η|m
.

1.1.3 Proposition. T ∈ DK(Ω)∗ is continuous, if and only if

∃m ∈ N ∃c > 0 ∀φ ∈ DK(Ω): |〈T, φ〉| ≤ cpm(φ).

Proof. Exercise.

1.1.4 Remark. Let Ki ↗ Ω be an exhaustion, such that Ki ⊂
◦
Ki+1. Then

C∞c (Ω) =
⋃
i∈N
DKi(Ω) =: D(Ω).
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Let the topology T of D(Ω) be defined by the requirement

∀i ∈ N : T|DKi (Ω) ⊂ TDKi (Ω).

The topology T does not depend on the exhaustion.

Proof. Exercise.

1.1.5 Definition. (i) A linear form T on D(Ω) is called distribution, if it
is continuous. For the set of all continuous linear forms on D(Ω) we write
D′(Ω).
(ii) D′(Ω) obtains the ∗-weak topology, i.e.

Ti
∗
⇀ T ⇔ ∀φ ∈ D(Ω): 〈Ti, φ〉 → 〈T, φ〉.

1.1.6 Remark. From the previous constructions we deduce

T ∈ D′(Ω)⇔ ∀K b Ω ∃m ∈ N ∃c > 0 ∀φ ∈ DK(Ω): |〈T, φ〉| ≤ cpm(φ).

If m can be chosen independently of K, the minimal such m is called order
of T , ord(T ).

1.1.7 Definition. A distribution of order 0 is called measure.

1.1.8 Remark. Let f ∈ L1
loc(Ω), then

〈f, φ〉 =

ˆ
Ω
fφ

defines a measure.

Proof. Exercise.

1.1.9 Definition. Let T ∈ D′(Ω), α ∈ Nn. We define the α-th weak deriva-
tive or distributional derivative of T , DαT by

〈DαT, φ〉 := (−1)|α|〈T,Dαφ〉.

1.1.10 Remark. We have DαT ∈ D′(Ω) and ord(DαT ) ≤ ord(T ) + |α|, if
both sides are defined.

1.1.11 Example. Let

θ(t) :=

{
1, t > 0

−1, t < 0

Then, as one easily verifies, θ′ = 2δ0.

1.1.12 Remark. According to the fundamental lemma of the calculus of
variations,

Ψ: L1
loc(Ω) ↪→ D′(Ω)

is an embedding.
The derivative Dαu of a function u ∈ L1

loc(Ω) is always to be understood as
distributional derivative.

1.1.13 Remark. For Ψ(Lploc(Ω)) we simply write Lploc(Ω) and consider this
to be a subspace of D′(Ω).
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1.2 Sobolev-Spaces

1.2.1 Definition. Let n ≥ 1 and Ω ⊂ Rn be open, m ∈ N, 1 ≤ p ≤ ∞. By

Hm,p(Ω) := {u ∈ Lp(Ω): Dαu ∈ Lp(Ω) ∀|α| ≤ m}

‖u‖m,p =

 ∑
|α|≤m

‖Dαu‖pp

 1
p

, 1 ≤ p <∞,

‖u‖m,∞ =
∑
|α|≤m

‖Dαu‖∞,

we denote the space of Sobolev functions of class (m, p). On Hm,2(Ω) we
define the scalar product

〈u, v〉 :=
∑
|α|≤m

ˆ
Ω
DαuDαv.

1.2.2 Remark. Hm,p(Ω) is complete for 1 ≤ p ≤ ∞.

Proof. Exercise.

1.2.3 Lemma. (i) Let u ∈ Hm,p(Rn), 1 ≤ p < ∞ and (ηε) be a Dirac
sequence, then we have for

uε(x) =

ˆ
Rn
ηε(x− y)u(y)dy

(a) ∀|α| ≤ m : Dαuε = (Dαu)ε

(b) uε → u in Hm,p(Rn)

(ii) Let Ω′ b Ω ⊂ Rn be open and u ∈ Hm,p(Ω), 1 ≤ p <∞. Extend u to Rn
by 0. Then

uε → u in Hm,p(Ω′), ε < dist(Ω′, ∂Ω).

Proof. Exercise.

1.2.4 Lemma. (Product rule)
Let f ∈ H1,p(Ω) and g ∈ H1,p′(Ω), 1 ≤ p ≤ ∞ and 1

p + 1
p′ = 1. Then

f · g ∈ H1,1(Ω)

and
D(fg) = Df · g + f ·Dg.
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Proof. By symmetry we may assume p <∞. Extend f, g to Rn by 0 and let
fε be the mollified sequence as in 1.2.3. Let ζ ∈ C∞c (Ω). Then there holds

ˆ
Ω

(ζfε)∂ig = −
ˆ

Ω
(ζ∂ifεg + fε∂iζg).

Taking the limit ε→ 0 via Hoelder’s theorem we obtain

∀ζ ∈ C∞c (Ω):

ˆ
Ω
ζ(f∂ig + ∂ifg) = −

ˆ
Ω
fg∂iζ.

Again by Hoelder’s inequality we obtain

D(fg) ∈ L1(Ω).

1.2.5 Lemma. (Chain rule)
Let Ω b Rn, g ∈ Cm(R) and |g|m ≤ c. Then for u ∈ Hm,p(Ω) we have
g ◦ u ∈ Hm,p(Ω) and

D(g ◦ u) = g′(u)Du.

Proof. Let m = 1 and 1 ≤ p < ∞. Let φ ∈ C∞c (Ω) and Ω′ b Ω, such that
φ ∈ C∞c (Ω′). Let uε ∈ C∞(Ω̄′) such that

‖u− uε‖m,p,Ω′ → 0

and
(uε, Duε)→ (u,Du) a.e.

⇒
ˆ

Ω′
(g ◦ u)Diφ = lim

ε→0

ˆ
Ω′

(g ◦ uε)Diφ = lim
ε→0

(
−
ˆ

Ω′
g′(uε)Diuεφ

)
(1.1)

There holds g′(uε)→ g′(u) a.e. and |g′| ≤ L.

⇒ |φg′(uε)Du| ≤ L|Du||φ|.

Dominated convergence impliesˆ
Ω′
|g′(uε)Diuεφ− g′(u)Diuφ| ≤

ˆ
Ω′
|g′(uε)(Diuε −Diu)φ|

+

ˆ
Ω′
|g′(uε)− g′(u)||Diu||φ| → 0.

(1.1) implies the chain rule. Furthermore we have

‖g ◦ u‖1,p,Ω′ ≤ c‖u‖1,p,Ω + c|Ω|
1
p

⇒ g ◦ u ∈ H1,p(Ω).

From this estimate we deduce, using p→∞, the claim for p =∞. Form > 1
use induction and the product rule.

5



1.2.6 Theorem. Let x̃ ∈ Diffm(Ω, Ω̃) such that x̃ and x̃−1 have a bounded
Cm−norm and 1 ≤ p ≤ ∞.
Then the map

Φ : Hm,p(Ω)→ Hm,p(Ω̃)

u 7→ ũ = u ◦ x̃−1

is a topological isomorphism.

Proof. We show this for m = 1, the rest follows by induction.
Let Ω′ b Ω, u ∈ H1,p(Ω), uε → u in H1,p(Ω′).

ũε = uε ◦ x̃−1

⇒ D̃iũε = Dkuε
∂xk

∂x̃i
.

Let the sequence also satisfy

ũε → ũ a.e.

and

D̃iũε → Dku
∂xk

∂x̃i
a.e.

By the transformation theorem and the boundedness of the Jacobians we
have

ũ ∈ H1,p(Ω̃′)

and
∀Ω′ b Ω: ‖ũ‖1,p,Ω̃′ ≤ c‖u‖1,p,Ω′
⇒ ‖ũ‖1,p,Ω̃ ≤ c‖u‖1,p,Ω.

By symmetry this also holds for the inverse. For p = ∞ the claim holds by
taking the limit.

1.2.7 Lemma. Let u ∈ H1,p(Ω), then

u+ = max(u, 0), u− = min(u, 0) and |u|

are in H1,p(Ω) and a.e. there holds

Du+ =

{
Du, u > 0

0, u ≤ 0

Du− =

{
Du, u < 0

0, u ≥ 0

and

D|u| =


Du, u > 0

0, u = 0

−Du, u < 0

.
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Proof. Let ε > 0.

gε(t) :=

{√
t2 + ε2 − ε, t > 0

0, t ≤ 0.

Then gε ∈ C1 and |g′ε| ≤ 1.

gε → max(·, 0) locally uniformly.

The chain rule implies

uε := gε ◦ u ∈ H1,p(Ω)

and

Duε = g′ε(u)Du =

{
uDu√
u2+ε2

, u > 0

0, u ≤ 0.

Let η ∈ C∞c (Ω).

ˆ
Ω
uεDiη = −

ˆ
Ω
Diuεη

= −
ˆ
{u>0}

uDiu√
u2 + ε2

η

= −
ˆ

Ω

uDiu√
u2 + ε2

χ{u>0}η → −
ˆ

Ω
χ{u>0}Diuη.

Since the left hand side converges to
ˆ

Ω
u+Diη,

we obtain the claim. Using

u− = −(−u)+

and
|u| = u+ − u−

the other cases also follow.

1.2.8 Corollary. Let u ∈ H1,p(Ω), c ∈ R, E := {u = c}.

⇒ Du|E = 0 a.e.

Proof. Wlog c = 0. There holds u = u++u−. Apply the previous lemma.
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1.2.9 Theorem. Let Ω b Rn, u ∈ H1,p(Ω) and let g ∈ C0,1(R) such that
Lip(g) ≤ L and suppose g′ has only at most countably many points of dis-
continuity. Let M be the set of those points. Then

v := g ◦ u ∈ H1,p(Ω)

and we have

Dv =

{
g′(u)Du, u(x) /∈M
0, u(x) ∈M.

Proof. Let gε be a mollification of g

⇒ gε → g locally uniformly

and
g′ε → g′ locally uniformly in M c,

as well as
|g′ε| ≤ L.

Then
vε := gε ◦ u ∈ H1,p(Ω)

and
Dvε = g′ε(u)Du.

Let M = {tk : k ∈ H ⊂ N} and

Ek := {u = tk}, E :=
⋃
k∈H

Ek.

⇒ Du|E = 0 a.e.

There holds g′(u)Du ∈ Lp(Ω) and for a.e. x ∈ Ω we have

lim
ε→0

g′ε(u(x))Du(x) =

{
g′(u(x))Du(x), x /∈ E
0, x ∈ E.

1.2.10 Remark. This theorem also holds for arbitrary g ∈ C0,1(R), |g′| ≤ L,
c.f. Ziemer: Weakly differentiable functions.

1.2.11 Theorem. Let Ω b Rn be open, ∂Ω ∈ C0,1. Then there holds

∀u ∈ C1(Ω̄) :

ˆ
∂Ω
|u| ≤

√
1 + L2

ˆ
Ω
|Du|+ c

ˆ
Ω
|u|,

where L is an upper bound for the Lipschitz constants of the boundary rep-
resentations.
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Proof. (i) Let x0 ∈ ∂Ω and φ be a local graph representation around 0 ∈
Rn−1,

Γ = {(x̂, φ(x̂)) : |x̂| < ρ}.

Furthermore let 0 < a, such that

U = {(x̂, xn) : φ(x̂) < xn < a, x̂ ∈ B̂ρ(0)} ⊂ Ω.

For a function u having support in this chart we then have
ˆ

Γ
|u| =

ˆ
B̂ρ(0)

|u(x̂, φ(x̂))|
√

1 + |Dφ|2 ≤
√

1 + L2

ˆ
B̂ρ(0)

|u|.

Also suppose, that u(·, a) = 0. Then

u(x̂, φ(x̂)) =

ˆ φ(x̂)

a
Dnu(x̂, t)dt

⇒ |u(x̂, φ(x̂))| ≤
ˆ a

φ(x̂)
|Dnu| ≤

ˆ a

φ(x̂)
|Du|.

⇒
ˆ

Γ
|u| ≤

√
1 + L2

ˆ
B̂ρ(0)

|u(x̂, φ(x̂))|

≤
ˆ
B̂ρ(0)

ˆ a

φ(x̂)
|Du|

√
1 + L2

=
√

1 + L2

ˆ
U
|Du|.

(ii) Now consider an open covering (Bρi), 1 ≤ i ≤ N, of ∂Ω, such that ∂Ω∩
Bρi can be represented as a graph locally and also such that the conditions
of (i) are satisfied.
Let (ηi) be a subordinate finite partition of unity for ∂Ω. Then

u =
N∑
i=1

uηi on ∂Ω.

⇒
ˆ
∂Ω
|u| ≤

N∑
i=1

ˆ
∂Ω
|uηi| ≤

N∑
i=1

√
1 + L2

ˆ
Ω
|D(uηi)|

≤
√

1 + L2

ˆ
Ω
|Du|

N∑
i=1

ηi +
√

1 + L2

ˆ
Ω
|u|

N∑
i=1

|Dηi|

≤
√

1 + L2

ˆ
Ω
|Du|+ c

ˆ
Ω
|u|.
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1.2.12 Remark.
(i) ∂Ω ∈ C1 ⇒ ∀u ∈ C1(Ω̄) :

´
∂Ω |u| ≤ (1 + ε)

´
Ω |Du|+ cε

´
Ω |u|

(ii) ∂Ω ∈ C2 ⇒ ∀u ∈ C1(Ω̄) :
´
∂Ω |u| ≤

´
Ω |Du|+ c

´
Ω |u|.

Proof. Exercise

1.2.13 Definition. We say Ω satisfies the Hm,p- extension property, if there
exists Ω ⊂ Ω0 b Rn and a continuous linear map

F : Hm,p(Ω)→ Hm,p
0 (Ω0),

such that
∀u ∈ Hm,p(Ω): Fu|Ω = u.

F is then called extension operator.

1.2.14 Definition. Let E ⊂ Rn be measurable. Then the Sobolev spaces
Hm,p(E) and Hm,p

0 (E) respectively are defined as the closure of

{u ∈ Cm(E) : ‖u‖m,p,E <∞}

and Cmc (E) respectively with respect to the norm ‖ · ‖m,p.

1.2.15 Theorem. Let Ω b Rn be open and ∂Ω ∈ Cm, then there holds for
1 ≤ p <∞

Hm,p(Ω̄) = Hm,p(Ω).

Proof. First choose a local boundary neighborhood U , such that 1.2.6 implies

Hm,p(U) = Hm,p(B+
1 (0)).

Let u ∈ Hm,p
c (B+

1 (0) ∪ {xn = 0}). Define

uh(x̂, xn) := u(x̂, xn + h), h > 0.

Then uh is defined in B+
1 (0)− hen. For small ε = ε(h) we then find

uh,ε = uh ∗ ηε ∈ C∞( ¯B+
1 (0)).

Later we will show, that

‖uh − u‖m,p → 0, h→ 0.

Thus we find
uhk,εk → u in Hm,p(B+

1 (0)).

⇒ u ∈ Hm,p(B+
1 (0)).

Using a partition of unity we obtain the claim. The other inclusions follow
immediately from the definitions.
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1.2.16 Lemma. (Lions-Magenes)
Let c1, ..., cm+1 be solutions of the system

m+1∑
k=1

(−1)jkjck = 1, 0 ≤ j ≤ m.

Then

ũ(x̂, xn) =

m+1∑
k=1

cku(x̂,−kxn), xn < 0

defines an extension for u ∈ Cm(R̄n+) ∩Hm,p(Rn+) into all of Rn, such that

ũ ∈ Cm(Rn)

and
‖ũ‖m,p,Rn ≤ c‖u‖m,p,Rn+ , c = c(m,n, p), 1 ≤ p ≤ ∞.

Proof. Exercise

1.2.17 Corollary. Let Ω b Rn be open and ∂Ω ∈ Cm. Then Ω satisfies the
Hm,p- extension property for all 1 ≤ p <∞.

Proof. Clear by the previous theorem and lemma.

1.2.18 Remark. (i) Ω b Rn ⇒ Hm,p
0 (Ω) ↪→ Hm,p

c (Rn).
(ii) ∂Ω ∈ C0,1 ⇒ Ω satisfies theHm,p extension property (Calderon-Zygmund,
without proof).
(iii) For 1 ≤ p <∞, ∂Ω ∈ C0,1 ⇒ Hm,p(Ω) = Hm,p(Ω̄).

Proof. (i) is clear and (iii) follows from (ii) immediately.

1.2.19 Theorem. Let Ω b Rn be open, ∂Ω ∈ C0,1. Then there exists a
continuous trace operator

t : H1,p(Ω)→ Lp(∂Ω), 1 ≤ p <∞,

such that
t|H1,p(Ω)∩C0(Ω̄) = ·|∂Ω.

Proof. Since we have H1,p(Ω) = H1,p(Ω̄), it suffices to prove the claim for
u ∈ C∞(Ω̄).
(i) For u ∈ C1(Ω̄) define t(u) = u|∂Ω. We have

ˆ
∂Ω
|u| ≤

√
1 + L2

ˆ
Ω
|Du|+ c

ˆ
Ω
|u|,
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which also holds for Lipschitz functions by approximation. We apply this
estimate to |u|p yielding

ˆ
∂Ω
|u|p ≤ p

√
1 + L2

ˆ
Ω
|Du||u|p−1 + c

ˆ
Ω
|u|p

≤ c0

(ˆ
Ω
|Du|p

) 1
p
(ˆ

Ω
|u|p
) p−1

p

+ c

ˆ
Ω
|u|p

⇒ ‖t(u)‖p,∂Ω ≤ c‖u‖1,p,Ω.

(ii) Let u ∈ H1,p(Ω) and

uε = u ∗ ηε ∈ C∞c (Rn)

⇒ uε → u in H1,p(Ω̄).

⇒ ‖t(uε)‖p,∂Ω ≤ c‖uε‖1,p,Ω.

Thus we can define
t(u) := lim

ε→0
t(uε).

(iii) Let u ∈ H1,p(Ω) ∩ C0(Ω̄). We may suppose u ∈ H1,p(Rn) ∩ C0(Rn).

t(uε)→ t(u) in Lp(∂Ω)

and
uε → u in C0(Ω̄)

imply the claim.

1.2.20 Proposition. u ∈ H1,p
0 (Ω)⇒ t(u) = 0.

Proof. Follows immediately from the preceding proof.

