Übungen zur Funktionalanalysis

Blatt 2

1 Let E, F be Banach spaces, $\Gamma \subset E$ an open connected cone, and $\varphi \in C^1(\Gamma, F)$. Then φ is positively homogeneous of degree $k \in \mathbb{R}$ if and only if

$$D\varphi(x)x = k\varphi(x) \qquad \forall x \in \Gamma.$$

If you can't prove it for arbitrary Banach spaces you may assume that the spaces are finite dimensional.

- **2** Prove that any vector space E has an algebraic basis, a so-called Hamel basis. $\boxed{2}$
- **3** Let E be an infinite dimensional Banach space, then its algebraic dimension is uncountable. $\boxed{2}$
- 4 Let *E* be a normed space, $\Lambda \subset E$ an a.c. (at most countable) complete subset, then $\overline{\Lambda}$ contains an a.c. basis *M*.
- 5 Prove directly that the l_p -spaces are complete, i.e., without using the fact that all of them are dual spaces. $\boxed{2}$