9. Ordinary differential equations

We shall show that the derivatives of Φ can be obtained by formally differentiating inside the integral and applying the chain rule. However, one has to be a bit careful, since Φ maps into W and not into E.

Let us first consider the most difficult part, namely, the function $\Psi: U \to W$, where

(9.4.52)
$$\Psi(y)(t) = \int_0^t f(\tau, y(\tau)),$$

to which we want to apply the results of Lemma 9.4.3.

Define the mapping

(9.4.53)
$$\chi: \bar{J}_0 \to L(W, E)$$

by setting

148

(9.4.54)
$$\chi(\tau)y = y(\tau) \qquad \forall \tau \in \overline{J}_0, \ \forall y \in W.$$

Obviously, $\chi(\tau) \in L(W, E)$ and $\|\chi(\tau)\| \leq 1$. With the help of χ we shall be able to apply the chain rule.

First define

$$(9.4.55) F: \bar{J}_0 \times U \to E$$

by setting

(9.4.56)
$$F(\tau, y) = f(\tau, \chi(\tau)y).$$

Since $\chi(\tau)$ is a continuous linear mapping, the partial derivatives of F with respect to y exist up to order m and the chain rule yields

$$(9.4.57) D_2 F(\tau, y) = D_2 f(\tau, \chi(\tau)y) \circ \chi(\tau)$$

and for $2 \le k \le m$

(9.4.58)
$$D_2^k F(\tau, y) = D_2^k f(\tau, \chi(\tau)y) \circ (\chi(\tau), \dots, \chi(\tau)),$$

where $D_2^k F(\tau, y)$ is viewed as an element of $L_k(W; E)$; explicitly there holds for $h_i \in W$, $1 \le i \le k$,

$$(9.4.59) D_2^k F(\tau, y)(h_1, \dots, h_k) = D_2^k f(\tau, \chi(\tau)y)(\chi(\tau)h_1, \dots, \chi(\tau)h_k).$$

With the help of the just defined mapping χ , the equation (9.4.52) can be written as

(9.4.60)
$$\chi(t)\Psi(y) = \int_0^t F(\tau, y).$$

For fixed $t \in \overline{J}_0$, $\chi(t)\Psi(y)$ is therefore of class $C^m(U, E)$ and also of class $C^{m,\alpha}(U, E)$, if f is of class $C^{m,\alpha}$, in view of Lemma 9.4.3, and

(9.4.61)
$$D^k \{ \chi(t) \Psi(y) \} = \int_0^t D_2^k F(\tau, y), \qquad 0 \le k \le m,$$

and all $t \in J_0$.

We shall prove in Lemma 9.4.7 that then $\Psi \in C^{m,\alpha}(U,W)$, such that, in view of the chain rule,

(9.4.62)
$$\chi(t) \circ D^k \Psi(y) = D^k \{\chi(t)\Psi(y)\} \quad 0 \le k \le m.$$

9.4. Regularity results for the flow of a vector field

The function Φ in equation (9.4.50) can written as

(9.4.63)
$$\Phi(\xi, y) = y - C\xi - \Psi(y),$$

where $C \in L(E, W)$ maps $\xi \in E$ to the constant function in W the image of which is ξ , completing the proof that Φ is of class C^m resp. $C^{m,\alpha}$.

Notice that any y satisfying $\Phi(\xi, y) = 0$ is an integral curve of f with initial value ξ , i.e., $y = x[\xi]$ restricted to the interval \overline{J}_0 . Since by assumption $y_0 = x[\xi_0] \in U$, we now omit the reference that the integral curves have to be restricted to \overline{J}_0 , it is tempting to use the implicit function theorem to deduce that there is a smaller ball $B_{\rho_0}(\xi_0)$, $\rho_0 \leq \rho$, and a function $\varphi \in C^{m,\alpha}(B_{\rho_0}(\xi_0), U)$ satisfying the equation

(9.4.64)
$$\Phi(\xi,\varphi(\xi)) = 0 \quad \forall \xi \in B_{\rho_0}(\xi_0).$$

We would then deduce that the flow $x = x(t,\xi)$ could be expressed as

(9.4.65)
$$x(t,\xi) = \varphi(\xi)(t) = \chi(t) \circ \varphi(\xi) \qquad \forall (t,\xi) \in J_0 \times B_{\rho_0}(\xi_0).$$

Moreover, differentiating (9.4.64) with respect to ξ we would obtain, in view of (9.4.63),

$$(9.4.66) D\varphi - C - D\Psi(\varphi) \circ D\varphi = 0,$$

i.e., $D\varphi(\xi)(t) = \chi(t) \circ D\varphi(\xi)$ would be of class C^1 with respect t and would satisfy the differentiated flow equation with initial value $D\varphi(\xi)(0) = \mathrm{id}_E$, in view of (9.4.50), (9.4.66), (9.4.61) and (9.4.59).

