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Existence, Regularity, and Boundary Behaviour
of Generalized Surfaces of Prescribed Mean Curvature*

Claus Gerhardt

0. Introduction

Let Q be a bounded domain in IR", n=2, with Lipschitz boundary 0%, let 4
be the minimal surface operator

A=—D'{p;,[1+|p1~%}' 1)
and let H=H(x,t) be locally Lipschitz in R" xR with
0H
—>
57 =0- @)

Then the classical Dirichlet problem for surfaces of prescribed mean curvature
to given boundary values pe C°(02) consists in determining a function ue C2(Q)n
C°(9Q) satisfying

Au+H(x,u)=0 (3)
and
Usr=9. )
Furthermore, assuming the boundary and the data to be sufficiently smooth, the
solution is supposed to be smooth up to the boundary.

It is well-known that this problem is not solvable in general unless we at least

impose the condition

[H(x, o()| S —1) H,_; (x) V¥ xedQ (5)

on the mean curvature H,_, of Q. For reference see the paper of Serrin [48;
Chap. III. 18].

On the other hand, we shall show that the variational problem
Jw)= [ (1 +|DvPP)dx+ [ [ H(x,t)dt dx+ flv—o|d#,_;—min in BV(Q) )
Q 20 on

is solvable without assuming any further condition on dQ provided that

H,=H(.,0) ™)
satisfies
| | Ho dx| S (1—£) M(0A4) ®
A

for some positive constant &, independent from A, where A is any measurable
subset of Q, and M(0A4) denotes the mass of 04 in the sense of [8; Chap. 4.1.7].

* During the preparation of this article the author was at the Universit¢ de Paris VI as a fellow of
the Deutsche Forschungsgemeinschaft.
1 Here and in the following we make the convention that we sum over repeated indices from 1 to n.
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Since every solution u of the variational problem (6) belongs to C2 (@) and
satisfies (3) (a proof is given below) we cannot expect in general that the boundary
values of u agree with the initial data ¢. A counterexample has been constructed
by Santi[46], cf. the paper of Nitsche [44] also. Moreover, the following pro-
position is valid 2.

Proposition 1. Let H satisfy the assumptions (2) and

su.g){inft;H(x, )}=+o0
tel XE€ (9)

}gg{igg H(x,t)}=—o0.

Assume 0Q to be of class C?. Then for any pe L' (6Q) the variational problem (6) has
a bounded solution u.

Obviously, the boundary values of u cannot coincide with ¢ if ¢ L*(09).

However, in the case H(x,t)=H(x) and for smooth 6Q Giaquinta [18] and
Miranda [42] (H =0) proved

Proposition 2. Suppose the conditions (5) and (8) to be satisfied, and let pe C°(09).
Then the variational problem (6) has a unique solution ue C? (2)~ C°(Q) such that

Uaa=0. (10)

Their results also hold locally, i.e. the (unique) solution u is continuous up to those
boundary parts I' <02, which are smooth, and coincides there with ¢ provided
that (5) is satisfied on I'. However, they cannot prove with their methods that u is
smooth up to those boundary parts I', if o C2(I').

A partial result in this direction has been obtained by Lichnewsky (oral com-
munication) who demonstrated

Proposition 3. Let H be identically zero, and let I' = conv (Q) N 0Q be of positive
(n— 1)-dimensional Hausdorff measure. Assume, moreover, that ¢ satisfies a uniform
bounded slope condition on T, i.e. for any point x,eI there are linear mappings
nfo such that

T (X—X) SP(X)— @ (xo)Sng (x—x,) YV xeQ (11)
and
[IDnEi|<K independent from x,. (12)

Then the variational problem (6) has a unique solution u which satisfies a bounded
slope condition up to I and coincides with @ there.

The assumption that I' is to be convex seems to be quite unnatural. We shall

show that the condition
0<H, ;(x) Vxer? 13)

or more generally
H(x, p()|<H,_,(x) Vxerl (14)

is sufficient to prove the existence of a unique solution to the variational problem
(6) which is smooth up to I' and coincides with ¢ there, if ¢ is supposed to be

% A proof is given in [15].
* In the meantime A. Lichnewsky told me that he could improve his methods of proof so that his
result would be valid provided that the outer curvature of I (in the sense of [49]) is strictly positive.
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smooth. Moreover, we shall show uniqueness of the solution and partial coinci-
dence with the boundary data even for boundary values ¢ belonging to I'(09)
provided that ¢ is continuous at a point x,el” and (14) is fulfilled a.e. in I".
Since we are interested in the presence of an obstacle , we shall consider the

variational problems

J@®)-»min in H*Y(Q)n{v=y} (15)
and

Jw)-»min in BV(Q)n{v=y}, (15"

where J is the same functional as in (6), and where ¥ satisfies

YeH"*(Q), Yln<o. (16)

In the following we shall show that the variational problem (15') has a solution
ue C*(Q)nH" ' (Q) which is uniquely determined up to an additive constant in
the function class H'''(2). Hence, this solution also solves problem (15). Con-
versely, any solution of (15) minimizes the functional J in the larger space
BV(Q) ~ {v= ¢} which can easily be deduced by approximation (cf. [14; Lemma A 1
and Lemma A 2]).

In contrast to the case when the obstacle is absent (cf. [59]) we could not prove
that any solution of (15') is of class H* ! (). Thus, we had to restrict ourselves to the
variational problem (15), since we shall use the fact that the solutions are unique
up to an additive constant, and this conclusion, however, may not be valid in the
more general case.