1.2.21 Proposition. Let Ω b Rn be open and ∂Ω ∈ C0,1. Let m ≥ 1,
1 ≤ p <∞. Then for u ∈ Hm,p(Ω) all the Dβu, |β| ≤ m− 1, are defined on
∂Ω in the sense of traces.

Proof. All those functions are in H1,p(Ω).

1.2.22 Proposition. Let Ω b Rn be open and ∂Ω ∈ C0,1. For u, v ∈
H1,p(Ω) there holds

t(max(u, v)) = max(t(u), t(v))

t(min(u, v)) = min(t(u), t(v)).

Proof. By approximation.
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1.2.23 Lemma. Let Ω b Rn, ∂Ω ∈ C0,1, u ∈ H1,p(Ω), 1 ≤ p < ∞. Then
we have for large k

(i) kp
ˆ

Ω 1
k

|u|p ≤ cpkp−1
√

1 + L2

ˆ
∂Ω
|u|p + c

√
1 + L2

p
ˆ

Ω√
1+L2

k

(|Du|p + |u|p).

(ii)

ˆ
∂Ω
|u| ≤ k

√
1 + L2

ˆ
Ω 1
k

|u|+ c

ˆ
Ω 1
k

(|Du|+ |u|)

(iii) lim sup
k→∞

k

ˆ
Ω 1
k

|u| ≤
√

1 + L2

ˆ
∂Ω
|u| ≤ (1 + L2) lim inf

k→∞
k

ˆ
Ω 1
k

|u|

(iv) t(u) = 0⇒ lim sup
k→∞

kp
ˆ

Ω 1
k

|u|p = 0,

where

cp =

{
1, if p = 1

c(p, ∂Ω), if p > 1,

Ωk = {x ∈ Ω: d(x, ∂Ω) < k} and d = dist(·, ∂Ω).

Proof. (i) Let u ∈ C1(Ω̄), wlog supp(u) ∩ Ω̄ ⊂ B̂R(0) × (0, a) =: G. Let
1
k < min(a,R), then

Ω 1
k
∩G =

{
(x̂, xn) ∈ Ω: |x̂| < R ∧ d(x̂, xn) <

1

k

}
.

∀(x̂, xn) ∈ Ω 1
k
∩G ∃ŷ ∈ B̂2R(0) : d(x̂, xn) =

√
|x̂− ŷ|2 + |φ(ŷ)− xn|2,

where ∂Ω∩ B̂2R(0)× (0, a) = graph φ. Thus for all (x̂, xn) ∈ Ω 1
k
∩G we have

⇒ |xn − φ(x̂)| ≤ |xn − φ(ŷ)|+ |φ(ŷ)− φ(x̂)|
≤ |xn − φ(ŷ)|+ L|x̂− ŷ|

≤
√

1 + L2
√
|xn − φ(ŷ)|2 + |x̂− ŷ|2

≤ k−1
√

1 + L2

⇒ Ω 1
k
∩G ⊂

{
(x̂, xn) : |x̂| < R, φ(x̂) < xn < φ(x̂) +

1

k

√
1 + L2

}
.

|u(x̂, xn)− u(x̂, φ(x̂))| ≤
ˆ xn

φ(x̂)
|Dnu(x̂, t)|dt.

|u(x̂, xn)| ≤ |u(x̂, xn)− u(x̂, φ(x̂))|+ |u(x̂, φ(x̂))|

|u(x̂, xn)|p ≤ 2p(|u(x̂, xn)− u(x̂, φ(x̂))|p + |u(x̂, φ(x̂))|p).
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Set

cp =

{
1, if p = 1

p−12p, if p > 1.

Then we find

ˆ
B̂R

ˆ φ(x̂)+

√
1+L2

k

φ(x̂)
|u(x̂, xn)|p ≤

√
1 + L2

p
cpk
−p

ˆ
B̂R

ˆ φ(x̂)+

√
1+L2

k

φ(x̂)
|Dnu|p

+ cpk
−1
√

1 + L2

ˆ
B̂R

|u(x̂, φ(x̂))|p

≤ cpk−p
√

1 + L2
p
ˆ
B̂R

ˆ φ(x̂)+

√
1+L2

k

φ(x̂)
|Du|p

+ cpk
−1
√

1 + L2

ˆ
∂Ω
|u|p.

Furthermore we have

{(x̂, xn) ∈ Ω: |x̂| < R, φ(x̂) < xn < φ(x̂) +

√
1 + L2

k
} ⊂ Ω√

1+L2

k

.

⇒
ˆ

Ω 1
k
∩G
|u|p ≤

ˆ
B̂R

ˆ φ(x̂)+

√
1+L2

k

φ(x̂)
|u(x̂, xn)|p

≤ cpk−p
√

1 + L2
p
ˆ

Ω√
1+L2

k

|Du|p

+ cpk
−1
√

1 + L2

ˆ
∂Ω
|u|p.

(1.2)

(ii) From

|u(x̂, φ(x̂))| ≤ |u(x̂, xn)− u(x̂, φ(x̂))|+ |u(x̂, xn)|

≤ |u(x̂, xn)|+
ˆ xn

φ(x̂)
|Dnu(x̂, t)|dt

we deduce

k−1

ˆ
B̂R

|u(x̂, φ(x̂))| ≤
ˆ
B̂R

ˆ φ(x̂)+ 1
k

φ(x̂)
|u(x̂, xn)|+ k−1

ˆ
B̂R

ˆ φ(x̂)+ 1
k

φ(x̂)
|Du|.

k−1

ˆ
∂Ω
|u| ≤ k−1

ˆ
B̂R

|u(x̂, φ(x̂))|
√

1 + L2

≤
√

1 + L2

ˆ
Ω 1
k

|u|+ k−1
√

1 + L2

ˆ
Ω 1
k

|Du|.
(1.3)
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This also holds for all u ∈ H1,p(Ω) sucht that supp(u) ∩ Ω̄ ⊂ G.
Let u ∈ H1,p(Ω) and consider a covering of ¯Ω 1

k0

by ui, 1 ≤ i ≤ N , together

with a subordinate partition of unity (ηi), such that (1.2) and (1.3) are
applicable to uηi. Thus
ˆ

Ω 1
k

|u|p ≤ ck−p
√

1 + L2
p
ˆ

Ω 1
k

(|Du|p + |u|p) + cpk
−1
√

1 + L2Np

ˆ
∂Ω
|u|p

and ˆ
∂Ω
|u| ≤

√
1 + L2k

ˆ
Ω 1
k

|u|+ c

ˆ
Ω 1
k

(|Du|+ |u|).

(iii) and (iv) follow from (i) and (ii) easily.

1.2.24 Lemma. Let Ω b Rn be open and ∂Ω ∈ C0,1, 1 ≤ p < ∞. Let
u ∈ H1,p(Ω), t(u) = 0. Then there holds

u ∈ H1,p
0 (Ω).

Proof. d = dist(·, ∂Ω) ∈ C0,1(Rn) and |Dd| = 1 a.e. Set

ηk := min(1, kd), k ≥ 1.

Let Ωk be the corresponding boundary strip. Then we find

ηk = 1 in Ω\Ω 1
k
.

(i) Claim: u ∈ H1,p(Ω)⇒ uηk ∈ H1,p
0 (Ω).

Proof: Let u ∈ C0,1(Ω̄)

⇒ v := uηk ∈ C0,1(Ω̄) ∧ uηk|∂Ω = 0.

Let ε > 0 and using a decomposition into v+ and v− we may as well suppose
v ≥ 0.

vε := max(v − ε, 0) ∈ C0,1
c (Ω) ⊂ H1,p

0 (Ω),

which follows from approximation. We have

Dvε =

{
Dv, if v > ε

0, if v ≤ ε.
ˆ

Ω
|Dv −Dvε|p =

ˆ
{v≤ε}

|Dv|p → 0, since |Ω| <∞.

ˆ
Ω
|v − vε|p = εp

ˆ
{v>ε}

1 +

ˆ
{v≤ε}

|v|p → 0.

15



Let u ∈ H1,p(Ω), t(u) = 0. Then for a mollification uε we have

uε → u in H1,p(Rn)

⇒ uεηk → uηk in H1,p(Ω).

⇒ uηk ∈ H1,p
0 (Ω).

(ii) Furthermore we haveˆ
Ω
|Du−D(uηk)| ≤ k

ˆ
Ω 1
k

|u|+
ˆ

Ω 1
k

|Du| → 0,

by the preceding lemma.
p > 1: ˆ

Ω
|Du−D(uηk)|p ≤ 2p

ˆ
Ω 1
k

|Du|p + 2pkp
ˆ

Ω 1
k

|u|p.

Analogously ˆ
Ω
|u− uηk|p ≤

ˆ
Ω 1
k

|u|p.

Thus u ∈ H1,p
0 (Ω).

1.2.25 Proposition. Let Ω b Rn be open and ∂Ω ∈ C0,1. Let u ∈ H1,p(Ω),
t(u) ≤ k a.e. on ∂Ω. Then

max(u− k, 0) ∈ H1,p
0 (Ω).

Proof. t(max(u−k, 0)) = max(t(u)−k, 0) = 0 and use the preceding lemma.

1.2.26 Corollary. Let Ω b Rn be open and ∂Ω ∈ C1, u ∈ H1,1(Ω). Then

k

ˆ
Ω 1
k

|u| →
ˆ
∂Ω
|u|.

Proof. For C1 boundary it is possible to obtain L ≤ ε for all ε > 0.

1.2.27 Lemma. For h ∈ Rn, v ∈ Lp(Rn), 1 ≤ p <∞ define

vh(x) = v(x+ h).

(i) This defines an isometry of Lp(Rn), ‖v‖p = ‖vh‖p,
(ii) limh→0 ‖v − vh‖p = 0 and
(iii) For Ω ⊂ Rn and Lp(Ω)→ Lp(Rn) extending by zero we have

‖vh‖p,Ω ≤ ‖v‖p,Ω
and

‖vh − v‖p,Ω → 0.

Proof. Exercise.
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1.3 The difference quotient

In this chapter we consider for a given function u the so-called difference
quotient

∆hu(x) =
u(x+ hen)− u(x)

h
, 0 6= h ∈ R.

Abusing notation, let
h = hen.

1.3.1 Lemma. Let Ω ⊂ Rn be open. For Ω′ b Ω and h < dist(Ω′, ∂Ω) we
have that

∆h : Lp(Ω)→ Lp(Ω′)

is continuous and
‖∆hu‖p,Ω′ ≤ 2|h|−1‖u‖p,Ω.

Furthermore there holds

〈∆hu, v〉L2 = −〈u,∆−hv〉L2 ,

if one of the functions has compact support in Ω and h is small.

Proof. W.l.o.g. let supp(v) ⊂ Ω and Ω′ = int(supp(v)). Then we have

〈∆hu, v〉 =

ˆ
Ω′

u(x+ h)− u(x)

h
v(x)dx

=
1

h

ˆ
Ω′
u(x+ h)v(x)dx− 1

h

ˆ
Ω′
u(x)v(x)dx

= −
ˆ

Ω
u(y)

v(y)− v(y − h)

h
dy

= −
ˆ

Ω
u(y)

v(y − h)− v(y)

−h
dy

= −〈u,∆−hv〉.

1.3.2 Lemma. (i) Let Ω b Rn be open, u ∈ H1,p(Ω), 1 ≤ p < ∞, Ω′ b Ω.
Then

∀|h| < h0 << 1: ‖∆hu‖p,Ω′ ≤ ‖Dnu‖p,Ω (1.4)

and
lim
h→0
‖Dnu−∆hu‖p,Ω′ = 0. (1.5)

(ii) For u ∈ H1,p(Rn) there hold

‖∆hu‖p,Rn ≤ ‖Dnu‖p,Rn (1.6)

and
‖∆hu‖p,Rn → ‖Dnu‖p,Rn . (1.7)
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Proof. Let Ω′ b Ω′′ b Ω and h < dist(∂Ω,Ω′′).
(i) Since we can approximate u by uε ∈ C1(Ω)∩H1,p(Ω) and since (∆hu)ε =
∆huε we have

∆huε → ∆hu in H1,p(Ω′),

as ε→ 0. Thus let u ∈ C1(Ω) ∩H1,p(Ω). Let x ∈ Ω′ b Ω, h > 0.

∆hu(x) =
1

h

ˆ xn+h

xn

Dnu(x̂, t)dt,

thus

|∆hu(x)|p ≤ h−p
∣∣∣∣ˆ xn+h

xn

Dnu(x̂, t)dt

∣∣∣∣p
≤ h−php−1

ˆ xn+h

xn

|Dnu(x̂, t)|pdt

= h−1

ˆ xn+h

xn

|Dnu(x̂, t)|pdt.

Thus we have
ˆ

Ω′
|∆hu(x)|pdx ≤ h−1

ˆ h

0

ˆ
Ω′
|Dnu(x̂, xn + t)|pdxdt ≤ ‖Dnu‖pp,Ω.

For −h this holds, since ∆−hu(x) = ∆hu(x − h). Let ε > 0. Choose v ∈
C1(Ω) ∩H1,p(Ω) such that

‖v − u‖1,p,Ω′ <
ε

3
.

Then

‖Dnu−∆hu‖p,Ω′ ≤ ‖Dnu−Dnv‖p,Ω′ + ‖Dnv−∆hv‖p,Ω′ + ‖∆h(u− v)‖p,Ω′ .

The first and last term are less than ε
3 . The middle term´s integrand con-

verges to 0 uniformly.
(ii) The proof is exactly the same, but instead of the uniform convergence in
the last argument use the decomposition

ˆ
Rn
|Dnv −∆hv|p ≤

ˆ
BR

|Dnv −∆hv|p +

ˆ
|x|>R

|Dnv −∆hv|p

and that the functions are integrable.

1.3.3 Lemma. Let Ω b Rn be open, u ∈ Hm,p(Ω), 1 < p < ∞, m ∈ N,
Ω′ b Ω and let

∀|α| ≤ m : ‖∆hD
αu‖p,Ω′ ≤ c ∀|h| ≤ h0.

18



Then
Dnu ∈ Hm,p(Ω′)

and
‖DnD

αu‖p,Ω′ ≤ c.

Proof. 1 < p < ∞ ⇒ Lp(Ω′) is reflexive. Thus there exists a sequence hk
such that

∆hkD
αu ⇀ vα ∈ Lp(Ω′)

and
‖vα‖p,Ω′ ≤ lim inf

k→∞
‖DhkD

αu‖p,Ω′ ≤ c.

Let η ∈ C∞c (Ω′). Then

〈vα, η〉 = lim
k→∞
〈∆hkD

αu, η〉 = (−1)|α|+1〈u,DnD
αη〉.

Thus, if |α| = 0 we have Dnu = vα.
If |α| ≥ 1, we have Dnu ∈ Hm,p(Ω′).

1.4 Sobolev embedding- and compactness theorems

1.4.1 Theorem. Let Ω b Rn be open with H1,p-extension property,
1 ≤ p < n. Then there holds

H1,p(Ω) ↪→ Lp
∗
(Ω),

where 1
p∗ = 1

p −
1
n .

Proof. We show

∃c = c(n, p) ∀u ∈ H1,p(Ω): ‖u‖p∗ ≤ c‖u‖1,p.

It suffices to show this for u ∈ C∞c (Rn). Let first be p = 1 and x = (x̂i, x
i)

for all i.

|u(x)| ≤
ˆ xi

−∞
|Diu(x̂i, t)|dt

⇒ |u(x)|
n
n−1 ≤

n∏
i=1

(ˆ ∞
−∞
|Diu(x̂i, t)|dt

) 1
n−1

⇒
ˆ ∞
−∞
|u|

n
n−1dx1 ≤

(ˆ ∞
−∞
|D1u(x̂1, t)|dt

) 1
n−1

·
ˆ ∞
−∞

n∏
i=2

(ˆ ∞
−∞
|Diu(x̂i, t)|dt

) 1
n−1

dx1
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The generalized Hoelder inequality implies

⇒
ˆ ∞
−∞
|u|

n
n−1dx1 ≤

(ˆ ∞
−∞
|D1u(x̂1, t)|dt

) 1
n−1

·
n∏
i=2

(ˆ ∞
−∞

ˆ ∞
−∞
|Diu(x̂i, x

i)|dxidx1

) 1
n−1

.

For n = 2 this already implies
ˆ ∞
−∞

ˆ ∞
−∞
|u|

n
n−1 ≤

(ˆ ∞
−∞

ˆ ∞
−∞
|D1u|

)(ˆ ∞
−∞

ˆ ∞
−∞
|D2u|

)
.

For n > 2 we repeat this argument to obtain

ˆ ∞
−∞

ˆ ∞
−∞
|u|

n
n−1dx1dx2 ≤

(ˆ ∞
−∞

ˆ ∞
−∞
|D2u(x̂2, x

2)|dx2dx1

) 1
n−1

·
(ˆ ∞
−∞

ˆ ∞
−∞
|D1u(x̂1, x

1)|dx1dx2

) 1
n−1

·
n∏
i=3

(ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞
|Diu(x̂i, x

i)|dxi
) 1
n−1

Successive integration implies

ˆ
Rn
|u|

n
n−1 ≤

n∏
i=1

(ˆ
Rn
|Diu|

) 1
n−1

≤
(ˆ

Rn
|Du|

) n
n−1

⇒ ∀u ∈ C∞c (Rn) : ‖u‖ n
n−1
≤ ‖Du‖1.

Let now 1 < p < n : Define

t :=
p(n− 1)

n− p
> 1, u ∈ C∞c (Rn)

⇒ v := |u|t ∈ C1
c (Rn)

⇒
ˆ
Rn
|v|

n
n−1 ≤

(ˆ
Rn
|Dv|

) n
n−1

.

|Dv| ≤ t|u|
n(p−1)
n−p |Du|

⇒ ‖v‖ n
n−1
≤ t

ˆ
Rn
|u|

n(p−1)
n−p |Du| ≤ t‖Du‖p(

ˆ
Rn
|u|

np
n−p )

p−1
p

⇒ ‖u‖p∗ ≤ t‖Du‖p.
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1.4.2 Corollary. For u ∈ H1,p
0 (Ω) there even holds

‖u‖p∗ ≤ c‖Du‖p,

which also means, that ‖Du‖p,Ω is a norm on H1,p
0 (Ω).

Proof. This follows from the extension property, i.e.

H1,p(Ω) ↪→ H1,p
0 (Ω0) ↪→ H1,p

c (Rn)

and the previous proof.

