Ubungen zur Funktionalanalysis

Blatt 3

1 Show that the real logarithm is a concave function, and then use this fact to prove the
so-called Young’s inequality
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where, p, p’, are so-called conjugate exponents, i.e.,
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2 Use Young’s inequality to prove

(i) For p € [1,00), define the so-called p-norm on R"
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then, for p € (1,00), the so-called Hdlder’s inequality
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is valid, where (-, -) is the Euclidean scalar product.
(i) o+ ylly < lelly +lyl, ¥,y R
(iii) Set ||z]cc = max;|2’|, then the inequalities in (i) and (ii) are also valid for the
exponents p = 1 and p’ = oco.

3 Let 2 C R™ be a Lebesgue measurable subset, then the preceding results are also valid
in the corresponding LP-spaces:
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17 +gls < 17+ lgll, ¥ fg € L2(52).

(iii) The estimates in (i) and (ii) are also valid for p = 1 and p’ = oo, or vice versa.