In order to formulate our results more easily, let us introduce the following
definition

Definition 1. Let I be a closed subset of 0Q. Then we shall denote by Uy any
open subset of Q which satisfies

UrnoQ=T. (17)
The main theorems which we shall prove are

Theorem 1. Let I; be an open subset of 0Q being of class C2. Assume that
@ L (09) belongs to C°(Iy) and that H satisfies besides the conditions (2) and (8)

[H(x, o(x))|S(n—1) H,_y(x) ¥ xel. (18)

Then the variational problem (15) has a unique solution ue C*(Q)~H"'(Q) such

that u=¢@ on I (19)
and _

ueC’(Up) Vrlccl. (20)

Furthermore, for smooth data we shall prove
Theorem 2. Let the assumptions of Theorem 1 be satisfied and suppose @ to be

in C2(Iy). Then we hav
n C ) Thenwe have ey vreer, @1

Moreover, the smoothness of u increases with that of /.

Theorem 3. Any solution u of the variational problem (15) is of class HZP(Q)
Jor any p, n<p= oo, provided that e L' (0Q), y € H*?(Q), and that H satisfies the
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conditions (2) and (8). Furthermore, under the assumptions of Theorem 2 we can prove
ueH*?(Up) VIccly (22)

for any p, n<p< oo, if Y belongs to H*P(Q).
Finally, we shall prove the following generalization of Theorem 1.

Theorem 4. Let I, be as Theorem 1, and suppose that e} (09) is continuous in
xo€ Iy. Assume, furthermore, that H satisfies besides the conditions (2) and (8)

|H(x, px))|S(n—1) H,_, (x) for ae. xelp. (23)

Then the variational problem (15) has a unique solution ue C%'(Q)n H"'(Q) such
that u is continuous in Q U {x,} and satisfies
lim u(x)=@(x,). (24)

X— X0
xeN

1. A Priori Estimates for |u|

In this section we are going to prove local and global estimates for the modulus
of solutions to the variational problem (15°). Interior estimates have already been
proved by De Giorgi [21], Miranda [42] in the case H =0, and by Massari [37]
and Giaquinta [18] in the case H = H(x). Unfortunately, these estimates come from
a contradiction argument and are no explicit bounds in terms of known quantities.
A result in this direction has been obtained by Lichnewsky [36], using Serrin’s
methods (cf. [47]), for weak solutions ue H'! () of the equation

Au+ H(x)=0 (25)
where HeI?(Q) for p>n.

The proof we present here is analogous to that one we used in [14] to demon-
strate the boundedness of solutions to the capillarity problem.

We assume in this section that Q is a bounded domain with Lipschitz boundary,
that H is measurable in x and continuous in ¢, that it satisfies (2) and either (8) or

Hyel’(Q) with p>n. (26)
Then we obtain
Lemma 1. Let I, be an relatively open part of 0Q, and let el (0Q)n L (Iy) be
given. Furthermore, let I < I, be any closed subset and U be any open set appearing
in Definition 1.
Then, under the preceding assumptions, any solution ue BV(Q) of the variational
problem (15) can be estimated in Ur by

max {ing min (y, 0), —¢;} Su<max {sup max (y,0), ¢} (27)
xX€ . xef2
where ¢, depends on Uy, || @l ey, 4ll1,n, Q, and either on |Hy||, or on &,.

Here, we denote by |||, the norm in I#(€) for 1 =g = 0.
Proof of Lemma 1. Let k be a positive number greater than

max {Sl:p max (¢, 0), || (D”L"’(l'o)} ’
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and let  be a smooth function such that

0=n=1, nlr=1, (28)
and
suppnnoQcly. (29)

Then, w,=(1 —#) u+ min (y u, k) belongs to BV(Q) n {v= '}, and from the minimum
property of u we get
J(W) = J(u). (30

Hence, using the notation A(k, n)={xeQ: nu>k} and supposing for a moment u
to be smooth, we obtain

[ Q+[DuPtdx+ | [H(x,t)dtdx+ [{lu—e|—lu.—ol} dt,_,
on

A(k, m) Q2
< | (1+|PLA—n) u]]?)* dx 61
A(k, n)
< (1+0—n? DuP)tdx+ | (1+u?|DnP?)* dx,
A(k, m) Ak, )

where we used the estimate (1+|a+b%)*<(1+/al>)*+(1 +|b]*)*. Furthermore,
taking the estimate

A+ — {1+ =2 P2 - {1+(1-n)t}

> i1 (32)
and the relation =fe=
|u— |-, — | =max (nu—k, 0) (33)
(which is valid since k= [|@|| «(r,)) into account, (31) yields
[ IDwldx+ | [ H(x,t)dt dx+ (max (nu—k,0)d#,_,
A(k, n) 2 u on 34)
<2k, +2- IDnlg- [ udx, (
Ak, m)
where |A(k, n)| denotes the Lebesgue measure of A(k, 7).
Finally, setting w=max (yu—k, 0) and observing that in view of (2)
[ H(x, t)dt 2 Ho(u—u)=Ho- w, (35)
Uk

we get the inequality
[ IDw|dx+ (Howdx+ [wd#,_y <2-|Ak,m+2-|Dnlg- [ udx (36)
Q Q 0 Ak, m)

which will also be valid for ue BV() using an approximation argument (cf. [14;

Lemma A4]).
To estimate the integral | How dx, we use either the assumption (8) which
(]

yields (cf. [19])
[ Hywdx2 —(1—¢o) [ IDW| dx—(1—¢o) [ wdH,_, (37
Q 2 )
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or the Holder inequalities

l _[HO wdx| Z Wl ( | IHol"dx)'""
2 Ak, m)

< Wl - I Holl - | A, )] =72,

. 1 1
where we denote by n* the conjugate exponent, — =1 -
n

Taking only the estimate (38) into account, since the reasoning would be more
easily in the case of applying (37), we deduce from (36)

[ 1Dwldx+ Jwdx—{l|Holl, - |4k, p)|®=""" 2+ Ak, n) """} [ W] o
2 n

(39)
<2-]Ak,n)+2-|Dnlg- | udx.
Ak, m)
Here, we used [[wll; < ||/l - [A(k, )"
Now, applying the Sobolev Imbedding Theorem and using the fact that
1 1
Al IS [l dx <o f|uldx (40)
o]
we derive from (39) ?
IwllwScs-{lAk, )+ [ udx} (41)
Ak, n)
for k2 k,, where k, and ¢, depend on #, ||ull;, ||H, | ,, and known quantities.
Using the Holder inequalities once again, (41) yields
J u=Rydx=c,-{|Ak I "+ Al g | udx} 42)
Ak, m) Ak, n)
or finally
(h=k) - |A( ) Sc, - {| Ak, ' 7"+ Al )" - | udx} 43)
A(k, m)
forh>kz=kg.