1.4.3 Theorem. Suppose Ω has the Hm,p- extension property. Then

Hm,p(Ω) ↪→ Lq(Ω),

1
q = 1

p −
m
n , if mp < n.

Proof. Exercise.

1.4.4 Proposition. Let Ω have the Hm,p- extension property and |Ω| <∞.
Let mp = n ≥ 2. Then

∀1 ≤ q <∞ : Hm,p(Ω) ↪→ Lq(Ω).

Proof. (i) p > 1: Let p− ε > 1. Then

Hm,p(Ω) ↪→ Hm,p−ε(Ω)

and
m(p− ε) < n.

Thus
Hm,p−ε(Ω) ↪→ Lqε(Ω),

where qε →∞.
(ii) p = 1: Then m ≥ 2 and for u ∈ Hm,1(Ω) we have Dm−1u ∈ H1,1(Ω) ↪→
L

n
n−1 (Ω). Thus

Hn,1(Ω) ↪→ Hn−1, n
n−1 (Ω).

Now (i) is applicable.

1.4.5 Remark. 1.4.4 does not hold for q =∞.

Proof. Choose Ω = B 1
2
(0) ⊂ Rn, n ≥ 2 and

u(x) = log(− log |x|)− log log 2.

There holds
Du =

1

log |x|
1

|x|
x

|x|
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and
ˆ

Ω
|Du|n = |Sn−1|

ˆ 1
2

0
− 1

logn r

1

rn
rn−1

= |Sn−1|
ˆ 1

2

0

1

| logn r|
r−1

= c

ˆ ∞
log 2

1

tn
dt <∞.

1.4.6 Theorem.
Hm,p(Rn) = Hm,p

0 (Rn),

if 1 ≤ p <∞.

Proof. We only prove the case m = 1, the rest follows from induction. Let
0 ≤ η ≤ 1, η ∈ C∞c (Rn), such that

η(x) =

{
1, |x| ≤ 1

0, |x| ≥ 2

and
|Dη| ≤ c.

Set
ηk(x) = η

(x
k

)
.

For u ∈ H1,p(Rn) define

uk = uηk ∈ H1,p
0 (Rn).

There clearly holds uk → u in Lp(Rn).
Furthermore Duk = Duηk + k−1uDη → Du in Lp(Rn).

1.4.7 Theorem. Let Ω b Rn have the H1,p- extension property. Let p > n,
then for α = 1− n

p we have

H1,p(Ω) ↪→ C0,α(Ω̄)

and
∀u ∈ H1,p

0 (Ω): [u]α,Ω ≤ c‖Du‖p.

Proof. Without loss of generality let u ∈ H1,p
0 (Ω0), Ω b Ω0, and we will

show
∀u ∈ H1,p

0 (Ω0) : |u|0,α,Ω0 ≤ c‖Du‖p.
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Let x1, x2 ∈ Ω0, 0 < ρ = |x1 − x2|, x ∈ Bρ(x1+x2
2 ) ≡ Bρ(0). Then we have

for u ∈ C1
c (Ω0)

u(x)− u(xi) =

ˆ 1

0

d

dt
u(xi + t(x− xi))dt

≡
ˆ 1

0
Dku(xt)(x

k − xki )dt

≤ 2ρ

ˆ 1

0
|Du(xt)|.

Thus ∣∣∣∣∣
 
Bρ

u− u(xi)

∣∣∣∣∣ ≤ 2cρ1−n
ˆ 1

0

ˆ
Bρ

|Du(xi + t(x− xi))|

≤ 2cρ1−n
ˆ 1

0
t−n

ˆ
B2ρt(xi)

|Du(z)|

≤ 2cρ1−n
ˆ 1

0
t−n‖Du‖p,Ω0ρ

n p−1
p t

n p−1
p

≤ cρ1−n
p ‖Du‖p,Ω0

ˆ 1

0
t
−n
p

≤ c(n, p)‖Du‖p,Ω0ρ
1−n

p .

Finally

|u(x1)− u(x2)| ≤

∣∣∣∣∣u(x1)−
 
Bρ

u

∣∣∣∣∣+

∣∣∣∣∣
 
Bρ

u− u(x2)

∣∣∣∣∣
≤ c‖Du‖p|x1 − x2|α.

Choosing x2 ∈ ∂Ω0 we find u(x2) = 0 and thus

|u|0,Ω0 ≤ c‖Du‖p(diamΩ)α.

1.4.8 Theorem. Let Ω b Rn have the Hm,p- extension property. Then

Hm,p(Ω) ↪→ Cj,α(Ω̄), m ∈ N, 1 ≤ p <∞,

if

m = k + j and

(i) (k − 1)p < n < kp, α = k − n

p

(ii) (k − 1)p = n, ∀0 < α < 1.
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Proof. Exercise.

1.4.9 Theorem. (Interpolation theorem)
Let 1 ≤ p1 < p < p2 < ∞, 1

p = α
p1

+ 1−α
p2

, 0 < α < 1 and Ω be a measure
space. Then

∀u ∈ Lp1(Ω) ∩ Lp2(Ω): ‖u‖p ≤ ‖u‖αp1
‖u‖1−αp2

.

Proof. There holds

p =
1

αp2 + (1− α)p1
(αp1p2 + (1− α)p1p2).

Thus ˆ
Ω
|u|p =

ˆ
Ω
|u|p1

αp2
αp2+(1−α)p1 |u|p2

(1−α)p1
αp2+(1−α)p1

≤
(ˆ

Ω
|u|p1

) αp2
αp2+(1−α)p1

(ˆ
Ω
|u|p2

) (1−α)p1
αp2+(1−α)p1

.

1.4.10 Theorem. (Kolmogorov)
Let Ω b Rn. A subset M ⊂ Lp(Ω), 1 ≤ p <∞, is precompact if and only if

(i) M is bounded and
(ii) M is equicontinuous in the mean,

i.e.
∀ε > 0 ∃δ > 0 ∀u ∈M : 0 ≤ h < δ ⇒ ‖u− uh‖p,Ω < ε.

Proof. Let M be precompact. Then M is clearly bounded. Let ε > 0. Then
there exist (ui)1≤i≤N such that

M ⊂
N⋃
i=1

Bε(ui).

Let u ∈M , then u ∈ Bε(ui0).

⇒ ‖u(·+ h)− u‖p,Ω ≤ ‖u(·+ h)− ui0(·+ h)‖
+ ‖ui0(·+ h)− ui0‖+ ‖ui0 − u‖ < 3ε,

if we choose h small enough. Note that a finite collection of functions is
equicontinuous.
Now let (i) and (ii) hold. Let ε > 0 and for δ > 0 let ηδ be a Dirac sequence.
Let

uδ = u ∗ ηδ.
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|uδ(x)− u(x)|p =

∣∣∣∣∣
ˆ
Bδ(0)

ηδ(y)(u(x− y)− u(x))

∣∣∣∣∣
p

dy

≤
ˆ
Bδ(0)

ηδ(y)|u(x− y)− u(x)|pdy

⇒
ˆ
Rn
|uδ − u|p ≤

ˆ
Bδ(0)

ηδ(y)

ˆ
Rn
|u(x− y)− u(x)|pdxdy

(ii)⇒ ‖uδ − u‖p ≤ sup
|y|<δ
‖u(x− y)− u(x)‖p < ε,

if δ is small.
We now claim that Mδ := {uδ : u ∈M} ⊂ C0(Ω + δ) =: E is precompact in
E. We have

|uδ(x)| ≤
ˆ
Bδ(0)

η
1− 1

p

δ (y)η
1
p

δ (y)|u(x− y)|dy

≤

(ˆ
Bδ(0)

ηδ(y)|u(x− y)|p
) 1

p

≤ sup
Bδ

|ηδ|
1
p ‖u‖p ≤ c

Thus Mδ is bounded.
Furthermore

|uδ(x+ h)− uδ(x)| ≤
ˆ
Bδ(0)

η
1− 1

p

δ η
1
p

δ |u(x+ h− y)− u(x− y)|dy

≤ sup
Bδ(0)

|ηδ|
1
p ‖u(y + h)− u(y)‖p.

Thus Mδ is equicontinuous and by Arzela-Ascoli there exists an ε-net
(uiδ)1≤i≤N in E. We now claim, that this net is also an ε-net in Lp(Ω). Let
u ∈M and 1 ≤ i ≤ N. Then

ˆ
Rn
|u− uiδ|p ≤ 2p

ˆ
Rn
|u− uδ|p + 2p

ˆ
Rn
|uδ − uiδ|p ≤ cεp.

1.4.11 Proposition. (Kondrašov)
Let Ω b Rn have the H1,p- extension property, 1 ≤ p <∞. Let 1

p∗ = 1
p −

1
n ,

then for q < p∗

H1,p(Ω) ↪→ Lq(Ω)

is compact.
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Proof. Let uε ∈ H1,p(Ω) be bounded. Suppose

∀ε : uε ∈ H1,p(Ω0)

and
‖uε‖1,p,Ω0 ≤ c.

⇒ ∀ε > 0 ∃vε ∈ C∞c (Ω0) : ‖vε − uε‖ < ε.

Thus it suffices to show, that the vε are precompact in Lq(Ω0). By the
interpolation theorem this will follow from the case q = 1. We use the
Kolmogorov characterization. The boundedness is clear.

vε(x+ h)− vε(x) =

ˆ 1

0

d

dt
vε(x+ th)dt

=

ˆ 1

0
Divε(x+ th)hidt

and thus ˆ
Rn
|vε(x+ h)− vε(x)| ≤ |h|

ˆ 1

0

ˆ
Rn
|Dvε| ≤ |h|‖Dvε‖1.

1.4.12 Corollary. Let Ω have the Hm,p- extension property, 1
q >

1
p −

m
n ,

q ≥ 1. Then
Hm,p(Ω) ↪→ Lq(Ω)

is compact. In cases mp = n this holds for all 1 ≤ q <∞.

Proof. The case m = 1 has been proven. There holds

u,Du ∈ Hm−1,p(Ω) ↪→ Lr(Ω),

where
1

r
=

1

p
− m− 1

n
.

Thus u ∈ H1,r(Ω) ↪→ Lq(Ω), being compact, if

1

q
>

1

r∗
=

1

q
− 1

n
=

1

p
− m

n
.

The second claim follows by interpolation.

1.4.13 Lemma. (Interpolation of Hoelder spaces)
Let Ω b Rn be open and 0 < β < α ≤ 1. Then there holds

[u]β,Ω ≤ [u]
β
α
α · (osc(u))1− β

α

≤ [u]
β
α
α · 21− β

α |u|1−
β
α

0 .
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Proof.

|u(x)− u(y)|
|x− y|β

=

(
|u(x)− u(y)|

α
β

|x− y|α

) β
α

=

(
|u(x)− u(y)|
|x− y|β

|u(x)− u(y)|
α
β
−1
) β
α

≤ [u]
β
α
α,Ω(osc(u))1− β

α .

1.4.14 Corollary. Let Ω b Rn be open and ∂Ω ∈ C0,1, 0 < β < α. Then
the embedding

Ck,α(Ω̄) ↪→ Ck,β(Ω̄)

is compact.

Proof. Let uε ∈ Ck,α(Ω̄) be bounded. By Arzela-Ascoli there exists a subse-
quence

uε → u ∈ Ck,α(Ω̄) in Ck(Ω̄).

Set
vε := Dγuε → Dγu = v

for some multiindex γ. Inserting this into the interpolation theorem yields
the result.

1.4.15 Theorem. Let Ω b Rn be open and ∂Ω ∈ C0,1, mp > n. Then

Hm,p(Ω) ↪→ Cj,β(Ω̄), 0 ≤ β < α,

is compact, where j, α are as in the Sobolev embedding theorem.

1.4.16 Lemma. Let Ω b Rn be open and ∂Ω ∈ C0,1. Then

C0,1(Ω̄) = H1,∞(Ω).

Proof. Let u ∈ C0,1(Ω̄). Then a mollification uε converges in C0,1(Ω̄′) to u
for all Ω′ b Ω. Thus u ∈ H1,∞(Ω). Let u ∈ H1,∞(Ω). Since

|u(x)− u(y)| ≤ ‖Du‖∞,Ω|x− y|,

we obtain the result locally. For x, y ∈ Bδ(x0) ∩ Ω, x0 ∈ ∂Ω, we can use a
coordinate transformation to convert the problem into the convex set B1

+(0).

1.4.17 Proposition. Let Ω b Rn be open and ∂Ω ∈ C0,1

⇒ Hm,p(Ω) ↪→ Hm−1,p(Ω), 1 ≤ p <∞, m ≥ 1,

is compact.
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Proof. Follows immediately from the other embedding theorems.

1.4.18 Proposition. Let Ω b Rn be open and ∂Ω ∈ C0,1, m ≥ 1 and
1 ≤ p <∞. Then

∀ε > 0 ∃cε ∈ R ∀u ∈ Hm,p(Ω): ‖u‖m−1,p,Ω ≤ ε
∑
|α|=m

‖Dαu‖p,Ω + cε‖u‖p,Ω.

Proof. Use the compactness lemma for Banach spaces and absorb the lower
order norm in the left hand side.

1.4.19 Corollary. Let Ω b Rn be open and ∂Ω ∈ C0,1. Then the norm

‖u‖ =
∑
|α|=m

‖Dαu‖p,Ω + ‖u‖p,Ω, 1 ≤ p <∞,

is an equivalent norm on Hm,p(Ω).

1.4.20 Lemma. Let Ω b Rn. Then

‖u‖ = ‖Dmu‖p,Ω

is an equivalent norm on Hm,p
0 (Ω).

Proof. ∀|γ| ≤ m− 1: Dγu ∈ H1,p
0 (Ω).

1.4.21 Theorem. Let Ω b Rn be open and ∂Ω ∈ C0,1. Then the embedding

H1,p(Ω) ↪→ Lq(∂Ω)

is compact for 1 < p < n and 1 ≤ q < (n−1)p
n−p and it is continuous for

q = (n−1)p
n−p .

Proof. Let ‖uk‖1,p,Ω ≤ c. Then a subsequence converges in L1(Ω),

uk → u ∈ L1(Ω).

Since, by reflexivity, we have u ∈ H1,p(Ω) we may assume u ≡ 0.
Let ε > 0.

ˆ
∂Ω
|uk| ≤

ˆ
Ωε

|Duk|+ cε

ˆ
Ω
|uk|

≤ c
(ˆ

Ω
|Duk|p

) 1
p

|Ωε|
p−1
p + cε

ˆ
Ω
|uk|

Thus
lim sup
k→∞

ˆ
∂Ω
|uk| ≤ c|Ωε|

p−1
p → 0, ε→ 0.
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⇒ H1,p(Ω) ↪→ L1(∂Ω)

is compact. Let q = (n−1)p
n−p and set v := |u|q ∈ H1,1(Ω)

⇒ |Dv| ≤ |Du||u|
n(p−1)
n−p

⇒
ˆ

Ω
|Dv| ≤

(ˆ
Ω
|Du|p

) 1
p
(ˆ

Ω
|u|

np
n−p

) p−1
p

≤ c‖u‖p(q−1)
1,p,Ω .

⇒ H1,p(Ω) ↪→ Lq(∂Ω).

1.4.22 Theorem. (Poincare-inequality)
Let Ω b Rn be connected with H1,p- extension property, 1 ≤ p < n. Then
for all measurable subsets E ⊂ Ω, |E| > 0, there exists a constant cE > 0,
such that

∀u ∈ H1,p(Ω):

(ˆ
Ω
|u− uE |p

) 1
p

≤ cE
(ˆ

Ω
|Du|p

) 1
p

,

where uE = 1
|E|

´
E u.

Proof. Set

V :=

{
u ∈ H1,p(Ω):

ˆ
E
u = 0

}
.

Suppose the inequality did not hold, then there existed a sequence uk ∈ V
such that

‖uk‖1,p,Ω = 1

and
‖uk‖p,Ω > k‖Duk‖p,Ω.

By compactness we have a subsequence converging to u ∈ Lp(Ω). Thus

‖Du‖ = 0

and so u ≡ const, which is a contradiction.

1.4.23 Theorem. For Ω ⊂ Rn open, the spaces Hm,p(Ω) are reflexive for
1 < p <∞.

Proof. Exercise.

1.4.24 Theorem. Let Ω ⊂ Rn be open and 1 ≤ p <∞. Then

Hm,p
0 (Ω)∗ ≡ H−m,p(Ω) =

 ∑
|γ|≤m

Dγfγ : fγ ∈ Lp
′
(Ω)

 ⊂ D(Ω).

Proof. Exercise.

29



1.5 L2 regularity for weak solutions

1.5.1 Theorem. (Interior estimates)
Let Ω b Rn and let ai ∈ C1(Ω× R× Rn) satisfy

∀(x, u, p) :

∣∣∣∣∂ai∂x
(x, u, p)

∣∣∣∣ ≤ cA(1 + |u|+ |p|) (1.8)∣∣∣∣∂ai∂u

∣∣∣∣+

∣∣∣∣∂ai∂pj

∣∣∣∣ ≤ c (1.9)

and

aij =
∂ai

∂pj
⇒ ∃λ > 0 ∀ξ ∈ Rn : λ|ξ|2 ≤ aijξiξj . (1.10)

Let u ∈ H1,2
loc (Ω) be a weak solution of the equation

Au = −(ai(x, u,Du))i = f ∈ L2(Ω),

i.e. we have equality in H−1,2(Ω). Then we have

u ∈ H2,2
loc (Ω)

and for all Ω′ b Ω′′ b Ω

‖u‖2,2,Ω′ ≤ c(‖f‖2,Ω, ‖u‖1,2,Ω′′ , cA, λ).

Proof. We use the method of difference quotients. Let h = hek for a fixed
1 ≤ k ≤ n. Let h0 be small enough to ensure Ω′ + h b Ω′′ for all |h| ≤ h0.
Let η ∈ C∞c (Ω′′), such that

η|Ω′ = 1.

Multiply the equation by

−∆−h(∆huη
2) ∈ H1,2

0 (Ω)

to obtain ˆ
Ω

∆h(ai(x, u,Du))(∆huη
2)i = −

ˆ
Ω
f∆−h(∆huη

2).

