Übungen zu Höhere Mathematik für Physiker II

Blatt 4

- 1 Beweisen Sie, daß es zu jedem $z \in \mathbb{C} \setminus (-\infty, 0]$ genau eine komplexe Zahl w gibt mit $w^2 = z$ und $\operatorname{Re} w > 0$. Man nennt w den Hauptteil der Wurzel von z und schreibt $w = \sqrt{z}$.
- **2** Bestimmen Sie \sqrt{i} . Welche weiteren Lösungen besitzt die Gleichung $w^2 = i$?
- **3** Für $z \in \mathbb{C} \setminus (-\infty, 0]$ gilt

$$\sqrt{z} = \sqrt{(|z| + \operatorname{Re} z)/2} + i\operatorname{sign}(\operatorname{Im} z)\sqrt{(|z| - \operatorname{Re} z)/2},$$

wobei

$$\operatorname{sign} a = \begin{cases} 1, & a \ge 0, \\ -1, & a < 0. \end{cases}$$

Wir nennen sign a das Signum von a.

4

- 4 Man beweise Proposition 1.7.10.
- 5 Es gelten folgene Behauptungen
 - (i) Sei Aeine offene Teilmenge eines metrischen Raumes E, dann gilt für jede Teilmenge $B\subset E$

$$A \cap \bar{B} \subset \overline{A \cap B}$$
.

2

- (ii) Es gibt offene Mengen $A, B \subset \mathbb{R}$, so daß die vier Mengen $A \cap \bar{B}$, $\bar{A} \cap B$, $\bar{A} \cap \bar{B}$ und $\bar{A} \cap \bar{B}$ alle verschieden sind.
- (iii) Es gibt Intervalle $A, B \subset \mathbb{R}$, so daß

$$A \cap \bar{B} \not\subset \overline{A \cap B}$$

2

2

6 Man zeige, daß $\overline{\mathbb{Q}^n} = \mathbb{R}^n$.

Hinweis: Benutzen Sie, daß $\bar{\mathbb{Q}} = \mathbb{R}$, vgl. Theorem 0.4.29.