To complete the proof of Lemma 1, we apply a result due to Stampacchia [51;
Lemme 4.1] which can be stated as follows

Lemma 2. Let the positive constants cj,k,, and y be given. Then we deduce
from the inequality

(h=FK)-|[A(h, I Scs - 1Ak, n)l",  h>k2ky>0, 44)
that
1 1 1 1
B AR | S29 77 {es =7+ (ko) 77 - |Alko, I} 45)
where
vd
d=cy-[|A(ko,m)]?~* 271, 47)

We shall use an iteration procedure to increase the exponent in (43) such that
we can apply (46). Let us indicate the first step. Combining (43) and (45) we con-
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clude that
(un)*el(Q), (un)*=max (un,0), 48)

for any q< — 1 , where ||(un)* |, depends on ¢, n, and known quantities. Since the

inequality (43) is valid for any cut-off function { satisfying (29), we then choose ¢
such that

Clsuppn =1. 49)

Hence, we deduce
| udx= |l N, 1AK, ) 2. (50)

Ak, 1)
Inserting this estimate in (43) yields

(h—k)- | A(h, mI=ca(q, Q- (A, ' +17"+| Ak, )| ~Ha*timy (1)

for1<q<—ni

Evidently, we can increase the exponent of | A(k, n)| by a finite iteration to some
7> 1, hence we conclude that u is bounded from above in Uy by an estimate of the
form (27).

Though, u is obviously bounded from below by , it would be worth to get the
sharper estimate (27), for by this we had also derived a bound for solutions to the
free problem

J(v)-»min in BV(Q) (52)

setting formally = — o0.

In order to obtain the lower bound, we choose k2 ||¢|| L«(r,, and insert in (30)
w,=(1—n) u+max (nu, —k).

The proof of Lemma 1 would then be completed by similar considerations as
above.

2. Existence of Solutions in BV (2)

In the case that H does not depend on t Giaquinta [19] demonstrated the exist-
ence of solutions in BV (Q) to the problem (6) provided that H satisfies the condition
(8) (cf. [19] for a discussion of this condition).

If H depends on ¢, and if the conditions (2) and (8) are fulfilled, then the proof of
the existence of solutions to (15’) is almost the same.

Theorem 5. Let H satisfy the conditions (2) and (8), and let peI'(0). Then the
variational problem (15') has a solution ue BV(Q) such that

[IDuI dx+ flul dx

is bounded by a constant depending only on &, Q, _f |o| dH#,_,, Sup max (¥, 0), and
;)[ H(x, sup max (¥, 0)) dx.
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Proof. Let K be the convex set
K=BV(Q)n{v2y), (53)

and let B be any ball containing Q. We are going to use an advice of Santi [46] and
extend ¢ to some function in H"'(B—Q) having boundary values zero on 0B
and which we denote by ¢, too. This exténsion is possible in view of a result due to
Gagliardo [16].

Then, defining H and K by
H(x,t), if xeQ
H(x,t)= _
(1) {0, if xeR"—Q (>4)
and
K={veBV(B): veKn {v]s_g=0}}, (55)
we conclude that
Jw)= [ +[Do*) dx+ [ | H(x,t) dt dx (56)
B BO
equals
Jw+ [ (1+|Dg|?)dx. (57)
B-0
Hence, it is equivalent to solve (15') or
Jw)-»min in K. (58)

Let v, be a mimizing sequence of (58). We shall show that the v,’s are uniformly
bounded in BV(B). To prove this, let us remark that in view of (2)

jsﬁ(x, t)ydt2H, v, (59)

where H, = H(., 0). Taking the condition (8) into account we obtain

[ Ho-vedx2Z —(1—¢o)- [ IDv| dx~(1—e0)- [ lv| d#,_, (60)
Q Q o

(cf. [19]), or finally
[Ho-v,dx2 —(1—¢o)- {[IDv) dx— [ |Dgldx+ [lo|d#,_,}
Q B B-@Q 0

(61)
2 —(1—¢g)- _f |Dv,| dx—c, - ,‘ lo| dAt,_ ;.
B amn
Thus, we conclude
Jw)Zeo - [IDv dx—cy - [l dHA,_;. (62)
B an
Since J(v,) is estimated from above by
J(Slrl)p max (y,0)+ [ (1+|Dgl*)*dx, (63)
B-0

(62) implies that v, is a bounded sequence in BV(B). Hence, a subsequence, which

. . n .
we again denote by v,, converges in [4(B) forany ¢q, 1 <g< T to some function u.
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To complete the proof of the Theorem, let us show that J is lower semicontinu-
ous with respect to convergence in BV(B). Since the lower semicontinuity of the
area functional is well-known, it remains to prove

liminf [ | H(x,t)dtdx2 [ [ H(x, t)dt dx. (64)
20 20

The validity of (64) can be easily deduced from the inequality
[ {H(x,t)— H(x,0)} dt 20 (65)
0

using Fatou’s Lemma and the relation

[(Hqy-v,dx— | Hy-udx (66)
Q Q

which is obviously satisfied since Hye I(€2) and v, converges weakly in I ~*(Q)
to u.

3. Interior Regula;'ity of u

In the preceding sections we made no use of the Lipschitz continuity of H.
However, this property becomes important for proving the regularity of solutions
to the variational problem (15').