We have

∆ha
i(x, u,Du) = h−1(ai(x+ h, u(x+ h), Du(x+ h))− ai(x, u(x), Du(x)))

= h−1

ˆ 1

0

d

dt
ai(x+ th, tu(x+ h) + (1− t)u(x), ...)dt

= h−1(aij(u(x+ h)− u(x))j + bi(u(x+ h)− u(x)) + cih),
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where

aij =

ˆ 1

0

∂ai

∂pj
, bi =

ˆ 1

0

∂ai

∂u
, ci =

n∑
k=1

ˆ 1

0

∂ai

∂xk
.

By the assumptions we have

|ci| ≤ cA(1 + |u(x)|+ |Du(x)|+ |h||∆hu|+ |h||∆hDu|),

|aij |+ |bi| ≤ c

as well as the uniform ellipticity of aij . There holds
ˆ

Ω
(aij(∆hu)j + bi∆hu+ ci)(∆huη

2)i = −
ˆ

Ω
f∆−h(∆huη

2)

≤ ε

2

ˆ
Ω′′
f2 +

1

2ε

ˆ
Ω
|D(∆huη

2)|2,

ˆ
Ω
aij(∆hu)j(∆huη

2)i =

ˆ
Ω
aij(∆hu)j(∆hu)iη

2

+ 2

ˆ
Ω
aij(∆hu)jηi∆huη.

We have ∣∣∣∣ˆ
Ω
aij(∆hu)jηηi∆hu

∣∣∣∣ ≤ ε

2

ˆ
Ω
aij(∆hu)j(∆hu)iη

2

+
1

2ε

ˆ
Ω
aijηiηj |∆hu|2.

(1.11)

But ˆ
Ω
aijηiηj |∆hu|2 ≤ c(Dη)

ˆ
Ω′′
|Dku|2,

|
ˆ

Ω
bi∆hu(∆huη

2)i| ≤
ˆ

Ω
|bi||∆hu|(|D∆hu|η2 + 2|∆hu||Dη|η) (1.12)

and

|
ˆ

Ω
ci(∆huη

2)i| ≤
ˆ

Ω
(1 + |u|+ |Du|+ |h||∆hu|+ |D∆hu||h|)

· (|D∆hu|η2 + 2|∆hu||Dη|η).

(1.13)

For small ε we obtain, also absorbing the |D∆hu| in (1.12) and (1.13),

λ

2

ˆ
Ω′
|D∆hu|2 ≤

1

2

ˆ
Ω
aij(∆hu)i(∆hu)jη

2

≤ c
ˆ

Ω′′
(|f |2 + |Du|2 + |u|2 + 1) ∀|h| < h0.
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⇒
ˆ

Ω′
|DDku|2 ≤

2

λ
c

ˆ
Ω′′

(f2 + |Du|2 + |u|2 + 1)

⇒ u ∈ H2,2
loc (Ω).

1.5.2 Remark. Now we want to prove boundary estimates. Since a diver-
gence writes in coordinates

−aii = − 1
√
g

∂

∂xi
(
√
gai)

we even may suppose that the differential operator is given in terms of co-
variant derivatives, after possibly multiplying the right hand side by √g and
the vector filed by √g−1. Thus we are given a function on both sides and are
free to consider the equation on B+

1 (0) without loss of generality.

1.5.3 Theorem. (Local boundary estimates)
Let 0 < ρ1 < ρ2 < ρ, x0 ∈ ∂Ω and Bρ(x0) ∩ ∂Ω = Γ ∈ C2. Let u ∈ H1,2(Ω)
be a solution of

−(ai(x, u,Du))i = f, u|∂Ω = φ ∈ H2,2(Ω),

where ai satisfies (1.8), (1.9) and (1.10).Then

u ∈ H2,2(Ω ∩Bρ1(x0))

and
‖u‖2,2,Ωρ1 ≤ c(‖u‖1,2,Ωρ2 , ‖f‖2,Ω, ‖φ‖2,2,Ωρ2 , cA, ρ1, ρ2, |Γ|2),

where Ωρi = Ω ∩Bρi(x0).

Proof. Without loss of generality the equation holds in Ω = B+
1 (0) with

x0 = 0. Choose
0 ≤ η ∈ C∞c (Bρ2), η|Bρ1 ≡ 1.

Define with abuse of notation

h = h · ek, 1 ≤ k ≤ n− 1.

Multiply the equation with

−∆−h(∆h(u− φ)η2) ∈ H1,2
0 (Ω).

Then ˆ
Ω

∆ha
iDi(∆h(u− φ)η2) = −

ˆ
Ω
f∆−h(∆h(u− φ)η2).
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As in the proof of 1.5.1 we obtain

λ

ˆ
Ω
|D∆hu|2η2 ≤ c

(ˆ
Ωρ2

f2 +

ˆ
Ωρ2

|D∆hφ|2 + 1 +

ˆ
Ωρ2

(|Du|2 + u2)

)

⇒
ˆ

Ωρ1

∑
i+j<2n

|DiDju|2 ≤ c

(ˆ
Ωρ2

f2 +

ˆ
Ωρ2

|D∆hφ|2 + 1 +

ˆ
Ωρ2

(|Du|2 + u2)

)
.

−Dia
i(x, u,Du) = f

⇒ −aijuij −
∂ai

∂xi
− ∂ai

∂u
ui = f.

Using ann ≥ λ, we obtain the claim.

1.5.4 Theorem. Let aij , bi, c ∈ Cm,1(Ω), f ∈ Hm,2
loc (Ω) and u ∈ H1,2

loc (Ω) be
a weak solution of

− (aijuj)i + biui + cu = f, (1.14)

then
u ∈ Hm+2,2

loc (Ω)

and for all Ω′ b Ω′′ b Ω we have

‖u‖m+2,Ω′ ≤ c(‖f‖m,2,Ω′′ + ‖u‖1,2,Ω′′),

where c = c(|aij |m,1,Ω′′ , |bi|m,1,Ω′′ , |c|m,1,Ω′′ ,Ω′,Ω′′).

Proof. By induction. For m = 0 this is theorem 1.5.1 So let m > 0 and
suppose the claim holds for m− 1. For 1 ≤ k ≤ n choose v = uk ∈ H1,2

loc (Ω).

⇒ −(aijvj)i + bivi + cv = fk +

(
∂aij

∂xk

)
i

uj − bjkuj + cku ≡ F ∈ Hm−1,2
loc (Ω).

Let Ω′ b Ω̃ b Ω′′.

⇒ ‖v‖m+1,2,Ω′ ≤ c(‖F‖m−1,2,Ω̃ + ‖v‖1,2,Ω′′)

‖v‖1,2,Ω̃ ≤ ‖u‖2,2,Ω̃ ≤ c(‖f‖2,Ω′′ + ‖u‖1,2,Ω′′)

and

‖F‖m−1,2,Ω̃ ≤ c(‖f‖m,2,Ω′′ + ‖u‖m+1,2,Ω̃) ≤ c(‖f‖m,2,Ω′′ + ‖u‖1,2,Ω′′).
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1.5.5 Theorem. (Local boundary estimates of higher order)
Let 0 < ρ1 < ρ2 < ρ, , x0 ∈ ∂Ω, Bρ(x0) ∩ Ω = Γ ∈ Cm+2. Let u ∈ H1,2(Ω)
be a solution of

−(aijuj)i + biui + cu = f, u|∂Ω = φ ∈ Hm+2,2(Ω),

f ∈ Hm,2(Ω), aij , bi, c ∈ Cm,1(Ω ∩Bρ(x0)). Then

‖u‖m+2,2,Ωρ1
≤ c(‖f‖m,2,Ωρ2 + ‖u‖1,2,Ωρ2 + ‖φ‖m+2,2,Ωρ2

),

where c = c(|aij |m,1,Ω′′ , |bi|m,1,Ω′′ , |c|m,1,Ω′′ ,Ω′,Ω′′).

Proof. By induction, where m = 0 has already been proven. Let m > 0 and
suppose without loss of generality Ω = B+

1 (0), x0 = 0. Set

Γ = B1(0) ∩ {xn = 0}.

Let 1 ≤ k ≤ n− 1 and

v = uk ∈ H1,2(Ωρ), v|Γ = φk ∈ Hm+1,2(Ωρ).

Then

−(aijvj)i + bivi + cv = fk +
∂aij

∂xk
uj − (bjuj)k − cku ≡ F ∈ Hm−1,2(Ωρ2).

Let 0 < ρ1 < ρ̃ < ρ2

⇒ ‖v‖m+1,2,Ωρ1
≤ c(‖F‖m−1,2,Ωρ̃ + ‖v‖1,2,Ωρ̃ + ‖φ‖m+2,2,Ωρ̃).

For k = n we again use the differential equation to obtain

‖unn‖m,2,Ωρ1 ≤ c(‖u‖m+1,2,Ωρ̃ +

n−1∑
k=1

‖uk‖m+1,2,Ωρ̃ +‖φ‖m+2,2,Ωρ̃ +‖f‖m,2,Ωρ̃).

We now consider L2-estimates for the Neumann boundary value problem.

1.5.6 Theorem. Let Ω b Rn be open, ∂Ω ∈ C2 and let u ∈ H1,2(Ω) be a
weak solution of

−(ai(x, u,Du))i = f in Ω, −aiνi = φ on ∂Ω,

where f ∈ L2(Ω), φ ∈ H2,2(Ω) or φ ∈ C0,1(∂Ω), ai ∈ C1(Ω̄ × R × Rn) and
let (1.8), (1.9) as well as (1.10). Then we have u ∈ H2,2(Ω) and

‖u‖2,2,Ω ≤ c(‖φ‖2,2,Ω + ‖f‖2,Ω + ‖u‖1,2,Ω + 1)

in case φ ∈ H2,2(Ω) and

‖u‖2,2,Ω ≤ c(‖f‖2,Ω + ‖u‖1,2,Ω + 1),

where c now also depends on |φ|0,1,∂Ω.
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Proof. We only prove the boundary estimates, since the interior estimates
are theorem 1.5.1. Let Ω = B+

1 (0), Γ = {xn = 0} ∩ ∂Ω. Then the weak
formulation of the equation reads

∀η ∈ H1,2(Ω) ∩H1,2
c (B1(0)) :

ˆ
Ω
aiηi +

ˆ
Γ
φη =

ˆ
Ω
fη.

Let 1 ≤ k ≤ n− 1, h = h · ek be small and

η̃ = −∆−h(∆huη
2), η ∈ C1

c (B1(0)).

Then ˆ
Ω

∆ha
i(∆huη

2)i +

ˆ
∂Ω

∆hφ∆huη
2 = −

ˆ
Ω
f∆−h(∆huη

2).

(i) If φ ∈ C0,1(∂Ω), we have
ˆ

Γ
|∆hφ∆huη

2| ≤ L
ˆ

Γ
|∆huη

2|

≤ L
ˆ

Ω
|D(∆huη

2)|+ c

ˆ
Ω
|∆huη

2|,

which can be absorbed by ε in the left hand side.
(ii) If φ ∈ H2,2(Ω), we have

ˆ
Γ
|∆hφ∆huη

2| ≤
ˆ

Ω
|D(∆hφ∆huη

2)|+ c

ˆ
Ω
|∆hφ∆huη

2|.

1.5.7 Theorem. Let Ω b Rn be open, ∂Ω ∈ C2 and let aij , bi, c ∈ L∞(Ω),
c ≥ c0 > 0, aij uniformly elliptic, f ∈ L2(Ω) and φ ∈ H1,2(Ω). Then

−(aijuj)i + biui + cu = f in Ω

−aijujνi = φ on ∂Ω

has a weak solution u ∈ H1,2(Ω).
If additionally ∂Ω ∈ Cm+2, aij ∈ Cm+1(Ω), bi, c ∈ Cm(Ω), f ∈ Hm,2(Ω)
and φ ∈ Cm,1(∂Ω) or φ ∈ Hm+2,2(Ω), then we have

u ∈ Hm+2,2(Ω)

and
‖u‖m+2,2,Ω ≤ c(‖φ‖m+2,2,Ω + ‖f‖m,2,Ω + ‖u‖1,2,Ω),

if φ ∈ Hm+2,2(Ω). If φ ∈ Cm,1(∂Ω), then the constant also depends on
|φ|m,1,∂Ω.

Proof. Exercise.

35



1.6 Eigenvalueproblems for the Laplacian

In this section we want to solve the eigenvalue problems

−∆u = λu in Ω

u|∂Ω = 0,
(1.15)

−∆u = λu in Ω

∂u

∂ν
= 0

(1.16)

and
−∆u = λu in M, (1.17)

where M is a compact Riemannian manifold.
We will reduce each of these problems to an abstract eigenvalue problem in
a suitable Hilbert space.

1.6.1 Assumptions of this section. In this section we use the following
assumptions:
(1) H is a real, separable Hilbert space.
(2) K is a symmetric, continuous and compact bilinear form on H, such that

∀u 6= 0: K(u) = K(u, u) > 0.

(3) B is a symmetric, continuous bilinear form on H, which is coercive
relative K, i.e.

∃c0, c > 0 ∀u ∈ H : B(u) = B(u, u) ≥ c‖u‖2 − c0K(u).

We will solve the abstract eigenvalue problem

∃0 6= u ∈ H,λ ∈ R ∀v ∈ H : B(u, v) = λK(u, v).

1.6.2 Lemma. Let {0} 6= V ⊂ H be a closed subspace. Then the variational
problem

B(v)→ min, v ∈W := V ∩ {K(v) = 1}

has a solution u, which is also a solution of

B(v)

K(v)
→ min, 0 6= v ∈ V.

Setting

λ = inf
06=v∈V

B(v)

K(v)
,

then we have
∀v ∈ V : B(u, v) = λK(u, v).
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Proof. By coercivity we see, that B is bounded below in W and that a
minimal sequence uε is bounded above. Thus we suppose

uε ⇁ u ∈ V.

⇒ K(uε)→ K(u) = 1.

B is lower semicontinuous, because B + c0K is an equivalent norm on H.
Thus the first two claims follow. The eigenvalue problem is the first variation
of

v 7→ B(v)

K(v)
.

1.6.3 Theorem. The eigenvalue problem

∀v ∈ H : B(ui, v) = λiK(ui, v)

has countably many eigenvalues of finite multiplicity. If we write

λ1 ≤ λ2 ≤ ...,

we find
lim
i→∞

λi =∞.

The eigenvectors (ui) are complete in H. They fulfill the orthogonality rela-
tions

K(ui, uj) = δij

and
B(ui, uj) = λiK(ui, uj),

as well as the expansions

B(u, v) =
∑
i

λiK(ui, u)K(ui, v)

and
K(u, v) =

∑
i

K(ui, u)K(ui, v).

The pairs (λi, ui) are defined by the variational problem

λi = B(ui, ui) = inf

{
B(u)

K(u)
: 0 6= u ∈ H,K(u, uj) = 0 ∀1 ≤ j ≤ i− 1

}
.
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Proof. 1. Solve the variational problem

B(u)

K(u)
→ min, 0 6= u ∈ H.

By the previous theorem there exists a solution u1 and there holds

∀v ∈ H : B(u1, v) = λ1K(u1, v), K(u1) = 1,

such that λ1 is the infimum.
2. Let i > 1 and let there be solutions for 1 ≤ j ≤ i− 1. Set

Vi = 〈u1, ..., ui−1〉

and let V ⊥ be the orthogonal complement of V relative K. Again, by the
previous theorem

∃ui ∈ V ⊥ : B(ui) = λi = inf

{
B(u)

K(u)
: u ∈ V ⊥

}
and

∀v ∈ V ⊥ : B(ui, v) = λiK(ui, v).

For 1 ≤ j ≤ i− 1 we have

B(uj , ui) = λjK(uj , ui) = 0.

Thus
∀v ∈ H : B(ui, v) = λiK(ui, v),

since
H = Vi ⊕K V ⊥i .

Let u ∈ H and set

um =

m∑
i=1

K(u, ui)ui ∈ Vm+1.

⇒ u = um + (u− um) ∈ Vm+1 ⊕ V ⊥m+1.

The ui satisfy the orthogonality relation

B(ui, uj) = λiK(ui, uj) = λδij .

3. Suppose now the eigenvalues were bounded. We have

B(ui) = λi

and
K(ui) = 1,
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and thus
c0K(ui) +B(ui) = λi + c0,

so that
‖ui‖ ≤ c.

⇒ 2 = K(ui − ui+1)→ 0

for a subsequence, which is a contradiction. By the same reasoning the
multiplicity must be finite.
4. We prove the completeness. Let u ∈ H.

ũm =
m∑
i=1

K(u, ui)ui ≡
m∑
i=1

ciui.

Set
vm = u− ũm.
vm ∈ V ⊥m+1

and thus
λm+1K(vm) ≤ B(vm).

K(vm) = K(u)−
m∑
i=1

c2
i

and

B(vm) = B(u)−
m∑
i=1

λic
2
i

imply
B(vm) ≤ c

and thus
K(vm)→ 0.

Furthermore there holds
∞∑
i=1

λic
2
i <∞.

Let m < n.

B(vn − vm) =
n∑

i=m+1

λic
2
i < ε.

Thus the (vn) form a Cauchy sequence in H and by K(vm)→ 0 we find

vm → 0.

Thus the (ui) are complete and

B(u) =

∞∑
i=1

λic
2
i .
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1.6.4 Theorem. (Minimax principle)
For a subspace V ⊂ H define

d(V ) = inf

{
B(u)

K(u)
: 0 6= u ∈ V ⊥

}
.

Then λi is characterized by

λi = max{d(V ) : V ⊂ H,dimV ≤ i− 1}

where the maximum is attained at

〈u1, ..., ui−1〉,

where the ui are defined as in 1.6.3.

Proof. For i ≥ 2 let
Vi = 〈v1, ..., vi−1〉.

For i = 1 the claim has already been proven. We show

d(Vi) ≤ λi = d(〈u1, ..., ui−1〉).

Set

u =
i∑

j=1

cjuj , cj ∈ R

and solve
K(u, vj) = 0 1 ≤ j ≤ i− 1.

Let u be a solution with K(u) =
∑i

j=1 c
2
j = 1.

d(Vi) ≤
B(u)

K(u)
=

i∑
j=1

λjc
2
j ≤ λi.

1.6.5 Example. Let Ω b Rn and consider (1.15). This eigenvalue problem
is realized in the above setting by

H = H1,2
0 (Ω),

B(u, v) =

ˆ
Ω
DiuD

iv

and
K(u, v) =

ˆ
Ω
uv.

