Übungen zur Funktionalanalysis

Blatt 11

 ${\bf 1}$ Ein symmetrischer Operator heißt wesentlich s.a., fall \bar{A} s.a. Sei A symmetrisch, dann sind äquivalent

- (i) A wesentlich s.a.
- (ii) $N(A^* \pm i) = \{0\}$
- (iii) $R(A \pm i)$ liegt dicht.

10

2 Definition Sei A ein linearer Operator in einem Hilbertraum H

$$(0.1) A: D(A) \subset H \to H.$$

Wir definieren das Spektrum von A, in Zeichen, $\sigma(A)$, durch

(0.2)
$$\sigma(A) = \{ \lambda \in \mathbb{K} \colon (A - \lambda)^{-1} \notin L(H) \},$$

dies schließt auch den Fall ein, daß $(A - \lambda)$ gar nicht injektiv ist.

Die Komplementmenge des Spektrums nennen wir die Resolventenmenge, in Zeichen, $\rho(A)$, und wir bezeichnen

(0.3)
$$R_{\lambda}(A) = (A - \lambda)^{-1} \in L(H)$$

als die Resolvente von A, wenn $\lambda \in \rho(A)$.

 ${\bf 3}\,$ Sei Eein reeller Vektorraum, dann definieren wir die Komplexifizierung \tilde{E} von E durch

(0.4)
$$\tilde{E} = E \oplus iE = \{ (x, y) = x + iy \colon x, y \in E \}.$$

 \tilde{E} läßt sich eindeutig als Vektorraum über $\mathbb C$ definieren, so daß E mit dem Teilraum

$$\{(x,0) \colon x \in E\}$$

identifiziert werden kann.

2

Seien E, F reelle Vektorräume und $A \in \text{Hom}(E, F)$, so existiert genau eine lineare Fortsetzung $\tilde{A} \in \text{Hom}(\tilde{E}, \tilde{F})$ von A. Entsprechend läßt sich ein reelles Skalarprodukt auf H eindeutig zu einer Sesquilinearform auf \tilde{H} erweitern. Bestimmen Sie bitte diese Erweiterungen.

Sei H ein reeller HR, $A \in L(H)$ und \tilde{A} die komplexe Erweiterung von A auf \tilde{H} . Zeigen Sie dann bitte

(i)
$$||A^n|| = ||\tilde{A}^n|| \quad \forall n \in \mathbb{N}$$

(ii)
$$\sigma(A) = \sigma(\tilde{A}) \cap \mathbb{R}$$

(iii)
$$\lambda \in \rho(A) \implies R_{\lambda}(A) = R_{\lambda}(\tilde{A})_{|_{H}}$$

(iv)
$$\widetilde{A}^* = \widetilde{A}^*$$

[2]
Soi, H sing appropriate upon disk disconsistent upon A as A definites denoted by A .

4 Sei H ein separabler unendlich dimensionaler HR, (e_n) eine ONB und A definiert durch

$$(0.6) Ae_n = \frac{1}{n+1}e_{n+1} \quad \forall n \in \mathbb{N},$$

dann ist A kompakt und $\sigma(A) = 0$.

8

 ${\bf 5}$ Sei A in H dicht definiert und abschließbar, dann ist A^* dicht definiert und

$$A^{**} = \bar{A}.$$