The interior regularity of u will follow from a general theorem concerning the
regularity of solutions we BV(£) of the variational problem

L(v)= [(1+|Dv)*dx+ | va(x, t) dt dx — min
0 20 67)
in BV(Q)n {v=2y} n {vlag=wlsn}-

Theorem 6. Let w be a locally bounded solution in BV(Q2) of the variational
problem (67), and let He C* ' (IR" x RR) be strictly increasing in t. Then w is locally
Lipschitz in Q provided that yye C (). Precisely, we have the estimate

IDwlo Zcs(Wlg, |DYlg-,|DHlg) V2 ccQ'ccQ. (68)

Proof. We shall use the results of [11; Theorem 1] concerning the existence of
surfaces of prescribed mean curvature over obstacles together with an extended
version of the a priori estimates of Ladyzhenskaya and Uraltseva [33].

Let x,€9Q be given, and denote by By = Bg(x,) a ball of radius R with center x,.
Furthermore, we assume that w and ¥ are extended into R" as functions with
compact support, and we let w, resp. ¥, be the mollifactions of w resp. y with a

common mollifier. Then, we consider the Dirichlet problem
Av¥+H(x,v¥)=0 in By
v: laB R = WB .

(69)

Obviously, if we choose R sufficiently small, R < Ry, (69) has a solution v* € C?(Bg),
as we deduce from [48]. We only have to choose R, such, that the inequalities™ -

IH(x, w () <2 (70)
R,
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and

n—1
Hx, 01 == (a1

are satisfied in Bg,(x,). The first estimate yields to an a priori estimate for |Dv}|az,, ,
while the second one gives a bound for |v¥|p,, in view of the monotonicity of
H(x,.): Observe that for any positive function é we have

Ad+H(x,0)= A6+ H, (72)
and
A(—0)+H(x, —0)S A(—9d)+H,. (73)
Moreover, we may conclude that
2P §06=C(,(|W|Bkoa R, |H'BR0) (74)
and
|Dvg|pg Sc7=C;(Cé» |D2WJBR, |DH|g,,). (75)

Since these estimates hold uniformly in 7 if we replace H by 7 -H in (69), where 7 is
a real parameter, 0 <7 <1, we derive from [11] that the variational inequality

(Av,+H(x,v,), v—v,)=0 Vovek,

1 (76)
K= {UGH ’ OO(BR): v l/fa, UlaBR = ws}’
has a solution v,€ K n H? ?(By) for any p,n< p < oo, such that
[l Scg=c5(Cé [Y¥lpg)- (77)
As we shall prove in the Appendix, we have the interior gradient estimates
|Dv,lg- =co=Cq(Cg, |DY|pg, IDH|p,, ) V<< Bg. (78)
Moreover, we know (cf. [11; Section 4]) that v, minimizes the functional
JA+DvYdx+ | (H(x,t)dtdx+ [lv—w,]d#,_, (79)
Br Br O 2Br
in BV(Bg)n{v2y.}.
Hence, setting o B
_fv, in Bg
”“{wa in Q— By (80)
we derive 3 )
L(®,) = L(w,), @81
where
Lw)=Lw)— | [H(xt)dtdx. (81a)
Q-Br 0

From [14; Lemma A 1] and from Lebesgue’s theorem of dominated conver-
gence we conclude that the right side of (81) tends to L(w), if ¢ goes to zero. On the
other hand, from the estimate (77),(78),and from the definition of #, we deduce that
the 7,’s converge in BV() to some function vy, vy =, which is locally Lipschitz
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in Bg and coincides with w in Q — Bg. Moreover, we immediately derive on account
of known lower semicontinuity properties of the integrals we deal with

L(vy) <lim inf L(3,) < L(w). (82)
Hence, we obtain

L(vo) = L(w), (82a)

and we conclude that v, is equal to w, since vy|,q = Wl and the variational problem
(67) has no distinct solutions.

In order to prove the existence of a regular solution to the variational problem
(15'), let & be an arbitrary positive number and define H,(x,t)=H(x,t)+¢-t. The
functional J, is similar defined replacing H by H, in the definition of J. Then,
since H,(x, 0)=H(x, 0) and H, is strictly increasing in t, we conclude that the varia-

tional problem . .
J.w)»min in BV(Q)n {v=y}
has a unique solution u,e C%*(Q)n H"!(Q), such that the terms
[1Du| dx + [ |u,| dx
Q 2

and
[Duyg VQccQ

are uniformly bounded with respect to &. Evidently, the u,’s form a minimizing
sequence for the variational problem (15').

Moreover, if we look at the proof of Theorem 5 and set

. u, in Q
i,= .
* l¢ in B—Q,

where we use the notations of Section 2, then the #,’s are a minimizing sequence
for the variational problem (58). Thus, following the proof of Theorem 5, we
deduce that a subsequence of the #,’s converges in I!(B) to some function # which
is locally Lipschitz in Q, and which solves the variational problem (58). Hence,
u=ii|g is a regular solution of (15').

4. Proof of Theorem 1

We are now ready to prove the assertions of Theorem 1. Assume that the
conditions of the theorem are satisfied, and let u be a solution to the variational
problem (15). Furthermore, let I' resp. I be closed resp. open subsets of I such that

Nccrlcly. (83)

Since ¢|r, is continuous we can find approximating sequences ¢;*, ¢, € C2 Ig)
satisfying
. S¢=¢} onTl (84)
and
limof (x)=limg; (x)=¢(x) Vxel. (85)

13 Math. Z,, Bd. 139
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Applying the results of Serrin [48] we shall construct barriers d,;, §; such that

8,07 e CHY(Up) (86)
for some Uy,
0y SO S@f =0 on I 87
o0 =0;, O=¢f onl, (88)
and
0y (X)Su(x)So}(x) VxeUr. (89)

Suppose for a moment that we had constructed the barriers ; and J; . Then,
we deduce from the inequality (89) in view of (85)

leemﬂ u(x)=p(xo) Vxqel’ (90)

xX-+Xo0

Hence, u is continuous up to I, and it is the unique solution of the variational
problem (15), since it has been chosen arbitrarily and the solutions of (15) only
differ by an additive constant. The assertions of Theorem 1 now follow easily
taking the interior regularity of u into account.