Those bilinear forms obviously satisfy the assumptions of the abstract eigen-
value problem. Furthermore we have:
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1.6.6 Theorem. The smallest eigenvalue, λ1, has multiplicity 1 and a cor-
responding eigenfunction u1 has a strict sign.

Proof. Exercise.

1.6.7 Example. Let Ω b Rn be open and ∂Ω ∈ C0,1, H = H1,2(Ω). Con-
sider (1.16). This eigenvalue problem is realized by setting

B(u, v) =

ˆ
Ω
DiuD

iv

and
K(u, v) =

ˆ
Ω
uv.

1.6.8 Example. To solve (1.17) we define the bilinear forms as in the pre-
vious examples on the space H = H1,2(M).

1.6.9 Definition. Let f : M → R be a function.
(a) f is called measurable on M , if f is measurable in coordinates.
(b) We say f ∈ Lp(M), if f is measurable and

ˆ
M
|f |p <∞.

(c) Let u ∈ Lp(M) and (ηi) ∈ C∞c (M,Rn). Define the weak derivative of
first order of u, (Diu), to be a tensor satisfying

ˆ
M
Diuη

i = −
ˆ
M
udiv η.

(d) Let

Hm,p(M) =

u ∈ Lp(M) :

ˆ
M

m∑
k=0

∑
|α|=k

|DαuD
αu|

p
2

 <∞

 .

1.6.10 Lemma. Let u ∈ C2(M). Then −∆ is the Euler-Lagrange operator
of the functional

J(v) =
1

2

ˆ
M
|Dv|2.

Proof.

∀η ∈ C∞c (M) : 0 = δJ(u; η) =

ˆ
M
uiη

i.

1.6.11 Theorem. Let Ω b M, then the Sobolev embedding theorems also
hold for Hm,p(Ω) and Hm,p

0 (Ω).
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Proof. The case m = 1 is an exercise and the rest follows by induction.

1.6.12 Theorem. LetM be compact. Then there are countably many eigen-
values λi of −∆,

0 = λ0 < λ1 ≤ λ2 ≤ ...→∞.

The eigenfunctions are complete in L2(M) as well as in H1,2(M). The kernel
of −∆ is spanned by a nonzero constant function.

Proof. The claim follows from the above examples and by 11.8.16, Analysis
II.

1.6.13 Theorem. Let u be harmonic and homogeneous of degree k in a
neighborhood of Sn. Then u|Sn is an eigenfunction with eigenvalue λ = k(k+
n− 1) of −∆Sn .
Let u be an eigenfunction with eigenvalue λ = k(k + n− 1) on Sn of −∆Sn ,
then we have

u ∈ C∞(Sn).

In Rn+1 define

u(x) = u

(
x

|x|

)
|x|k,

then
∆Rn+1u = 0.

Proof. Let M ⊂ Rn+1 be a hypersurface, u ∈ C2(Ω) and M ⊂ Ω ⊂ Rn+1

open. Let
∆ = ∆M ∧ ∆̄ = ∆Rn+1

and
(xα), (ξi)

coordinates for the ambient space and the hypersurface respectively. Then
we have

uij = uαβx
α
i x

β
j + uαx

α
ij

= uαβx
α
i x

β
j − hijuαν

α.

⇒ ∆u = gijuij = uαβx
α
i x

β
j g

ij −Huανα.

Choose, in a given point, coordinates such that

gij = δij ,

such that in this point we have

uαβx
α
i x

β
j g

ij = uαβδ
α
i δ

β
j g

ij

= ḡαβuαβ − u00

= ḡαβuαβ − uαβνανβ.
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⇒ ∆u = ∆̄u− uαβνανβ −Huανα.

Set λ = k(k+ 1− 1). On M = Sn we have H = n. Let u be homogeneous of
degree k in a neighborhood of Sn, then

u(x) = |x|ku
(
x

|x|

)
.

Let (xα) be euclidian coordinates, then

uαν
α = uαx

α = ku.

⇒ kuβx
β = uαβx

αxβ + uβx
β

⇒ k(k − 1)u = (k − 1)uβx
β = uαβx

αxβ

−∆u = −∆̄u+ k(k − 1)u+ nku

= −∆̄u+ k(k + n− 1)u

1.7 The Harnack inequality

1.7.1 Assumptions of this section. Let Ω b Rn be open, n ≥ 2. In this
section we investigate the linear divergence form equation

Lu = −(aijuj)i + biui + cu = 0,

where
aij , bi, c ∈ L∞(Ω),

‖aij‖∞ + ‖bi‖∞ + ‖c‖∞ ≤M

and
∃λ > 0 ∀ξ ∈ Rn : aijξiξj ≥ λ|ξ|2.

1.7.2 Theorem. Let 0 ≤ u ∈ H1,2
loc (Ω) and Lu ≤ 0, then for all B2R(x0) ⊂

Ω′, q > 1, we have

sup
BR(x0)

u ≤ c

(
1

Rn

ˆ
B2R(x0)

uq

) 1
q

,

where c = c(Ω′, n, q, λ,M).
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Proof. In this proof we use the so called Moser iteration technique.
(1) Suppose first that

u ∈ L∞(B2R(x0)).

Let p > 1,
η ∈ C0,1

c (B2R(x0)), 0 ≤ η ≤ 1,

uδ = u+ δ and use up−1
δ η2 as a test function. Then

(p− 1)

ˆ
Ω
|Du|2up−2

δ η2 ≤ c
ˆ

Ω
|Du||Dη|u−1

δ η(upδdx)

+ c

ˆ
Ω
|Du|u−1

δ (η2upδdx) + c

ˆ
Ω
upδη

2

≤ cε

2

ˆ
Ω
|Du|2u−2

δ η2upδ +
c

2ε

ˆ
Ω
|Dη|2upδ

+
cε

2

ˆ
Ω
|Du|2u−2

δ η2upδ +
c

2ε

ˆ
Ω
η2upδ + c

ˆ
Ω
upδη

2.

Setting ε = p−1
2c implies

(p− 1)

ˆ
Ω
|Du|2up−2η2 ≤ c

p− 1

ˆ
Ω

(|Dη|2 + η2)upδ . (1.18)

Set
v = upδη

2.

ˆ
Ω
|Dv| ≤ p

ˆ ∞
−∞
|Du||up−1

δ |η2 + 2

ˆ
Ω
upδ |Dη|η

≤ ε(p− 1)

ˆ
Ω
|Du|2up−2

δ η2 +
p2

p− 1

1

4ε

ˆ
Ω
upδη

2

+ 2

ˆ
Ω
upδ |Dη|η.

Setting ε = R and observing

H1,1(Ω) ↪→ L
n
n−1 (Ω)

we conclude(ˆ
Ω
u
p n
n−1

δ η2 n
n−1

)n−1
n

≤ c
(

p2

p− 1
+ 1

)ˆ
Ω

(R|Dη|2 + η2R+
1

R
η2)upδ .

For r ∈ N we set p = qκr, κ = n
n−1 and

ρr = R+
R

2r
.
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Choose

η =

{
1, x ∈ Bρr+1

0, x /∈ Bρr ,

such that

|Dη| ≤ 1

ρr − ρr+1
=

2r+1

R
.

⇒

(ˆ
Bρr+1

uqκ
r+1

δ

) 1
κ

≤ c8r 1

R

ˆ
Bρr

uqκ
r

δ

⇒

(
1

Rn

ˆ
Bρr+1

uqκ
r+1

δ

) 1
κ

≤ c8r 1

Rn

ˆ
Bρr

uqκ
r

δ

⇒

(
1

Rn

ˆ
Bρr+1

uqκ
r+1

δ

) 1
κr+1

≤ c
1
κr 8

r
κr

(
1

Rn

ˆ
Bρr

uqκ
r

δ

) 1
κr

.

This inequality is of the form

∀r ∈ N : Ir+1 ≤ c
1
κr 8

r
κr Ir,

which implies
Ir+1 ≤ c

∑r
i=0

1

κi 8
∑r
i=0

i

κi I0

and thus
sup
BR

uqδ ≤ c
1

Rn

ˆ
B2R

uqδ.

δ → 0 implies the claim.

(2) We now prove that u ∈ L∞loc(Ω).
Define

∀1 ≤ p <∞ : v = log(u+ 1) ∈ Lploc(Ω).

Let p ≥ 2, then for η ∈ C0,1
c (Ω) we have the test function

vp−1η2 ∈ H1,2
0 (Ω).

(p− 1)

ˆ
Ω
Du ·Dvvp−2η2 ≤ c

ˆ
Ω
|Du||Dη|vp−1η + c

ˆ
Ω
|Du|vp−1η2

+ c

ˆ
Ω
vp−1η2u

As in (1.18) we obtain

⇒ (p− 1)

ˆ
Ω
|Dv|2vp−2η2(u+ 1) ≤ c

ˆ
Ω

(|Dη|2 + η2)(vp−1 + vp)(u+ 1).
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H1,1(Ω) ↪→ L
n
n−1 (Ω) implies(ˆ

Ω
(vp−1η2(1 + u))

n
n−1

)n−1
n

≤ c(p− 1)

ˆ
Ω
|Dv|vp−2η2(1 + u)

+ c

ˆ
Ω
vp−1|Dη|η(u+ 1)

+ c

ˆ
Ω
vp−1η2|Dv|(u+ 1).

(1.19)

Thus(ˆ
Ω

(vp−1η2(1 + u))
n
n−1

)n−1
n

≤ c(p−1)

ˆ
Ω

(|Dη|2+η2)(vp−2+vp−1+vp)(u+1).

Note that
vp(u+ 1) ≤ cvp−1(u+ 1)

n
n−1

and
vp−2 ≤ vp−1 + 1,

since p ≥ 2. Thus(ˆ
Ω

(vp−1η2(1 + u))
n
n−1

)n−1
n

≤ c(p− 1)

ˆ
Ω

(|Dη|2 + η2)(1 + vp−1)(u+ 1)
n
n−1 .

Choose η as in part (1), ρr = R+ R
2r , κ = n

n−1 .

⇒

(ˆ
Bρr+1

v(p−1)κ(1 + u)κ

) 1
κ

≤ c(p− 1)8r
1

R2

ˆ
Bρr

(1 + vp−1)(1 + u)κ.

There holds(
R−n

ˆ
Bρr+1

(v(p−1)κ + 1)(1 + u)κ

) 1
κ

≤

(
R−n

ˆ
Bρr+1

v(p−1)κ(1 + u)κ

) 1
κ

+

(
R−n

ˆ
Bρr+1

(1 + u)κ

) 1
κ

.

Then(
1

Rn

ˆ
Bρr+1

(v(p−1)κ + 1)(1 + u)κ

) 1
κ

≤ c(p−1)8r

(
1

Rn+1

ˆ
Bρr

(1 + vp−1)(1 + u)κ

)
.

Set p− 1 = κr. For

Ir =

(
1

Rn

ˆ
Bρr

(vκ
r

+ 1)(1 + u)κ

) 1
κr
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we find

Ir+1 ≤
( c
R

) 1
κr

κ
r
κr 8

r
κr Ir.

As is part (1) we conclude, using (1.19) with p = n
n−1 + 1,

sup
BR

v ≤ c 1

Rn

ˆ
B2R

((v + 1)
1
κ (1 + u))κ

≤ c 1

Rn

ˆ
B2R

(1 + u)p

≤ c 1

R
‖u‖1,2,B2R

.

1.7.3 Theorem. Let 0 ≤ u ∈ H1,2
loc (Ω) and Lu ≥ 0. Then for all B2R ⊂ Ω

and for all q < 0 we have

inf
BR

u ≥ c
(

1

Rn

ˆ
B2R

uq
) 1
q

,

where c = c(L, q, n).

Proof. Let δ > 0, uδ = u+ δ and p < 1. Let 0 ≤ η ∈ C0,1
c (B2R) and multiply

the inequality by
up−1
δ η2.

As in the previous theorem we conclude

|p− 1|
ˆ

Ω
|Duδ|2up−2

δ η2 ≤ c

|p− 1|

ˆ
Ω

(
|Dη|2

|p− 1|
+ η2

)
upδ .

As in the proof of the previous theorem we obtain, using the ε-trick, that(ˆ
Ω
u
p n
n−1

δ η2 n
n−1

)n−1
n

≤ c
(

p2

|p− 1|
+ 1

)ˆ
Ω

(
R|Dη|2 + η2R+

1

R
η2

)
upδ .

(1.20)
Choose q < 0, κ = n

n−1 , p = qκr, r ∈ N. Using Moser iteration we obtain

sup
BR

uqδ ≤ c
(

1

Rn

ˆ
B2R

uqδ

)
and since q < 0 we have

inf
BR

uδ ≥ c
(

1

Rn

ˆ
B2R

uqδ

) 1
q

.

For δ → 0 we obtain the claim.
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1.7.4 Lemma. Let 0 ≤ u ∈ H1,2
loc (Ω) and Lu = 0. Let B4R ⊂ Ω. Then for

all 0 < q < 1 with the property

∀r ∈ N : q

(
n

n− 1

)r
6= 1

we have

sup
BR

u ≤ c
(

1

Rn

ˆ
B4R

uq
) 1
q

,

where c = c(L, n, q).

Proof. Set κ = n
n−1 . Let r0 be minimal, such that

qκr0 > 1, R̃ = 2R.

Let

ρr = R̃+
R̃

2r

and
p = qκr, 0 ≤ r ≤ r0 − 1.

Let η be as in the proof of 1.7.2. Using (1.20) we obtain, using R̃ instead of
R, as well as Lu ≥ 0,

Ir+1 ≤ cIr = c

(
1

Rn

ˆ
Bρr

uqκ
r

) 1
κr

.

Thus (
1

Rn

ˆ
B2R

uqκ
r0

) 1
qκr0

≤ c
(

1

Rn

ˆ
B4R

uq
) 1
q

.

By 1.7.2 We obtain, using Lu ≤ 0,

sup
BR

u ≤ c
(

1

Rn

ˆ
B4R

uq
) 1
q

.

1.7.5 Corollary. Let 0 ≤ u ∈ H1,2
loc (Ω), Lu = 0 and B4R ⊂ Ω. Then for all

0 < q ∈ R we have

sup
BR

u ≤ c
(

1

Rn

ˆ
B4R

uq
) 1
q

,

where c = c(L, n, q).

Proof. Since the estimate holds for all q > 1 and for a dense subset of
{0 < q < 1}, we obtain the claim using the Hölder inequality.
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1.7.6 Theorem. Let B = BR and suppose that u ∈ H1,1(B) satisfies

∀Bρ(x0), x0 ∈ B, 0 < ρ < 2R :

ˆ
B∩Bρ(x0)

|Du| ≤ Aρn−1. (1.21)

Then there exists c = c(n), such that

∀0 < b ≤ 1

cA
:

ˆ
B
eb|u−uB | ≤ c|B|,

where uB = 1
|B|

´
B u.

Proof. Let u ∈ C1
c (Rn), x, y ∈ B. Without loss of generality suppose x = 0

and choose polar coordinates around x to obtain

u(x)− u(y) = −
ˆ |y|

0
ur dr.

|u(x)− 1

|B|

ˆ
B
u| ≤ c

Rn

ˆ
B2R(x0)

ˆ |y|
0
|Du(r, ξ)|χBdrdy

≤ cR−n
ˆ
Sn−1

ˆ 2R

0
tn−1

ˆ 2R

0
|Du(r, ξ)|χBdrdtdHn−1

= cR−n
ˆ
Sn−1

ˆ 2R

0
tn−1

ˆ 2R

0
rn−1 |Du(r, ξ)|

rn−1
χB

= cR−n
ˆ 2R

0
tn−1

ˆ
B∩B2R(x0)

|Du(y)|
|x− y|n−1

= c

ˆ
B

|Du(y)|
|x− y|n−1

.

Thus we have

∀u ∈ H1,1(B) :

ˆ
B
|u− uB|p ≤ cp

ˆ
B

(ˆ
B

|Du(y)|
|x− y|n−1

)p
. (1.22)

We have

|Du(y)|
|x− y|n−1

=
|Du(y)|

1
p

|x− y|
n−1
p

+ 1
2p

|Du(y)|
1
p′

|x− y|
n−1
p′ −

1
2p

, p ≥ 2.

Thus

ˆ
B
|u− uB|p ≤ cp

ˆ
B

(ˆ
B

|Du|
|x− y|n−1+ 1

2

)(ˆ
B

|Du|

|x− y|n−1− 1
2(p−1)

)p−1

(1.23)
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Set Du(y) = 0 for y 6= B define for x ∈ B,α > 0

Iα(u) =

ˆ
B

|Du(y)|
|x− y|n−1−α

=

ˆ
|x−y|<2R

|Du(y)|
|x− y|n−1−α

=
∞∑
t=0

ˆ
R
2t
<|x−y|< R

2t−1

|Du(y)|
|x− y|n−1−α

≤
∞∑
t=0

(2tR−1)n−1−α
ˆ
|x−y|<21−tR

|Du(y)|

≤ A
∞∑
t=0

(2tR−1)n−1−α(21−tR)n−1

= ARα2n−1
∞∑
t=0

2−αt

= ARα2n−1 1

1− 2−α
.

The last integral in (1.23) is I 1
2(p−1)

(u), p ≥ 2. There holds

∀p ≥ 2:
1

1− 2
− 1

2(p−1)

≤ c0p,

because:
Set t = 1

p−1 . We have 1− 2−
1
2
t = 1− e−at, a > 0. Since

1− e−at

t
→ a,

we have
1− e−at ≥ a

2
t,

from which the claim follows. Thus

I 1
2(p−1)

≤ ARα2n−1c0p

In (1.23) this reads

ˆ
B
|u− uB|p ≤ cpcp−1

0 pp−1Ap−1R
1
2

ˆ
B
|Du(y)|

(ˆ
B

dx

|x− y|n−1+ 1
2

)
.

∀p ≥ 2:

ˆ
B
|u− uB|p ≤ c1R

n(cc0Ap)
p. (1.24)
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Using the potential estimates, (1.21), (1.22) to handle the case p = 1 and
(1.24) that

ˆ
B
eb|u−uB | =

∞∑
p=0

ˆ
B

bp

p!
|u− uB|p

≤
∞∑
p=1

c1R
n (bcc0Ap)

p

p!
+ |B|

Let bcc0A ≤ κ
e , then the series converges by the quotient criterion and

∀0 < b ≤ b0 :

ˆ
B
eb|u−uB | ≤ cRn.

