Übungen zur Funktionalanalysis

Blatt 5

- 1 Prove that the limit in (6.6.3) exists and that \hat{d} is a metric. 2 2 Let K be the metric completion of \mathbb{Q} . Prove that the field structure of \mathbb{Q} can be
- **2** Let K be the metric completion of \mathbb{Q} . Prove that the field structure of \mathbb{Q} can be naturally extended to K.
- **3** Let E be a normed space, F a Banach space, and $A \in L(E, F)$. Then A can be extended to the completion \hat{E} of E. If A is compact, then the extension is also compact.
- 4 Sei $(e_n)_{n\in\mathbb{N}}$ eine Orthonormalfolge in einem Hilbertraum, so konvergieren die e_n schwach nach Null.
- 5 Sei H ein unendlich dimensionaler, separabler Hilbertraum, $A \in L(H)$ und $(e_i)_{i \in \mathbb{N}}$ eine ONB, die aus Eigenvektoren von A besteht, so daß sich A als Diagonalmatrix $(\lambda_i \delta_i^j)$ darstellen läßt. Dann ist A genau dann kompakt, wenn die Eigenwerte λ_i nach Null konvergieren.
- **6** Eine Abbildung $A \in L(H)$ ist genau dann kompakt, wenn die zu A gehörende Sesquilinearform
- $(0.1) a(u,v) = \langle Au, v \rangle$

kompakt ist, d.h., wenn die Folgen $(u_n), (v_n)$ schwach nach u bzw. v konvergieren, dann gilt

$$(0.2) a(u_n, v_n) \to a(u, v).$$

6