To construct the barriers, let us consider a closed cylinder Z, of radius p
where we assume that Z, N 0Q= I Furthermore, we choose p,, p, with p <p, <p,,
such that the cylinders Z, and Z,,, having the same axis as Z,, intersect 0Q in
two subsets I and I3 with

rehichcl. o1

We let U(I;r) be an open subset of 2 which is bounded by I, the level surface
I ={xeQ: dist(x,0Q)=r}, and by 0Z,. The sets U(I;,r) and U(L;,r) are similar
defined.

Assume for a moment that I is of class C3. Then there exists a number d,
which depends on the principal curvatures of I; and on the slope of the cylinder
walls with respect to Q2 such that the distance function d(x)=dist(x, 09Q) belongs
to C3(U(I3, d,)).

Let ¢* be of class C? in U(I;, d,) and assume that

—H(x, p*(x))<(n—1)-H,_;(x) Vxel. 92)

According to Serrin [48; Thm. 10.1] we can find to every given pair of sufficiently
large positive numbers a, M a real number r, 0<r<d,, and a real function

2 .
he C*([0, r]) with W0)=0, h()=M, k=2« 93)
such that §+(x) = @*(x)+ h(d(x)) satisfies in U(Z; r) the inequality
Aé*+H(x,6%)=0. (94)

On the other hand, if we suppose that
H(x, ¢*X)S(—1)-H,_;(x) Vxel 95)
then 8~ (x)= @*(x) — h(d(x)) satisfies the relation
A6~ +H(x,67)<0 in U(Lr). 96)
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Now, to construct 5} wechoosem= sup |u|+sup |¢| and let o*e C*(U(1], d,))
be a smooth function satisfying ur: do) f

p*2¢; on I 97

o*=¢@; on I, 98)
and

o*zm  on [U(HUL]-E 99)

where we observe that u is bounded in U(I; d), in view of Lemma 1.

Then, taking the monotonicity of H and the relations (18), (84), (97), and (99)
into account, we deduce that the inequality (92) is fulfilled.

Furthermore, choose a> Do+ D @*|y(r,, 4, M =max(m, sup |¢*|), and h
as above. This yields that U, do

95 (x)=@*(x)+ h(d(x)) (100)
satisfies (94),
srzy in UEr), (101)
029 on I (102)
and
éf=zu on dU(Lr)-TI. (103)

To define §,, we choose ¢* such that

¢*<ep; onl (104)
§0*=(P5_ on F" (105)
and
o*<—-m on [QULr)ul[]-T. (106)
Then (95) is fulfilled. Defining h similarly as before, we deduce that
87 (x)=@*(x)—h(d(x)) (107)
satisfies (96),
0;<¢ onl (108)
and
6;<u omn oUL,r)-TI. (109)

If I is only of class C?, we assume without loss of generality that I is the
graph of a C? function. Then, by mollification we approximate I by a sequence
of smooth surfaces I, and we construct sequences J,, 6,7, the elements of which
satisfy the relations above and have uniformly bounded second derivatives in
U(Lr) (cf. [48; Thm. 14.3]). Thus there are subsequences converging to some
functions &;, 5; € H>*(U(; r)) that still satisfy the above conditions.

We shall show that §; resp. 8, are super-resp. subsolutions in a variational
sense. For brevity set U=U(I; r) and define I(v; w) by

I(v;w)= [(1+|DoP) dx+ | [H(x,t)dtdx+ | [v—w|d#,_,.  (110)
U vo ou

13*
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Then, 6} resp. §; satisfy the relations

I16;);86)S1(w;8}) VveBV(U)n{v=d;}} (111)
resp.
I(6;;6;)<I(v;8;) VYveBV(U)n{vsd;}. (112)

We shall only prove (111). Consider the function
g)=I(rv+(1—-1)0;;6;), r1€R, (113)
where v is smooth, v2 4}, and v|;p =06 |5y.

Obviously g is convex (g” =0) and

g0)=CA4d +H(x,0;),v—6;>=20. (114)
Hence, we conclude
g(0)=g(1). (115)

The more general inequality (111) follows by approximation, cf. [11; Appen-
dix III] and [14; Lemma A1 and Lemma A2].
Now, the estimate (89) follows easily.

Lemma 3. Let u be a solution to (15), and let 6+, 6~ € H"1(U) be super-resp.
subsolutions in U = Uy satisfying

oty in U, (116)

0~ Sugdt on I'*=0U —T, (117)
and

0" S@psé* onl (118)
Then u is estimated by

0~ =sugdé* in U (119)

Proof. We shall only prove the second inequality in (119), since the first one
can be proved in the same manner.

First of all, let us observe that u satisfies

[ +|Du)dx+ | [H(x,t)dtdx+ [|u—o|dt,_,
v vuo r

S [ +|DvP)rdx+ | fH(x, tydtdx+ [lv—o|dH#,_, (120)
U Uo r

+ [lu—vldo#,_, VveBV(U)n{v2y}.
rt

To verify this inequality, let ve BV(U)n {v=y} and define

v inU
b= 121
v u in Q-U. (121)

Then we have in view of (15)
Jw=J(@). (122)
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Thus, our assertion follows by simple calculations, since

rj. (1+|D32)p dx=tj; lu—v|d#_,. (123)

Choosing in (111) v=max(u, 6*) and in (120) v=min(u, 6*) we deduce by
combining the resulting inequalities and taking the estimate (117) into account
that equality must hold in both inequalities provided that

[lu—o@ld,_ = [{|min(u, 6+)— | +|max(u, 6*)—3*(} dot,_,  (124)
r r

which follows from the identity
|u—@|=|min(u, 6*)—¢@|+|max(u,6+)—6*| H#,_,-ae.on I (125)

The preceding equation might be easily checked by distinguishing the cases
0% <uand 6* >u in view of (118).