1.7.7 Lemma. Let 0 ≤ u ∈ H1,2
loc (Ω), Lu ≥ 0 and v = log u. Then there

holds for all B2ρ ⊂ Ω and ρ < 1, that
ˆ
Bρ

|Dv| ≤ Aρn−1.

Proof. Let ε > 0, vε = log(u+ ε), 0 ≤ η ∈ C0,1
0 (B2ρ) such that

η|Bρ = 1 ∧ |Dη| ≤ 1

ρ
.

Multiply Lu ≥ 0 by (u+ ε)−1η2 and set uε = u+ ε.

ˆ
Ω
|Duε|2u−2

ε η2 ≤ c
ˆ

Ω
|Duε|u−1

ε |Dη|η

+ c

ˆ
Ω
|Duε|u−1

ε η2 + c

ˆ
Ω
η2

⇒
ˆ
Bρ

|Dvε|2 ≤ c
ˆ
B2ρ

1

ρ2
+ c

ˆ
B2ρ

1 ≤ cρn−2.

⇒
ˆ
Bρ

|Dvε| ≤ c

(ˆ
Bρ

|Dvε|2
) 1

2

ρ
n
2 ≤ cρn−1.

For ε→ 0 we obtain the claim.

1.7.8 Lemma. Let 0 ≤ u ∈ H1,2
loc (Ω) and Lu ≥ 0. Then there exist α, c > 0

such that for all B2ρ ⊂ Ω and ρ < 1(
1

ρn

ˆ
Bρ

|u|α
) 1

α

≤ c

(
1

ρn

ˆ
Bρ

|u|−α
)− 1

α

.
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Proof. Set v = log u. Then by 1.7.6 and 1.7.7 we have
ˆ
Bρ

eb|v−vB | ≤ cρn

for small b. Thusˆ
Bρ

eb(v−vB) ≤ cρn ∧
ˆ
Bρ

e−b(v−vB) ≤ cρn.

Multiplying those inequalities we obtain

1

ρn

ˆ
Bρ

ub ≤ c

(
1

ρn

ˆ
Bρ

u−b

)−1

.

1.7.9 Theorem. (Weak Harnack inequality)
Let 0 ≤ u ∈ H1,2

loc (Ω) and Lu ≥ 0. Let B4ρ ⊂ Ω, ρ < 1. Then there is p > 0,
such that (

1

ρn

ˆ
Bρ

up

) 1
p

≤ c inf
Bρ
u,

where c = c(n,L, p).

Furthermore there holds

1.7.10 Theorem. Let 0 ≤ u ∈ H1,2
loc (Ω), Lu = 0. Then for all B4ρ ⊂ Ω and

0 < ρ < 1, there holds

sup
Bρ

u ≤ c inf
Bρ
u, c = c(n,L)

and for connected Ω′ b Ω we have

sup
Ω′

u ≤ c inf
Ω′
u, c = c(n,L,Ω′).

1.7.11 Theorem. Let 0 ≤ u ∈ H1,2
loc (Ω), Lu ≥ 0 and Ω connected. If for

B ⊂ Ω we have infB u = 0, then u ≡ 0 in Ω.

Proof. Follows immediately from the previous theorems.

1.7.12 Theorem. (Strong maximum principle)
Let Ω be connected and u ∈ H1,2

loc (Ω), Lu ≤ 0 and c ≥ 0. If for a ball B ⊂ Ω
we have supB u = supΩ u ≥ 0, then u ≡ const.

Proof. Set M = supΩ u ≥ 0, v = M − u ≥ 0. Then Lv ≥ 0, since c ≥ 0.
Then the previous theorem implies the claim.
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Chapter 2

Hölder continuity of weak
solutions

2.1 Solution of the homogeneous equation

2.1.1 Lemma. Let ω ∈ L∞loc(0, ρ0) suffice

ω(ρ) ≤ aω(4ρ) + kρα

for 0 < 4ρ < ρ0 < 1, 0 < a < 1, k ≥ 0, 0 < α < 1. Then we have

∀0 < R < ρ0 ∃c > 0 ∃0 < λ ≤ α ∀0 ≤ ρ ≤ R : ω(ρ) ≤ cρλ, λ = λ(a, α).

Proof. Choose 0 < β < 1 and a0, such that a4β = a0 < 1. Set λ = min(α, β).
Let R

4 ≤ ρ < R and

M = sup
R
4
≤ρ<R

ω(ρ)

ρλ
.

Then
∀R

4
≤ ρ < R : ω(ρ) ≤Mρλ.

Let R
42 ≤ ρ < R

4 . Then

⇒ ω(ρ) ≤ aω(4ρ) + kρλ

≤ aM(4ρ)λ + kρλ

= (aM4λ + k)ρλ

By induction we then have in R
4i+1 ≤ ρ < R

4i

ω(ρ) ≤ (M(4λa)i + k
i∑

j=0

4jλaj)ρλ,
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since it holds for i = 0 and if it holds for i − 1, then for R
4i+1 ≤ ρ < R

4i
we

have

ω(ρ) ≤ aω(4ρ) + kρλ

≤ a(M(4λa)i−1 + k
i−1∑
j=0

4jλaj)(4ρ)λ + kρλ

ω(ρ) ≤ (M(4λa)i + k
i∑

j=0

4jλaj)ρλ

≤ (M + k
∞∑
j=0

aj0)ρλ

= (M + k
1

1− a0
)ρλ ∀0 < ρ < R,

since every ρ lies in a R
4i
≤ ρ < R

4i−1 .

2.1.2 Theorem. Let Ω b Rn be open, n ≥ 2, and let u ∈ H1,2
loc (Ω) be a

solution of the equation

Lu = −(aijuj)i + biui = 0,

where aij , bi ∈ L∞(Ω) and aij is uniformly elliptic. Then u ∈ C0,α(Ω),
α = α(n,L).

Proof. By the previous lemma it suffices to derive an estimate for the oscil-
lation of u,

ωρ = sup
Bρ

u− inf
Bρ
u,

for every ball B4ρ(x) ⊂ Ω, such that

∀x ∈ Ω ∃0 ≤ a < 1 ∀ρ ≤ 1: ωρ ≤ aω4ρ.

So let B4ρ b Ω and define

m(ρ) = inf
Bρ
u ∧ M(ρ) = sup

Bρ

u.

⇒ v = M(4ρ)− u ≥ 0 in B4ρ.

Thus v is a nonnegative solution and by the Harnack inequality we obtain

sup
Bρ

v = M(4ρ)−m(ρ) ≤ c inf
Bρ
v = c(M(4ρ)−M(ρ)).
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Similarly for w = u−m(4ρ) ≥ 0 we find

sup
Bρ

w = M(ρ)−m(4ρ) ≤ c(m(ρ)−m(4ρ))

and thus
ω4ρ + ωρ ≤ c(ω4ρ − ωρ)

⇒ ωρ ≤
c− 1

c+ 1
ω4ρ.

2.2 Local Hoelder continuity

2.2.1 Assumptions of this section. Let Ω b Rn be open, n ≥ 2. We
consider solutions u ∈ H1,2

loc (Ω) of

Lu = −(aijuj)i + biui + cu = −(f i)i,

where
aij , bi, c ∈ L∞(Ω),

(f i) ∈ Lp(Ω,Rn), n < p <∞

and aij is uniformly elliptic. Furthermore we define the operator

L̃ = L− c.

2.2.2 Theorem. Let u ∈ H1,2
loc (Ω) be a solution of Lu = −(f i)i. Then u is

locally bounded.

Proof. Will be proven more generally in a later theorem.

2.2.3 Lemma. (Stampacchia)
Let 0 ≤ φ : [k0,∞)→ R be a nonincreasing function satisfying

∀h > k ≥ k0 : φ(h) ≤ c

(h− k)α
φ(k)β (2.1)

with positive constants α, β, c, then there hold
(1) β > 1⇒ φ(k0 + d) = 0, where dα = cφ(k0)β−1 · 2

αβ
β−1 ,

(2) β = 1⇒ ∀h > k0 : φ(h) ≤ eφ(k0)e−a(h−k0), where a = (ec)−
1
α and

(3) β < 1 ∧ k0 ≥ 0⇒ φ(h) ≤ 2
µ

1−β (c
1

1−β +(2k0)µφ(k0))h−µ, where µ = α
1−β .

Proof. (1) Consider the sequence

ki = k0 + d− d2−i, i ∈ N.
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By (2.1) we obtain

φ(ki+1) ≤ c2α(i+1)

dα
φ(ki)

β (2.2)

⇒ φ(ki) ≤
φ(k0)

2iµ
, µ =

α

β − 1
, (2.3)

since it holds for i = 0 and

φ(ki+1) ≤ c2α(i+1)

dα
φ(k0)β

2iµβ
=

φ(k0)

2(i+1)µ
.

(2) Consider
ki = k0 + i(ec)

1
α .

By (2.1) we have

φ(ki) ≤
1

e
φ(ki−1).

Let h > k0. Then there exists an i ∈ N, such that

k0 + (i− 1)(ec)
1
α ≤ h ≤ k0 + i(ec)

1
α .

φ(h) ≤ φ(k0 + (i− 1)(ec)
1
α ) ≤ e−(i−1)φ(k0) ≤ ee−a(h−k0)φ(k0), a = (ec)−

1
α .

(3) Let

ψ(h) = φ(h)
hµ

c
1

1−β
.

By (2.1) we have for all h > k ≥ k0 ≥ 0

ψ(h) ≤ hµ

c
1

1−β

c

(h− k)α
c

β
1−β

kµβ
ψ(k)β

= ψ(k)β
(

h

(h− k)1−βkβ

)µ
.

h := 2k implies
ψ(2k) ≤ 2µψ(k)β (2.4)

ψ(2ik) ≤ ψ(k)β
i
2µ

∑i−1
j=0 β

j

, (2.5)

since it holds for i = 1 and we have

ψ(2i+1) ≤ 2µψ(2ik)β

≤ ψ(k)β
i+1

2µ
∑i−1
j=0 β

j+1

· 2µ

= ψ(k)β
i+1

2µ
∑i
j=0 β

j

.

β < 1 implies

sup
k0≤k≤2k0

ψ(k)β
i ≤ 1 + sup

k0≤k≤2k0

ψ(k) ≤ 1 + φ(k0)(2k0)µc
− 1

1−β
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⇒ ψ(2ik) ≤ (1 + φ(k0)(2k0)µc
− 1

1−β )2
µ 1

1−β . (2.6)

Each number h ≥ 2k0 is of the form h = 2ik, k ∈ [k0, 2k0]. Thus by (2.6) we
have

sup
h≥k0

ψ(h) ≤ (1 + φ(k0)(2k0)µc
− 1

1−β )2
µ 1

1−β

⇒ φ(h) ≤ 2
µ

1−β (c
1

1−β + φ(k0)(2k0)µ)h−µ.

2.2.4 Theorem. Let u ∈ H1,2(Ω) be a solution of

L̃u = −(f i)i,

then there holds
(1) If bi = 0 or |Ω| ≤ ε0 = ε0(n,L) << 1, then

|u| ≤ sup
∂Ω
|u|+ c‖f‖p|Ω|

1
n
− 1
p .

(2) Otherwise there holds

|u| ≤ c0 + c‖f‖p|Ω|
1
n
− 1
p ,

where c0 = c0(n, sup∂Ω |u|, ‖u‖1).

Proof. Let k ∈ R and set

A(k) = {u > k}.

Let k0 = max(sup∂Ω u, 0). For k ≥ k0 define

η = max(u− k, 0) ∈ H1,2
0 (Ω)

as test function. Thenˆ
Ω
|Dη|2 ≤ c

ˆ
Ω
|f ||Dη|+ c

ˆ
Ω
|Dη|η

⇒
ˆ

Ω
|Dη|2 ≤ c

ˆ
A(k)
|f |2 + c

ˆ
A(k)
|η|2

n ≥ 3⇒ 2∗ = 2n
n−2 . ˆ

A(k)
|η|2 ≤ c

ˆ
Ω
|Dη|2|A(k)|

2
n .

For n = 2 we have
ˆ
A(k)
|η|2 ≤ c

(ˆ
Ω
|Dη|

)2

≤ c
ˆ

Ω
|Dη|2|A(k)|.
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For small |Ω| we find

∀k ≥ k0 :

ˆ
Ω
|Dη|2 ≤ c

ˆ
A(k)
|f |2.

If Ω is arbitrary, k0 has to be chosen large enough, depending on ‖u‖1 and
n, since

|A(k)| =
ˆ
A(k)

1 ≤
ˆ
A(k)

u

k
≤ k−1

ˆ
Ω
|u|.

Then
∀k ≥ k0 :

ˆ
Ω
|Dη|2 ≤ c

ˆ
A(k)
|f |2 ≤ c‖f‖2p|A(k)|1−

2
p .

(ˆ
Ω
η

n
n−1

)n−1
n

≤ c
ˆ

Ω
|Dη| ≤ c

(ˆ
Ω
|Dη|2

) 1
2

|A(k)|
1
2

⇒
(ˆ

Ω
η

n
n−1

)n−1
n

≤ c|A(k)|1−
1
p ‖f‖p.

ˆ
Ω
η ≤

(ˆ
Ω
η

n
n−1

)n−1
n

|A(k)|
1
n ≤ c|A(k)|1+ 1

n
− 1
p ‖f‖p.

Now for all h > k ≥ k0 we have

(h− k)|A(h)| ≤
ˆ
A(h)

(u− k) ≤
ˆ

Ω
η ≤ c‖f‖p|A(k)|1+ 1

n
− 1
p .

For β = 1 + 1
n −

1
p > 1 we have by 2.2.3

|A(k0 + d)| = 0,

where d = c‖f‖p|A(k0)|
1
n
− 1
p .

⇒ u ≤ k0 + d.

Analogously this holds for −u, which implies the claim.

2.2.5 Theorem. Let u ∈ H1,2
loc (Ω) be a solution of

Lu = −(f i)i, f
i ∈ Lploc(Ω), p > n,

then u ∈ C0,α(Ω).

Proof. If u ∈ L∞loc(Ω), we may consider

L̃u = −cu− f ii ≡ g − f ii .

Let Ω ≡ Ω′ b Ω, then we claim:

∃w ∈ C0,1(Rn) : −∆w = g = −(δijwj)i.
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Proof : Extend g identically 0 to Rn and call the mollification gε. Set

ωε = γ ∗ gε,

where γ is the Newtonian potential. Then we have

−∆ωε = gε

and
|Dωε| ≤ const.

As ε→ 0 we obtain a limit

ωε → ω ∈ C0,1(Ω̄) : −∆ω = g.

Thus without loss of generality we may assume g = 0.
Now let B4ρ b Ω and ρ so small that L̃ coercitive in H1,2

0 (B4ρ), i.e.

∀u ∈ H1,2
0 (B4ρ) : 〈L̃u, u〉 ≥ c‖u‖21,2.

Then solve

L̃w = −(f i)i in B4ρ ≡ B
w|∂B4ρ

= 0.

Therefore define
a(u, v) = 〈L̃u, v〉

and
φ ∈ H1,2

0 (B)∗

by

v 7→ 〈−f ii , v〉 =

ˆ
Ω
f ivi.

Then a induces a linear operator A ∈ L(H1,2
0 (B)). Thus the above equation

reduces to
〈Aw, v〉 = 〈φ, v〉 ∀v ∈ H1,2

0 (B).

There exists a solution by Exercises 13. Thus by the previous theorem we
obtain for such a solution

|w| ≤ c‖f‖pρ1−n
p .

Set v = u− w, then
L̃v = 0 in B4ρ.

Let ωv = osc(v), then as in the proof of theorem 2.1.1 we obtain

ωv(ρ) ≤ aωv(4ρ), 0 < a < 1.
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ωu(ρ) ≤ ωv(ρ) + ωw(ρ)

and
ωv(4ρ) ≤ ωu(4ρ) + ωw(4ρ)

⇒ ωu(ρ) ≤ aωu(4ρ) + c‖f‖pρ1−n
p

⇒ ∃0 < α ≤ 1− n

p
∀0 < ρ̃ ≤ 2ρ : ωu ≤ cρ̃α.

2.2.6 Lemma. (Stampacchia)
Let 0 ≤ φ(k, ρ) be a real function, k > k0, 0 < ρ < R0 such that
(1) φ(·, ρ) is monotonely decreasing,
(2) φ(k, ·) is monotonely increasing and
(3) ∀k0 < k < h ∀0 < ρ < R < R0 : φ(h, ρ) ≤ c

(h−k)α
1

(R−ρ)γ |φ(k,R)|β,
c, α, β, γ > 0, β > 1.
Then there holds

∀0 < σ < 1: φ(k0 + d,R0(1− σ)) = 0

with

dα = 2
(α+γ) β

β−1 c
|φ(k0, R0)|β−1

σγRγ0
.

Proof. Consider ki = k0 + d− d
2i
, ρi = R0 − σR0 + σR0

2i
. Then there holds

φ(ki, ρi) ≤
φ(k0, R0)

2µi
, µ =

α+ γ

β − 1
,

since it clearly holds for i = 0 and

φ(ki+1, ρi+1) ≤ cφ(k0, R0)β2−µβid−α · 2(i+1)(α+γ)σ−γR−γ0

=
φ(k0, R0)

2µ(i+1)
.

2.2.7 Theorem. Let Ω b Rn be open and ∂Ω ∈ C0,1. Let u ∈ H1,2(Ω) be a
weak solution of

Lu = −f ii , f i ∈ Lp(Ω), p > n.

Then there hold
(1) supBρ |u| ≤ c(‖u‖2,B2ρ , ‖f‖p, n, p, L) ∀B2ρ b Ω and
(2) Let x0 ∈ ∂Ω, Ωρ(x0) = Ω ∩ Bρ(x0), Γρ = ∂Ω ∩ Bρ(x0) and suppose
supΓ2ρ

|u| ≤ γ <∞, then there holds

sup
Ωρ

|u| ≤ c(γ, ‖f‖p, ‖u‖2,Ω2ρ , L, p, n).
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Proof. We only prove part (2), since the first part works identically. Let
0 < ρ1 < ρ2 < 2ρ < 1 and

0 ≤ η ∈ C0,1
0 (Bρ2(x0)),

such that
η|Bρ1 = 1 ∧ |Dη| ≤ 1

ρ2 − ρ1
.

