- **10.1.13. Theorem.** Let (E, \mathcal{M}, μ) be a measure space. Then the following relations are valid
- (i) Let A_i , $1 \le i \le n$, be finitely many pairwise disjoint measurable sets, then

(10.1.43)
$$\mu(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mu(A_i).$$

(ii) Let $A, B \in \mathcal{M}$, then

$$(10.1.44) A \subset B \implies \mu(A) \le \mu(B).$$

(iii) Let $(A_n)_{n\in\mathbb{N}}$ be a monotone increasing sequence of measurable sets, then

(10.1.45)
$$A = \bigcup_{n \in \mathbb{N}} A_n \implies \mu(A) = \lim \mu(A_n).$$

(iv) Let $(A_n)_{n\in\mathbb{N}}$ be a monotone decreasing sequence of measurable sets, then

$$(10.1.46) A = \bigcap_{n \in \mathbb{N}} A_n \wedge \mu(A_0) < \infty \implies \mu(A) = \lim \mu(A_n).$$

(v) Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of measurable sets, then

(10.1.47)
$$A = \bigcup_{n \in \mathbb{N}} A_n \implies \mu(A) \le \sum_{n \in \mathbb{N}} \mu(A_n).$$

Proof. "(i)" Set $A_i = \emptyset$ for i > n, and then apply (10.1.39) and (10.1.40).

",(ii)" Decompose B in the form

$$(10.1.48) B = A \dot{\cup} (B \backslash A)$$

and deduce from (10.1.43)

(10.1.49)
$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A).$$

"(iii)" Define $B_0 = A_0$ and

(10.1.50)
$$B_n = A_n \setminus \bigcup_{i=0}^{n-1} B_i, \quad n \ge 1,$$

then the B_n are pairwise disjoint and there holds

$$(10.1.51) A = \bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} B_n,$$

as well as

$$(10.1.52) A_n = \bigcup_{i=0}^n B_i,$$

(iii) μ is a measure in \mathcal{M} .

Proof. (1) First we observe, that $\emptyset \in \mathcal{M}$ and $\mathcal{C}A \in \mathcal{M}$, if $A \in \mathcal{M}$.

(2) Let $M \subset E$ be arbitrary and A, B measurable, then

(10.1.67)
$$\mu(M) = \mu(M \cap A) + \mu(M \setminus A)$$
$$= \mu(M \cap A) + \mu((M \setminus A) \cap B) + \mu((M \setminus A) \setminus B)$$
$$\geq \mu(M \cap (A \cup B)) + \mu(M \setminus (A \cup B)),$$

hence $A \cup B$ are measurable, in view of Remark 10.1.17.

- (3) By induction we conclude that finite unions and intersections of measurable sets are measurable.
 - (4) If $(A_i)_{i\in\mathbb{N}}$ are disjoint μ measurable sets, then

(10.1.68)
$$\mu(\bigcup_{i\in\mathbb{N}} A_i) = \sum_{i\in\mathbb{N}} \mu(A_i).$$

Since μ is an outer measure, we have

(10.1.69)
$$\mu(\bigcup_{i=1}^{n} A_i) \le \mu(\bigcup_{i \in \mathbb{N}} A_i) \le \sum_{i=1}^{\infty} \mu(A_i).$$

Hence, (10.1.68) will be proved, if we can show that

(10.1.70)
$$\mu(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mu(A_i).$$

Now, let $B_n = \bigcup_{i=1}^n A_i$, then

implies

(10.1.72)
$$\mu(B_{n+1}) = \mu(A_{n+1}) + \mu(B_n)$$

and the relation (10.1.70) follows by induction.

(5) Let (B_i) be an increasing sequence of measurable sets, then

(10.1.73)
$$\mu(\bigcup_{i} B_i) = \lim \mu(B_i).$$

This follows by applying (10.1.68) to the disjoint sets

$$(10.1.74) A_1 = B_1, A_i = B_i \setminus B_{i-1},$$

which are measurable because of (1). Next let (A_i) , $i \in \mathbb{N}$, be measurable and $M \subset E$, then

(10.1.75)
$$\mu(M) \ge \mu(M \cap (\bigcup_{i=1}^{n} A_i)) + \mu(M \setminus (\bigcup_{i=1}^{n} A_i)) \\ \ge \mu(M \cap (\bigcup_{i=1}^{n} A_i)) + \mu(M \setminus \bigcup_{i=1}^{n} A_i).$$