Thus, equality must hold in (120) where v=min(u, +). But the derivation of
the relation (120) shows, that then equality must hold in (122). Hence, we deduce
(since & belongs to H'(2))

u—v=const in Q. (126)
On the other hand, it follows from (117) that
v=u J,_,-ae.on I'*, (127)

Therefore, the constant in (126) is equal to zero, and our assertion is proved.

5. Proof of Theorem 2

If  itself belongs to C(I;), then we may choose ¢, =@} =¢ in (84). Thus, we
can choose the functions ¢* in (100) resp. (107) such, that they coincide in a
suitable neighbourhood Upc U(I;r), I'<TI". Let us denote this common function
by ¢, too. Then, we deduce from the preceding results that u satisfies an estimate

of the form lu(x)— p(x)| <K, -d(x) VxeUp, (128)

where K; only depends on the C?-norm of ¢, |Dy|q, I, and known quantities,
and where ¢ has uniformly bounded gradient in Up. _
To obtain a gradient bound for u, let us first assume that i belongs to C2(Q)

and satisfies
Y0pSo—¢, (129)

where ¢ is some positive constant. Since u is continuous in U(I;r), we conclude
that u is strictly greater than y near I". Thus, let us suppose that we had chosen

i h th
Ur in such a way that usy  in Up (130)

Au+H(x,w)=0 in Up. (131)

Now, we easily get a bound for |Du|p using an idea of Giaquinta [19]. Let
x'eUp be such that the ball B=B(x',d(x")) of radius d(x’) and centered in x’ is
contained in Ur. Then, applying thea priori estimates of Trudinger [58; Theorem 2]

we deduce lDu(xr)‘ < Cl . exp{cz . sgp(u__ u(x’))/d(x’)} N (132)

and hence
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d
I H(x, u(x) }

Though Trudinger has only considered the case H=H(x), the estimate remains
unchanged in the more general case where H depends on t, provided that
H
%t—;O (cf [58; (44)]).
On the other hand, taking the inequalities

dx)Sd(x)+|x—x'|£2-d(x") VxeB (133)

where C, and C, are constants depending onnand sup {a’ |H|+d?
B

and (128) into account, we deduce from (132)
|Du(x)|SL,=C; -exp{C, - (3K; +K3,)}, (134)
where we have set K, =|D¢|y-. Hence, we obtain
IDulp<Ly. (135)

Now, let Ur<=Q be any open set with Ur N 8Q=T. Then, we conclude that u is
Lipschitz in Up and is a solution of the following variational inequality

{Au+H(x,u),v—uy=20 Vvek,

_ ey - (136)
K={ve H"*(Up): v2, v|yp=u},

as we easily derive from the relation (120). Moreover, since we assumed ¥ to be
2 t M
of class C*, we obtain ue H?(Up) 137)

for any p, 1<p<oo (cf. Section 6).
Thus, we conclude in view of (135) that | Du| can be estimated by

[Dulyp=< Ly =L,(Ly, Up) (138)

where Uz is any open set such that I’ cint(l") and Uz ndUp=T For a proof of this
gradient estimate we refer the reader to the Appendix.

Finally, to remove the restrictions on y, let y € H () with |, < ¢ be given.
Then, by mollification, we can easily find smooth functions , satisfying (129),
which converge in H%(Q)n C°(Q) towards . Let u, be the solutions of the
variational problem (15) with respect to the obstacles y,. Then, the sequence u,
converges in BV(Q) to u, since the solution is unique, and each u, satisfies an
estimate of the form (138), independently of &. Hence, this estimate is satisfied by u.

6. Proof of Theorem 3

In view of the Lipschitz regularity of solutions to the variational problem (15)
which we developed in the Theorems 2 and 6, we may consider a solution uexf
of the variational inequality

{Au+H,v—u)>=0 VveX, (139)

where X is the convex set
K ={veH"2(Q): v2 VY, vlag=1}, (140)
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Q is a bounded domain in IR", n=2, with Lipschitz boundary, y is a Lipschitz
obstacle with y|,o<f, f is the trace of a function fe H''%(Q), and where finally
H is a given function in I2(Q) and

= — D¥(ay(x, p)) (141)

is a uniformly elliptic operator whose coefficients satisfy
ond a,eC'(2xR") (142)
WRPSSHE S P VeR, (143)

where v, and v, are positive constants.

Then the following lemma is valid

Lemma 4. Let feH"*(Q), Hel?(Q), and yeH*?(Q), 2<p=<c0, be given
Junctions, and let u be a solution of the variational inequality (139). Then we have
the estimate

lAull, = A, +2- | H|,. (144)
Proof. Let B be the following maximal monotone graph in R x IR
0, if t>0
B)=4[—1,0], if t=0 (145)
-1, if t<O0.

Furthermore, let ue I7(Q2) be any function such that
max {AY(x)+H(x),0}Spu(x) ae in Q. (146)
Then, we consider the Dirichlet problem
Au*+H+p - B(u*—y)30
u*log=1.

It is well-known that (147) has a solution u*e H"2(Q) (cf. [13; Appendix]). We
are going to show that u* belongs to J; hence, it will be the unique solution of the
variational inequality (139), since u* satisfies

(147)

nonnegative a.e.in Q
*+H= 148
A+ {o in {*>y}. (148)

The estimate (144) then follows immediately.
In order to prove u*=y, let £¢>0 be given and set y, =y —e. Taking (146)
into account we conclude

AYy.+H+p- B, —y)=AY+H—-pu=0. (149)

Hence (cf. Lemma 5 below)
Y. =u* (150)

by which the assertion is proved.
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It remains to prove the following comparison lemma.