Furthermore let k0 ≥ max(γ, 1), v = log u on {u > 0} and

vk = max(v − k, 0), k ≥ k0.

Thus, if vk > 0, it follows u > 1. Multiply the equation by

vkη
2 ∈ H1,2

0 .

Then, using the ε-trick,
ˆ

Ω
|Dvk|2η2u ≤ c

ˆ
Ω
|b||Dvk|vkuη2 + c

ˆ
Ω
vkη

2u

+ c

ˆ
Ω
|f ||Dvk|η2 + c

ˆ
Ω
|f |vk|Dη|η

+ c

ˆ
Ω
|vk|2|Dη|2u.

Define
A(k, η) = {vkη2 > 0}, A(k, ρ) = {v > k} ∩Bρ(x0)

as well as the measure
|A(k, η)| =

ˆ
A(k,η)

u.

ˆ
Ω
|Dvk|2η2u ≤ c

ˆ
Ω
v2
k(η

2 + |Dη|2)u

+ c

ˆ
A(k,η)

|f |2u−1|η|2 + c

ˆ
Ω
vkη

2u.

(ˆ
Ω
|Dvk|2η2u

) 1
2

≤ c

ρ2 − ρ1

((ˆ
A(k,η)

vpku

) 1
p

|A(k, η)|
1
2
− 1
p

+

(ˆ
A(k,η)

|f |p
) 1

p

|A(k, η)|
1
2
− 1
p

+

(ˆ
Ω
vrku

) 1
2r

|A(k, η)|
1
2
− 1

2r

)
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Setting κ = n
n−1 and applying the Sobolev embeddings we obtain

(ˆ
Ω

(vkη
2u)κ

) 1
κ

≤ c
ˆ

Ω
(|Dvk|η2u+ vk|Dη|ηu+ uvkη

2|Dvk|)

≤ c
(ˆ

Ω
|Dvk|2η2u

) 1
2

|A(k, η)|
1
2

+ c
1

ρ2 − ρ1

(ˆ
Ω
vrku

) 1
r

|A(k, η)|1−
1
r

+ c

(ˆ
Ω
|Dvk|2η2u

) 1
2
(ˆ

Ω
v2
kη

2u

) 1
2

.

Thus(ˆ
Ω

(vkη
2u)κ

) 1
κ

≤ c

ρ2 − ρ1

‖f‖p +

(ˆ
A(k,η)

vpku

) 1
p

 |A(k, η)|1−
1
p

+
c

ρ2 − ρ1

(ˆ
A(k,η)

vrku

) 1
r

|A(k, η)|1−
1
r

+
c

ρ2 − ρ1

‖f‖p +

(ˆ
A(k,η)

vpku

) 1
p

(ˆ
Ω
vrkuη

2

) 1
r

|A(k, η)|1−
1
r
− 1
p .

(2.7)

Since ∀1 < r <∞ we have(ˆ
A(k,η)

vrku

) 1
r

≤ cr

(ˆ
A(k,η)

|u|2
) 1

2

,

it follows (ˆ
Ω

(vkη
2u)κ

) 1
κ

≤ c̃

ρ2 − ρ1
|A(k, η)|1−

1
r
− 1
p .

⇒ (h− k)|A(k, η)| ≤
ˆ

Ω
vkη

2u ≤ c̃

ρ2 − ρ1
|A(k, η)|1+ 1

n
− 1
r
− 1
p .

Choose r such that 1
r <

1
n −

1
p and set β = 1 + 1

n −
1
r −

1
p > 1. Then for

h > k > k0 we find

|A(h, ρ1)| ≤ c̃

ρ2 − ρ1

1

h− k
|A(k, ρ2)|β ∀0 < ρ1 < ρ2 < 1.

Then by 2.2.6 we obtain
|A(k0 + d, ρ)| = 0
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with

d = 4
β
β−1 c̃
|A(k0, 2ρ)|β−1

ρ

⇒ sup
Bρ

u ≤ k0 + d.

The same for −u implies the claim.

2.3 Hoelder estimates near the boundary

2.3.1 Assumptions of this section. Let Ω b Rn be open, n ≥ 2. We
consider solutions u ∈ H1,2(Ω) of

Lu = −(aijuj)i + biui + cu = −(f i)i,

u|∂Ω = φ,

where
aij , bi, c ∈ L∞(Ω),

(f i) ∈ Lp(Ω,Rn), n < p <∞,

φ ∈ C0,α(∂Ω), 0 < α ≤ 1 and aij is uniformly elliptic. Furthermore we define
the operator

L̃ = L− c.

2.3.2 Definition. We say, ∂Ω satisfies an exterior cone condition, ∂Ω ∈ (K),
if for each x0 ∈ ∂Ω there is a cone with uniform angle starting in x0, such
that for a uniform ρ > 0 we have

Kρ(x0) = K ∩Bρ(x0) ⊂ Ωc.

2.3.3 Example. ∂Ω ∈ C0,1 ⇒ ∂Ω ∈ (K).

2.3.4 Remark. ∂Ω ∈ (K)⇒ ∃ε0 > 0 ∀x0 ∈ ∂Ω:
|Bρ(x0)\Ω|

ρn ≥ ε0.

2.3.5 Theorem. Let 0 ≤ u, Lu ≥ 0, x0 ∈ ∂Ω and R > 0. Set

m = inf{u(x) : x ∈ ∂Ω ∩B4R(x0)}

and

ū =

{
min(u,m), x ∈ Ω ∩B4R

m, x ∈ B4R\Ω.

Then there holds for all p < 0(
1

Rn

ˆ
B2R

ūp
) 1
p

≤ c inf
BR

ū,

c = c(n,L, p).
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Proof. Let p < 1, η ∈ C0,1
0 (B2R), δ > 0, ūδ = ū+δ and mδ = m+δ.Multiply

Lu ≥ 0 by the test function

(ūp−1
δ −mp−1

δ )η2 ∈ H1,2
0 (Ω).

As in the proof of 1.7.3 we obtain

|p− 1|
ˆ

Ω
|Dūδ|2ūp−2

δ η2 ≤ c
ˆ

Ω

(
|Dη|2

|p− 1|
+ η2

)
ūpδ .

We also may integrate outside Ω in the full ball. Using the ε-trick and
Sobolevs embedding, κ = n

n−1 , R < 1, we obtain

(ˆ
B2R

ūκδ η
2κ

) 1
κ

≤ c
(

p2

|p− 1|
+ 1

) ˆ
B2R

(R|Dη|2 + η2 +
1

R
η2)ūpδ . (2.8)

Let q < 0 and p = qκr, r ∈ N. Then by iteration we obtain(
1

Rn

ˆ
B2R

ūqδ

) 1
q

≤ c inf
BR

ūδ.

δ → 0 implies the claim.

2.3.6 Lemma. Under the assumptions of the preceding theorem let 0 < q <
1. Then there is p > 1, such that(

1

Rn

ˆ
B2R

ūp
) 1
p

≤ c
(

1

Rn

ˆ
B4R

ūq
) 1
q

,

c = c(n,L, p, q).

Proof. It suffices to prove the claim for almost every 0 < q < 1. So let
0 < q < 1 such that qκr 6= 1 for all r ∈ N, κ = n

n−1 . Choose r0 minimally
such that p = qκr0 > 1 then by (2.8) we obtain using iteration(

1

Rn

ˆ
B2R

ūp
) 1
p

≤ c( 1

Rn

ˆ
B4R

ūq)
1
q .

2.3.7 Lemma. Under the assumptions of the preceding lemma let Ω4R =
Ω ∩B4R(x0) and v = log(ū). Then

∀B2ρ(y) ⊂ B4R(x0) :

ˆ
Bρ

|Dv| ≤ Aρn−1.
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Proof. Let 0 ≤ η ∈ C0,1
0 (B2ρ), η|Bρ = 1, |Dη| ≤ 1

ρ and ε > 0. Let furthermore
ūε = ū+ ε and vε = log ūε. Using the test function

((ū+ ε)−1 − (m+ ε)−1)η2

we obtain ˆ
Ω
|Dūε|2ū−2

ε η2 ≤ c
ˆ

Ω
|Dūε|ū−1

ε |Dη|η

+ c

ˆ
Ω
|Dūε|ū−1

ε η2

+ c

ˆ
Ω
η2

and thus ˆ
Ω
|Dvε|2η2 ≤ cρ−2

ˆ
Ω
η2 ≤ cρn−2.

⇒
ˆ
Bρ

|Dvε| ≤ Aρn−1.

2.3.8 Lemma. Under the assumptions of the preceding lemma there exist
α > 0 and c > 0 such that(

1

Rn

ˆ
BR

ūα
) 1
α

≤ c
(

1

Rn

ˆ
BR

ū−α
)− 1

α

.

Proof. As 1.7.8.

2.3.9 Theorem. (Weak Harnack inequality)
Let 0 ≤ u, Lu ≥ 0 and m, ū as in the preceding theorem, then there exist
p > 1 and c = c(n, p, L), such that(

1

Rn

ˆ
BR

ūp
) 1
p

≤ c inf
BR

ū.

Proof. (i) ∃q > 0 such that(
1

Rn

ˆ
B2R

ūq
) 1
q

≤
(

1

Rn

ˆ
B2R

ū−q
)− 1

q

≤ c inf
BR

ū.

(ii) Furthermore there is p > 1, such that(
1

Rn

ˆ
BR

ūp
) 1
p

≤ c
(

1

Rn

ˆ
B2R

ūq
) 1
q
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2.3.10 Corollary. Under the assumptions of the preceding theorem there
holds

1

Rn

ˆ
BR

ū ≤ c inf
BR

ū.

2.3.11 Theorem. Let u ∈ H1,2(Ω) be a solution of the equation

L̃u = 0 in ΩR0 = Ω ∩BR0(x0),

x0 ∈ ∂Ω. Let Γ = BR0 ∩ ∂Ω ∈ C0,1 and φ = u|Γ ∈ C0,α, 0 < α < 1. Then
there exists 0 < a < 1, such that for 0 < ρ < R0

4 and for

ω(ρ) = sup
x,y∈Ωρ(z0)

|u(x)− u(y)|

and
ω̃(ρ) = sup

∂Ω∩Bρ(z0)
|u(x)− u(y)|

we have
ω(ρ) ≤ aω(4ρ) + ω̃(4ρ).

Proof. Let
M(ρ) = sup

Ωρ

u, m(ρ) = inf
Ωρ
u,

M̃(ρ) = sup
∂Ω∩Bρ

u, m̃(ρ) = inf
∂Ω∩Bρ

u.

(i) Consider v = M(4ρ)− u ≥ 0 in Ω4ρ, then we have

L̃v = 0.

Thus by the preceding corollary we have

1

ρn

ˆ
Bρ

v̄ ≤ c inf
Bρ
v̄

⇒ ρ−nv̄|Bρ\Ω| ≤ c inf
Ωρ
v̄ ≤ c inf

Ωρ
v ≤ c(M(4ρ)−M(ρ)).

Since ∂Ω ∈ (K) we have

M(4ρ)− M̃(4ρ) ≤ c(M(4ρ)−M(ρ)).

(ii) Set v = u−m(4ρ) ≥ 0 in Ω4ρ. Then L̃v = 0. Thus we again have

1

ρn

ˆ
Bρ

v̄ ≤ c inf
Bρ
v̄ ≤ c inf

Ωρ
v ≤ c(m(ρ)−m(4ρ)).

⇒ m̃(4ρ)−m(4ρ) ≤ c(m(ρ)−m(4ρ)).
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(iii) Add the two inequalities to obtain

ω(4ρ)− ω̃(4ρ) ≤ c(ω(4ρ)− ω(ρ)), c > 1

⇒ ω(ρ) ≤ c− 1

c
ω(4ρ) +

1

c
ω̃(4ρ).

2.3.12 Theorem. Let ∂Ω ∈ C0,1 and u ∈ H1,2(Ω) be a solution of the
Dirichlet problem

Lu = −f ii
u|∂Ω = φ,

where f i ∈ Lp(Ω), p > n.
Let x0 ∈ ∂Ω, Γ4R = ∂Ω ∩B4R(x0) and φ ∈ C0,α(Γ4R), then there holds

u ∈ C0,λ(Ω ∪ ΓR),

0 < λ ≤ min(α, 1− n
p ).

Proof. (i) By 2.2.7 we have u ∈ L∞(Ω2R). Solving

−∆w = −cu

we obtain
L̃u = −(f i +Diw)i ≡ −f ii .

(ii) Having extended the data to B8ρ, solve

L̃w = −f ii in B8ρ

w|∂B8ρ
= 0,

for such small ρ < 1, that L̃ is coercitive.

⇒ sup |w| ≤ cρ1−n
p ‖f‖p.

Setting
v = u− w,

we have
L̃v = 0

in Ω8ρ. Thus by the preceding theorem we have

ωv(ρ) ≤ aωv(4ρ) + ω̃v(4ρ).

⇒ ωv(ρ) ≤ aωu(4ρ) + aωw(4ρ) + ω̃u(4ρ) + ω̃w(4ρ)

≤ aωu(4ρ) + c‖f‖pρ1−n
p + c[φ]αρ

α

By the De Giorgi lemma we obtain

ωu(ρ) ≤ cρλ.
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2.4 Application to nonlinear equations

Consider a general elliptic PDE of second order

F (·, u,Du,D2u) = 0,

aij =
∂F

∂uij
> 0,

where F is uniformly elliptic in compact subsets of the domain of definition
of F. If the regularity of the equations admits, we may differentiate for xk
to obtain

0 = aijukij +
∂F

∂pj
ukj +

∂F

∂u
uk +

∂F

∂xk
,

which is a linear equation for v = uk. If it is a priori possible to obtain
C3 estimates, we thus obtain v ∈ C2,α by Schauder theory. Obtaining C3

estimates is quite difficult in general. The results of Evans, Krylov for the
elliptic case and Krylov, Safonov for the parabolic case ensure C2,α estimates
only knowing C2 bounds and the concavity of F (·, u,Du, ·). We now turn
our attention to quasilinear equations.

2.4.1 Assumptions of this section. Let Ω b Rn be open. We consider
the quasilinear equation

Au = −(ai(·, u,Du))i = f

u|∂Ω = φ,
(2.9)

where

aij =
∂ai

∂pj

is locally uniformly elliptic, f ∈ Lp(Ω), p > n ≥ 2, ∂Ω ∈ C2 and ai ∈
C1(Ω̄× R× Rn).

2.4.2 Theorem. (i) Let u ∈ C0,1(Ω̄) be a solution of (2.9), φ ∈ H2,p(Ω),
f ∈ Lp(Ω). Then we have

u ∈ H2,p(Ω).

(ii) Suppose furthermore f ∈ C0,α(Ω̄), φ ∈ C2,α(Ω̄) and ∂Ω ∈ C2,α, then we
have

u ∈ C2,α(Ω̄).

For the proof we first need several things.

2.4.3 Theorem. Under the assumptions of the preceding theorem, (i), we
have

u ∈ C1,α(Ω̄),

for some 0 < α ≤ 1− n
p .
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Proof. (i) u ∈ C0,1(Ω̄)⇒ ai(·, u, pj) ≡ ai(·, pj) and

Λ|ξ|2 ≥ aijξiξj ≥ λ|ξ|2, λ > 0.

The L2 estimates imply u ∈ H2,2(Ω) and

‖u‖2,2 ≤ c(‖f‖2 + ‖u‖2).

(ii) Let 1 ≤ k ≤ n, v = uk ∈ H1,2(Ω). Use ζk as test function to obtain

−(aijvj)i −
(
∂ai

∂u
v

)
i

−
(
∂ai

∂xk

)
i

= fk = (δikf)i

⇒ −(aijvj)i ≡ −f ii ,

f i ∈ Lp(Ω). By the De Giorgi-Nash results we obtain v ∈ C0,α(Ω) with
corresponding a priori esimates.
(iii) Boundary estimates. By local flattening we may assume the equation
reads

Au = f in Ω = B+
1 (0)

u|Γ = φ,

where Γ = ∂Ω ∩ {xn = 0}.
Let 1 ≤ k ≤ n− 1 and v = uk. Then v solves the Dirichlet problem

−(aijvj)i = −f ii in Ω

v|Γ = φk ∈ C0,β,
(2.10)

β = 1− n
p . De Giorgi-Nash implies

v ∈ C0,α( ¯B+
R(0)),

0 < R < 1.
(iv) In order to prove

un ∈ C0,α(B+
1
2

(0)),

we have to prove a so-called Morrey condition for Du. Let v be defined
as in (iii). Let 0 < R < 1 and ξ ∈ B+

R(0). Choose 0 < ρ < 1, such that
B2ρ(ξ) ⊂ BR(0) and let η ∈ C0,1

0 (B2ρ(ξ)), such that η|Bρ = 1 and |Dη| ≤ 1
ρ .

Distinguish two cases:
(1) B2ρ(ξ) ∩ Γ 6= ∅. Then we choose ξ0 ∈ B2ρ(ξ) ∩ Γ and multiply (2.10) by

(v − φk(ξ0)− (φk − φk(ξ0)))η2 = (v − φk)η2 ∈ H1,2
0 (Ω), Ω = B+

1 (0).

(2) B2ρ(ξ) ⊂ B+
R(0), then we multiply (2.10) by

(v − v(ξ))η2.
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In both cases integrate by parts. We only consider case (1).

⇒ |v − φk(ξ0)| = |v − v(ξ0)| ≤ c|x− ξ0|α ≤ cρα

and
|φk − φk(ξ0)| ≤ c|x− ξ0|β ≤ cρβ ≤ cρα.

ˆ
Ω
aijvivjη

2 ≤
ˆ

Ω
aijvjφkiη

2

− 2

ˆ
Ω
aijvj(v − φk(ξ0)− (φk − φk(ξ0)))ηiη

+

ˆ
Ω
f i(vi − φki)η2

+ 2

ˆ
Ω
f i(v − φk(ξ0)− (φk − φk(ξ0)))ηiη

By the standard ε-trick we obtain
ˆ
Bρ(ξ)∩Ω

|Dv|2 ≤ c
ˆ
B2ρ(ξ)∩Ω

|D2φ|2 + cρ−2

ˆ
B2ρ∩Ω

(|v − v(ξ0)|2 + |φk − φk(ξ0)|2)

+ c

ˆ
B2ρ∩Ω

(|f |2 + |D2φ|2)

+ cρ−1

ˆ
B2ρ∩Ω

|f |(|v − v(ξ0)|+ |φk − φk(ξ0)|)

≡ I1 + I2 + I3 + I4

We have
I1 ≤ c‖φ‖22,pρ

n− 2n
p ,

I2 ≤ c([v]2α + [Dφ]2α)ρn−2+2α,

I3 ≤ c(‖f‖2p + ‖D2φ‖2p)ρ
n− 2n

p

and
I4 ≤ c‖f‖pρn−1−n

p
+α
.