Lemma 5. Let u resp. u' be super-resp. subsolutions in the sense that u,
u'e H"2(Q) and the inequalities

Au+H+Bu—y¢)=0 (151)
and
Av'+H+ B —y)<0 (152)
are valid, where y, y'e H" *(Q), and He I*(R) are given such that
Y=u and yY'su, (153)

where, furthermore, B is a maximal monotone ( multivalued) graph in R x R, and
where the inequalities have an obvious meaning. Then

u'—u<max {sup |y —y’|, sup [u—u'}. (154)
[} 7]

Proof. Denote the right side of (154) by c, and set n =max {u' —u, ¢} —c. Then,
we have 0=y e H}*(Q), and the inequalities (151) and (152) yield

CAu—Av +Bu—y)— B’ —y"), 1> 20. (155)

The assertion #=0 then follows from the fact that f is monotone and 4 elliptic.
We leave the details to the reader.

The claims of Theorem 3 are now easily deduced from the estimate (144) in
view of the results of [6] and [12].

7. Proof of Theorem 4

The proof of Theorem 4 is almost identical to that of Theorem 1. Let x eI’ be a
point of continuity of ¢, and let ae C*(¥;), V,={x'eR"~': |x’|<r}, be a local
boundary representation such that (0, «(0))=x,. Moreover, set $(x')=¢(x, a(x))
and let §, be a mollification of §.

Let u be a solution of the variational problem (15). Then u is bounded in a
neighbourhood Ur with x,€l; since ¢ is continuous at x, and hence bounded
near x,. Let m be an upper bound for u in Uy, and let p be an arbitrary positive
number. Then, there exists a number ' <r such that the inequality

@.+p2p ae.in ¥, (156)

is valid for sufficiently small e. Furthermore, we can find a smooth function
@€ C*(I,) such that
(p:+(x)=¢s(x,)+p Vx'e V;’a (157)
where x=(x’, a(x')).
Thus, from the proof of Theorem 1 we deduce that we can construct an upper
barrier §; such that
6/ =¢; on I'=graphaly , (158)
since the inequality
—H(x, p}(x))S(n—1)-H,_;(x) Vxel” (159)
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is valid in view of (23) and (156). Hence, we derive

lim sup u(x) £ lim 5 (x) =" (xo), (160)

X = X0 X—=X0

where ¢ (x,) tends to ¢(x,)+ p if € goes to zero, from which we conclude

litg sup u(x)< o(xo)- (161)

The lower estimate for u can be obtained by similar considerations, hence the
result.

Remark. We suppose that the variational problem (15) has a unique solution
u which coincides a.e. on I with ¢ provided that (23) is satisfied. But, unfortunately,
we could not prove this without assuming ¢ to be continuous.

A first step in this direction would be the following lemma.

Lemma 6. Let u, u' be solutions of the variational problem (15) with respect to
the data \, @ and ', ¢’ where we assume that

Yysy' and ¢=¢'. (162)
Furthermore, we suppose that at least one solution is unique. Then we have
usu'. (163)

Proof. Lemma 6 follows from a more general result which has been proved in
[15; Lemma 3.3 and Remark 3.1].

8. A Counterexample

We shall show that the uniqueness of the solution to the variational problem
fails to be true in general, even when there is a solution taking on the prescribed
boundary values.

Let B be the unit ball in R". Then, the upper hemisphere u(x)=(1 —|x[*)*
satisfies the equation Au—n=0 in B. (164)

Moreover, let B,, 0<r<1, be the ball of radius r centered in the origin. We
easily derive from (164) that u is the unique solution of the variational problem

J(v)-»min in H“'(B,), (165)
where
J W)= [ +|DvPPYdx—nfvdx+ | [v—uld#,_,. (166)
B, B, oB,

Thus, ¥ minimizes J=J, in H"(B). But, now, u is not the unique solution, since
Ju+c)=Ju) Vc>0, (167)

as we deduce from the identity
n-|B|=#,_,(0B). (168)

This result is not in contrast to Theorem 1, since the condition (18) is not
satisfied.
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Appendix
In the proof of the Theorems 2 and 6 we used a priori estimates for the gradient
of the solution u of the variational inequality
CAu+H(x,u),v—ud=20 VYved,

Al
K ={veH"*(Q): v2y, vlsg=u}, A

where 4 is the minimal surface operator, H is locally Lipschitz in R” x IR satisfying

O0H
a—th. (A2)

We assume (2 to be a bounded domain in R" with Lipschitz boundary and ¥ to

be of class C? in Q.
Then, the following theorem is valid

Theorem A 1. Under the preceding assumptions the gradient of the solution u
of the variational inequality (A 1) can be a priori estimated by
|Dulg Sconst(Q, DY lq, [ulg, |[DH(x, u(x))|g,n) V2 ccQ. (A3)
Moreover, let I = 0Q be relatively open and of class C2. If we assume that

[Dulp <L, (A4)
then we obtain
[Duly..=L, VIlcerl (A5)

where Uy is one of the open sets we described in the Definition 1, and where L,
depends on Ly, Ur., and on the quantities in the estimate (A3).

Proof. In the case H=0 the theorem has already been proved by Giusti [25].
For the generalization we need some techniques and results of [25] and [33].

We have to introduce some definitions. We denote by % the graph of u over Q.
The outward normal vector v at a point (x, u(x)) is then equal to

V=01, ..., Vuy1)=(1+|Du|?>)~*. (=D, ..., —D"u, 1). (A6)
Furthermore, we define the differential operators 6=(3,, ..., 8, , ;) and @ by
5i=Di"‘vi'v,“Dk, i=1,.-.,n+1, (A7)
and .
2=46;6;, (A8B)

where now and in the following we sum over repeated indices from 1 to n+1.
Since u satisfies the equation

Au+H(x,u)=0 in E={xeQ:u(x)>y(x)} (A9)

we deduce from [2] that w= —logv,,, satisfies in % = graph u|; the inequality

Dw2|SwlP+—5,,, H. (A10)

nt1
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Thus, we obtain

PwzZ (0w — Y v, D'HZ 0w +(1+|Duf>)~*- Y Diu- ZH
i=1

i=1

(A11)

xi

taking the monotonicity of H(x, .) and the definition of v; into account. Setting