⇒
ˆ
Bρ∩Ω

|Dv|2 ≤ cL2ρn−2+2λ,

λ = min(α, 1− n
p ) and L2 = ‖φ‖22,p + ‖f‖2p + [v]2α + [Dφ]2α + ‖f‖p. This is the

Morrey condition.
Now we show, that v = un satisfies a Morrey condition as well. We use the
equation:

−aijuij −
∂ai

∂xi
− ∂ai

∂u
ui = f.

⇒
ˆ
Bρ∩Ω

|unn|2 ≤ cL2ρn−2+2λ.
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Using the following lemma we obtain

v ∈ C0,λ( ¯B+
R
4

(0)).

2.4.4 Lemma. (Morrey)
Let Ω = BR(0) or Ω = B+

R(0) and suppose for u ∈ H1,p(Ω) and 1 ≤ p ≤ n
there holds ˆ

Bρ(ξ)
|Du|p ≤ cLpρn−p+pλ, λ > 0 (2.11)

for all 0 < ρ ≤ R
4 and for all ξ ∈ BR

4
(0) or for all ξ ∈ ¯B+

R
4

(0) respectively.
Then

u ∈ C0,λ( ¯BR
4

(0))

or
u ∈ C0,λ( ¯B+

R
4

(0))

respectively and
[u]λ ≤ cL.

Proof. Prove only the case Ω = BR(0). Let u ∈ C1(Ω) and x, ξ ∈ BR
4

(0).

Set
x̄ =

1

2
(x+ ξ), ρ =

|x− ξ|
2

.

For y ∈ Bρ(x̄) we then have

u(y)− u(ξ) =

ˆ 1

0

d

dt
u(ty + (1− t)ξ) =

ˆ 1

0
ui(y

i − ξi).

⇒ |Bρ(x̄)|−1

ˆ
Bρ(x̄)

|u(y)−u(ξ)| ≤ 2ρ|Bρ(x̄)|−1

ˆ 1

0

ˆ
Bρ(x̄)

|Du(ty+(1− t)ξ)|.

Transform
z = ty + (1− t)ξ, z̄ = tx̄+ (1− t)ξ

to obtain
ˆ 1

0

ˆ
Bρ(x̄)

|Du(ty + (1− t)ξ)|dydt =

ˆ 1

0
t−n

ˆ
Btρ(z̄)

|Du(z)|dz

≤ c
ˆ 1

0
t−n(tρ)

n p−1
p (

ˆ
Btρ(z̄)

|Du|p)
1
p

≤ c
ˆ 1

0
t−n(tρ)

n p−1
p L(tρ)

n
p
−1+λ

⇒ |Bρ(x̄)|−1

ˆ
Bρ(x̄)

|u(y)− u(ξ)| ≤ cLρλ
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and analogously for x = ξ.

⇒ |u(x)− u(ξ)| ≤ |Bρ(x̄)|−1

ˆ
Bρ(x̄)

(|u(y)− u(x)|+ |u(y)− u(ξ)|) ≤ cLρλ.

Now let ∂Ω ∈ C2,α, φ ∈ C2,α(Ω̄), f ∈ C0,α(Ω̄) and u ∈ C2,α(Ω̄) be a solution
of the problem (2.9). If we are able to prove C0 and C1 estimates, then
by De Giorgi-Nash we obtain C0,α coefficients, bounded by |u|1,α. Schauder
theory then yields C2,α estimates.

We now prove that Lipschitz solutions are already classical solutions.

2.4.5 Theorem. Let Ω b Rn be open and let ∂Ω ∈ C2,α,
ai, a ∈ C1,α(Ω̄× R× Rn), φ ∈ C2,α(Ω̄) and u ∈ C0,1(Ω̄) a solution of

Au+ a(·, u,Du) = 0

u|∂Ω = φ,
(2.12)

then we have
u ∈ C2,β(Ω̄),

for some 0 < β ≤ α.

Proof. (i) Let u0 ∈ C0,1(Ω̄) be a solution and let

1 + |u0|+ |Du0| ≤M.

Let θ = θ(t) be a real function

θ(t) =

{
t, |t| ≤M
±(M + 1), |t| ≥M + 1,

θ̇ ≥ 0.
(ii) Let w, g be real functions

w(t) =

{
1, 0 ≤ t ≤ 2M

0, t ≥ 3M

and

g(t) =

{
0, 0 ≤ t ≤M
ct− k, t ≥ 2M,

such that g is convex.
(iii) Set

ãi(x, t, p) = ai(x, θ(t), p)w(|p|2) + kg′(|p|2)pi,
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where k is large. Furthermore set

ã(x, t, p) = a(x, θ(t), p)w(|p|2).

There holds
|ã(x, t, p)| ≤ c(1 + |p|)

and ãij is uniformly positive definite. Thus the corresponding operator

Ãu+ ã(·, u,Du)

is a uniformly elliptic differential operator. If γ > 0 is chosen large enough,
then

Φu := Ãu+ ã(·, u,Du) + γ(u− u0)

is coercitive i.e. for u1, u2 ∈ H1,2(Ω) such that u1 = u2 on ∂Ω we have

〈Φu1 − Φu2, u1 − u2〉 ≥ c‖u1 − u2‖21,2, c > 0.

Using the exercises we obtain u ∈ H1,2(Ω), solving

Φu = 0

u|∂Ω = φ.
(2.13)

By L2 estimates and De Giorgi-Nash we obtain

u ∈ C1,α(Ω̄) ∩H2,2(Ω).

There holds
Φu0 = Au0 + a(·, u0, Du0).

Thus, if (2.13) has a C2,α solution u, then we must have u = u0.
(iv) (2.13) has a C2,β(Ω̄) solution. The linearization reads

−ãijuij + â(·, u,Du) + γ(u− u0) = 0

u|∂Ω = φ
(2.14)

with ∂â
∂t + γ > 0.

First, we need an a priori estimate:
(1) By the maximum principle we obtain a C0 estimate.
(2) Using Thm 15.2 in Gilbarg-Trudinger we obtain a C1 estimate, also cf.
Chapter 3.2.
(3) L2 estimates yield u ∈ H2,2(Ω) and by De Giorgi-Nash we obtain u ∈
C1,λ, 0 < λ < 1.
(4) Schauder theory then yields C2,α estimates.
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(v) We now employ the Leray-Schauder fix point theorems, cf. next chapter,
to obtain a solution. Let 0 < σ < 1 and consider

Ãu+ σã(·, u,Du) + (1− σ)
∂ãi

∂xi
(·, u,Du) + γ(u− σu0) = 0

u|∂Ω = σφ.

(2.15)

For this equation we also have to prove C2,α bounds. Choosing γ large
enough, then (2.15) is also coercitive and we obtain estimates independently
of σ. Leray-Schauder then implies , that there is a solution for σ = 1.

2.4.6 Proposition. Let ai, a ∈ C1(Ω̄ × R × Rn) and let u0 ∈ C0,1(Ω̄) be a
weak solution of

Au+ a(·, u,Du) = 0

u|∂Ω = φ ∈ H2,p(Ω), p > n.

Then we have
u0 ∈ H2,p(Ω).

Proof. The same proof as the one of the preceding theorem is applicable.
However, we have to use the Lp-theory of Calderon-Zygmund instead of
Schauder theory.
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Chapter 3

Quasilinear operators and
Leray-Schauder theory

3.1 Fixed point theorems, Leray-Schauder theorem
and applications

3.1.1 Theorem. (Schauder’s fixed point theorem)
Let V be a Banach space, K ⊂ V compact and convex and T : K → K
continuous. Then T has a fixed point.

Proof. We use Brouwer’s fixed point theorem. Let k ∈ N, then there exist
(ui)1≤i≤N , ui ∈ K, such that

K ⊂
N⋃
i=1

B 1
k
(ui).

Set
Bi := B 1

k
(ui).

Let
Sk := conv(u1, ..., uN )

and define

Jk(u) : K → Sk

u 7→
∑N

i=1 dist(u,K\Bi)ui∑N
i=1 dist(u,K\Bi)

.

There holds

‖Jku− u‖ =

∑N
i=1 dist(u,K\Bi)(ui − u)∑N

i=1 dist(u,K\Bi)
<

1

k
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and since Jk ◦ T : Sk → Sk is continuous, it has a fixed point vk. By com-
pactness there is a subsequence vk → v ∈ K. There holds

‖vk − Tvk‖ = ‖JkTvk − Tvk‖ <
1

k
.

⇒ v = Tv.

3.1.2 Corollary. Let V be a Banach space, K ⊂ V closed and convex and
let T : K → K be continuous and T (K) precompact. Then T has a fixed
point.

Proof. (i) Let A be a precompact set, then conv(A) is also precompact,
because:
Let ε > 0, then

∃xi ∈ A, 1 ≤ i ≤ N : A ⊂
N⋃
i=1

Bε(xi).

Now let y ∈ conv(A),

y =
∑
k

λkyk.

Then there exist xik : yk ∈ Bε(xik) and thus

‖y −
∑
k

λkxik‖ ≤
∑
k

λk‖yk − xik‖ < ε.

⇒ ∀y ∈ conv(A) ∃x̄ ∈ conv(xi) : ‖y − x̄‖ < ε.

⇒ y ∈
N⋃
i=1

B2ε(xi),

since conv(xi) is precompact.
(ii) Let

C = ¯conv(T (K)) ⊂ K.

Then T : C → C has a fixed point.

3.1.3 Theorem. (Schaefer)
Let V be a Banach space, T : V → V continuous and compact. Suppose there
is an M > 0, such that for all solutions of

u = σTu, 0 < σ < 1,

so-called quasi fixed points, we have ‖u‖ < M, then T has a fixed point.
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Proof. Without loss of generality we may assume M = 1, for otherwise
consider M−1TM. Define

T ∗u =

{
Tu, ‖Tu‖ < 1
Tu
‖Tu‖ , ‖Tu‖ ≥ 1.

Then
T ∗ : B̄1 → B̄1

is continuous and T ∗(B̄1) is precompact. Thus T ∗ has a fixed point

u = T ∗(u).

If ‖Tu‖ > 1 we obtain

u =
1

‖Tu‖
Tu,

which contradicts the a priori estimate. Thus ‖Tu‖ ≤ 1 and so

u = Tu.

3.1.4 Lemma. Let V be a Banach space and B = B1(0). Let T : B̄ → V be
continuous, T (B̄) be precompact and T (∂B) ⊂ B̄. Then T has a fixed point
in B̄. If T (∂B) ⊂ B, then the fixed point lies in B.

Proof. Define

T ∗u =

{
Tu, ‖Tu‖ ≤ 1
Tu
‖Tu‖ , ‖Tu‖ > 1.

Then T ∗ : B̄1 → B̄1 is continuous and T ∗(B̄1) precompact. Thus

∃u ∈ B̄1 : T ∗u = u.

⇒ Tu = u,

for otherwise we had ‖Tu‖ > 1.

3.1.5 Theorem. (Leray-Schauder)
Let V be a Banach space and T : V × [0, 1] → V continuous and compact.
Suppose

∀u ∈ V : T (u, 0) = 0

and suppose

∃M > 0 ∀0 < σ < 1: u = T (u, σ)⇒ ‖u‖ < M.

Then
∃u ∈ V : u = T (u, 1).
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Proof. Without loss of generality let M = 1, i.e.

u = T (u, σ)⇒ ‖u‖ < 1. (3.1)

Let 0 < ε ≤ 1 and let T ∗ : ¯B1(0)→ V be defined by

T ∗u = T ∗ε u =

{
T
(

u
‖u‖ ,

1−‖u‖
ε

)
, 1− ε ≤ ‖u‖ ≤ 1

T ( u
1−ε , 1), ‖u‖ ≤ 1− ε.

Thus T ∗ is continuous, T ∗(B̄1) is precompact and T ∗(∂B) = {0}.
Thus there exists uε such that

uε = T ∗uε.

Defining

σε =

{
ε−1(1− ‖uε‖), 1− ε ≤ ‖uε‖ ≤ 1

1, ‖uε‖ < 1− ε,

we obtain

uε =

{
T
(

uε
‖uε‖ , σε

)
, 1− ε ≤ ‖uε‖ ≤ 1

T ( uε
1−ε , σε), ‖uε‖ < 1− ε.

ε→ 0 implies that for a subsequence we have

(uε, σe)→ (u, σ), 0 ≤ σ ≤ 1.

There clearly holds
u = T (u, σ).

Furthermore σ = 1, for otherwise we would find

‖uε‖ → 1

and thus
‖u‖ = 1,

which is a contradiction.

3.1.6 Theorem. Let Ω b Rn be open with ∂Ω ∈ C2,α, 0 < α < 1. Let
ai ∈ C2(Ω̄ × R × Rn), a ∈ C1(Ω̄ × R × Rn), ai elliptic and φ ∈ C2,α(Ω̄).
Suppose that for all 0 < σ < 1 and for all solutions of the boundary value
problem

Au+ σa(·, u,Du) + (1− σ)
∂ai

∂xi
(·, u,Du) = 0

u|∂Ω = σφ

(3.2)

there holds
|u|+ |Du| ≤M.

78



Then the Dirichlet problem

Au+ a(·, u,Du) = 0

u|∂Ω = φ
(3.3)

has a solution u ∈ C2,α(Ω̄).

Proof. Let v ∈ C1,α(Ω̄). Consider the equation

−aij(·, v,Dv)uij −
∂ai

∂u
(·, v,Dv)ui −

∂ai

∂xi
(·, v,Dv) + a(·, v,Dv) = 0.

Write

Lu = −aij(·, v,Dv)uij −
∂ai

∂u
(·, v,Dv)ui.

Then L is a uniformly elliptic differential operator with hoelder continuous
coefficients. From Schauder theory we conclude, that the boundary value
problem

Lu+ a(·, v,Dv) +
∂ai

∂xi
(·, v,Dv) = 0

u|∂Ω = φ

(3.4)

has a solution u ∈ C2,α(Ω̄) and

|u|2,α,Ω ≤ c(|φ|2,α + |v|1,α,Ω),

where c = c(λ, |a|1,Ω̄×[−|v|0,|v|0]×[−|Dv|0,|Dv|0], |ai|2,Ω̄×[−|v|0,|v|0]×[−|Dv|0,|Dv|0]).
Define

T : C1,α(Ω̄)→ C2,α(Ω̄)

v 7→ u = Tv,

where u is a solution of (3.4).
T is compact: Let (vk) be bounded, then uk = Tvk is bounded. Thus we
obtain subsequences, such that

vk → v in C1

and
uk → u in C2.

⇒ u = Tv

and by uniqueness the whole sequences must converge.
T is continuous: Write (3.4) in the form

Luk = fk

u|∂Ω = φ.
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Let vk → v and denote the uk to be the corresponding solutions. Then
uk − ul solves

aij(·, vk, Dvk)(uk − ul)ij −
∂ai

∂u
(·, vk, Dvk)(uk − ul)i

+(aij(·, vl, Dvl)− aij(·, vk, Dvk))ulij

+(
∂ai

∂u
(·, vlDvl)− ∂ai

∂u
(·, vk, Dvk))uli

≡fk − f l + F kl

and thus
|uk − ul|2,α ≤ c(|fk − f l|0,α + |F kl|0,α)→ 0.

We have to show that all quasi fixed points are a priori bounded. So let
u = σTu, 0 < σ < 1. This means

−aij(·, u,Du)uij + σa(·, u,Du) + σ
∂ai

∂xi
(·, u,Du) +

∂ai

∂u
(·, u,Du)ui = 0

u|∂Ω = σφ.

By assumption we have |u| + |Du| ≤ M1. Thus by the L2 estimates and
DeGiorgi-Nash we find

|u|1,λ ≤M2.

Schauder implies
|u|2,λ ≤M3

and repeating those arguments we find

|u|1,α ≤M4.

Setting
M = M4 + 1

implies the claim.

3.2 Gradient bounds

3.2.1 Theorem. Let ai, a be the coefficients of the modified operator in the
proof of Theorem 2.4.5.

Au+ a+ γ(u− u0) ≡ −(ai(·, u,Du))i + a(·, u,Du) + γ(u− u0),

ai ∈ C1, a ∈ C0, ai uniformly elliptic, a = 0 for |Du| > M and (∂a
i

∂xi
, ∂a

i

∂u ) = 0
for |Du| > 1. Let ∂Ω ∈ C2, φ ∈ C2(Ω̄) and for u ∈ H1,2(Ω)

Au+ a+ γ(u− u0) = 0

u|∂Ω = φ,

then |Du| ≤ c.
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Proof. The L2 estimates imply u ∈ H2,2(Ω).
Let |Du|∂Ω ≤ k0, then

|Du| ≤ c(k0, ...).

Let 1 ≤ k ≤ n and v = uk. Differentiate the equation for xk to obtain

−(aijuj)i +
∂ai

∂u
v +

∂ai

∂xi
+Dka+ γ(v − v0) = 0.

Multiply this equation by

vk := max(v − k, 0),

where k > k0.

⇒
ˆ

Ω
aijDivDjvk + γ

ˆ
Ω
vvk ≡

ˆ
Ω
fvk, f ∈ L∞.

By the Stampacchia method we obtain

v ≤ k0 + d

and analogueously from below.
Bounds up to the boundary: Choose a tubular neighborhood Ωε with 0 ≤
d ∈ C2(Ω̄ε). Define an upper barrier w ≡ w+ by

w = φ+ Λh(d), 0 ≤ d ≤ ε.

⇒ wij = φij + Λh′dij + Λh′′didj .

−aijuij = f ∈ L∞.

Choose h(d) = log(1 + αd), where α is large. Choose ε = 1
α . Then h

′′ is the
dominant term and thus

−aijwij > f.

w|{d=ε} = φ+ Λlog 2 > u

⇒ u ≤ w.

Bound it from below by using w− = φ− Λh(d).
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