0
= —H
€y =sup | = (5x, u(x)) (A12)
this yields
Dw2|dw|*—c, in F. (A13)
Now, let n be a smooth function such that
0=<#=1 and suppnnoQcl, (A14)
and define z=max (wn* —k, 0) where k is a real number satisfying
k>max(Ly, |Dylg). (A15)
Then,
suppzcE, (A16)

since we have Du(x)=Dy(x) for xe{yeQ: u(y)=y(y)}. Multiplying (A13) with z
and integrating over & we obtain

yj]&w|2~zd9ﬁ,§}{9w+c,}zd9ﬁ,, (A17)
where 5%, denotes the n-dimensional Hausdorff measure, i.e.
5_[ h d.)f;,=r£ h(x, u(x))- (1 +|Dul*)*dx Vhe CO(R"*+!). (A18)
Moreover, observing that
[6;hd A= [ hv,H dH, (A19)
& &
which is valid for all test functions h such that
supphn ¥ cc %, (A20)
and using the identity
ow-8,z2=—Dw-z+,{0;w-z}, (A21)

we conclude from (A 17)

[ 16wP-n*d#t,Zc,-[zdH+ [|6w|-z-|H| dot,
& &

Ak, n)

(A22)

~ (10w - zdH#,+2- [ |dwl|-|6n]-n-wdst,
4 Ak,

where A(k, n) denotes the set: graph uli, <. 2(x)> 0)-

Thus, using 2

€ .2
3 T2 b




194 C. Gerhardt

and Schwarz’s inequality we obtain

[ 16wl -n*dst,<c,- {MI [z+0n? - |w*] d ot} (A23)
» 1)

Ak, 7)

with a suitable constant c,, c, >1.
Finally, taking the estimate

6(wn)> <2 |ow* - n* +8 - |w]? - n? - |on 2

A24
S2:19wl-n? 48 - |w)* - |69 (249
into account, we deduce
(1027 d#,<2¢c,-{ [ [z+5:16n-|wl*1d%)}, (A25)
¥ A(k, )
or finally
[10z12dtg<cy - {|Ak, )+ [ |w*dot) (A26)
4 Ak, n)

where |A(k, n)| = ,(A(k,n)), c; depends on |dy|, and where we used the estimate
lz| < |wl.
On the other hand, the following imbedding theorem is valid (cf. [38])

4n+l
“ |z|m/n-1 djf;}(n—l)/né_a_)_m . j [éz|+z-|H]]ds#, (A27)
4 n L4

where w, is the volume of the unit ball in R".
Using the Holder inequality

y[ zd s, S [H(S nsuppy)]'”- {,j 2|t da -t (A28)

and the estimate
H(& nsuppn) < [(1+|DulP)t dx< [(1+|Dy|H)* dx
G G

. (A29)
+( [Hx,0)dtdx+ | |lu—y|d#,_,
G u oG

where G is an open set with finite perimeter containing suppn and where we
suppose suppy to be both a subset of Q and of & without changing the notation,
we conclude

n-1
([lzP"=td) ™ <c,-[|6z|dot, (A30)
L4 4
provided that supp# is small enough.
Hence, the preceding inequality yields
[lz* d#Scs- |Alk, )P/ 1621 d A, (A31)
& 4

in view of a well-known argument.
Combining the estimates (A 26) and (A 31) we thus obtain

2 2
J 121 doty=ce - {| ALK, Atk ) )IWI’ dt}, (A32)
4

Ak, n
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or finally, . -
14= ==
[lzldtScy- (A " +1AGmZ " [ [ wP2dx]E}  (A33)
4 Ak, n)

and .

+1 Ly
lh—k| | A Scs - LAt )] 7 +| Alk, )2 [ wPdA]}}  (A34)

Ak, )
for h>k=ky=max{|Dy|q, L} +1.

We are now in the same situation as in the proof of Lemma 1 (cf. the inequality
(43)), and we can complete the proof of the a priori estimate for | Dyj following the
same pattern as in Section 1. Thus, we have to show that

[ EA (A35)
Ak, m)
is bounded in terms of # and known quantities independently of k.
In order to estimate this integral, let us first estimate
[ 1wl - o2 dot,, (A36)
A(ko)

where A(ko)={(x, u(x))e#: w(x)>k,} and 7 is one of the test functions we
considered above.
Using an idea of Giusti [25], we multiply the inequality (A 13) with 2=

n*-

, where zo =max (w—kg, 0) and ¢ is an arbitrary positive number. Hence,

Zo+&
taking (A 19) and (A 21) into account we derive
(16w -n? dAto<c, - [n? do+2-[ (5wl - 16n]-n-—2— dt,
b ¢ s Zote (A37)
+ [16w|-n2 - |H| d£,
observing that s
Z, ow-¢g )
. = Alky). A38
% (zo+a) (20 +2)? inAlko) (A38)
Moreover, since
z
Z ?}-s = X Atko) (A39)
we obtain
[ 16wl -n*dty<ce-{ | [n*+19n*1dst}. (A40)
Ako) Alko)
Finally, to estimate
[ Iwl*-n?d, (A41)
A(ko)

we shall follow the lines of [33] and multiply equation (A9) with u-wZ -5?,
where w,,=max(w—k,,0), integrate over 2 and transform the equation so

obtained in the following way
fa{D'u-wk -n?>+2-u-D'wy-wy,-n*+2-u-wi - D'n-n}dx
2

< JIH] - uewl,n? dx, (a4
o]
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where
a;=D'u-(1+|Du|?)~*. (A43)

Hence, we have, after some calculations which are identical to those in [33; p. 700]
and in view of the estimate (A 40)

[wiy-n® - (L +Du’) dx=co - [{wi, +(1 +|Dul’)} - {n* +|Dn|*} dx. (A44)
Q2 Q

Thus, observing that

w2 =% [log(1 +|Dul®)|*<a - (1 +|Dul?)?, (A45)
where o is some suitable constant, we deduce
| wr-ntd#ta<cio- (kG- {n*+|Dn|*} d A, (A46)
A (ko) %

which is an estimate of the required form.
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