In order to apply the implicit function theorem $A = D_2 \Phi(\xi_0, y_0)$ has to be a topological isomorphism. From (9.4.63) we deduce

$$(9.4.67) A = \mathrm{id}_W - D\Psi(y_0)$$

Let $h \in W$ satisfy Ah = 0, then we infer from the preceding equation and (9.4.61)

(9.4.68)
$$h(t) = \int_0^t D_2 F(\tau, y_0) h = \int_0^t D_2 f(\tau, y_0) h(\tau),$$

in view of (9.4.57), and due to Gronwall's lemma it follows h = 0.

If we can also prove that A is surjective, then the open mapping theorem, Theorem 6.4.7 on page 12, would imply $A \in L_{top}(W, W)$.

Thus let $g \in W$, we then have to find $h \in W$ such that Ah = g or equivalently,

(9.4.69)
$$h(t) = \int_0^t D_2 f(\tau, y_0) h(\tau) + g(t) \quad \forall t \in J_0.$$

If g were of class C^1 , then this equation could be solved immediately, since h would be required to be a solution of the affine equation

(9.4.70)
$$\dot{h} = D_2 f(t, y_0) h + \dot{g},$$

which exists, cf. Remark 9.3.3 on page 139.

From the equation (9.4.65) and the remarks following it, we deduce that $y = D_2 x(t,\xi)$ is a solution of the affine equation

$$(9.4.79) \qquad \qquad \dot{y} = D_2 f(t, x) \circ y$$

with initial condition $y(0,\xi) = \mathrm{id}_E$, and $y, \dot{y} \in C^0(J_0 \times B_{\rho_0}(\xi_0), L(E, E))$. The original flow $x = x(t,\xi)$ satisfies $x \in C^{0,1}(J_0 \times B_{\rho}(\xi_0), E)$, cf. part (1) of the proof. Assuming m = 1 we see that the coefficients of the affine equation are continuous or Hölder continuous of class $C^{0,\alpha}$ in both variables depending, if $f \in C^1$ or $f \in C^{1,\alpha}$. Stipulating that $\alpha = 0$, if f only satisfies $f \in C^1$, we conclude from Theorem 9.3.4 on page 140 that $y \in C^{0,\alpha}(J_0 \times B_{\rho_0}(\xi_0), L(E, E))$.

On the other hand, since x satisfies the flow equation, we infer $\dot{x} \in C^{0,1}(J_0 \times B_{\rho}(\xi_0), E)$ and hence $x \in C^{1,\alpha}(J_0 \times B_{\rho_0}(\xi_0), E)$. Employing the flow equation once again, we also obtain $\dot{x} \in C^{1,\alpha}(J_0 \times B_{\rho_0}(\xi_0), E)$.

Since $(t_0, \xi_0) \in \mathcal{D}(f)$ were arbitrary, the theorem is thus proved in the case m = 1.

Let us emphasize that in order to prove the regularity of the flow it is not necessary that the vector field is globally defined in a cartesian product $J \times \Omega$, it suffices to assume that f is defined in an open set $\Lambda \subset \mathbb{R} \times E$ containing $\mathcal{D}(f)$ satisfying the condition

(9.4.80) For any $(t_0, \xi_0) \in \mathcal{D}(f)$ there exists an open interval J containing 0 and t_0 , an open set $\Omega \subset E$ and $\rho > 0$ such that $J \times \Omega \subset \Lambda$ and $x(t,\xi) \in \Omega$ for all $(t,\xi) \in J \times B_{\rho}(\xi_0)$.

(3) The inductive step.

Assume now that the theorem has already been proved for m-1, m > 1, and let f be of class $C^{m,\alpha}$. Then the flow of the vector field f = f(t,x) is of class $C^{m-1,\alpha}(\mathcal{D}(f), E)$ by the inductive hypothesis. As we have proved in part (2), the function $y = D_{\xi}x$ is then well defined and is a solution of the affine equation (9.4.79), which can be viewed as a flow equation

(9.4.81)
$$\begin{aligned} \dot{y} &= F(t, \xi, y), \\ y(0, \xi) &= \mathrm{id}_E, \end{aligned}$$

The vector field F is defined in $\mathcal{D}(f) \times L(E, E)$ which is an open set contained in $J \times \Omega \times L(E, E)$ and $F \in C^{m-1,\alpha}(\mathcal{D}(f) \times L(E, E))$. In order to apply the inductive hypothesis it is advisable first to look at the modified flow problem

(9.4.82)
$$\dot{z} = (0, F(t, \xi, z^2)),$$
$$z(0, \xi, \eta) = (\xi, \eta),$$

for arbitrary initial conditions $(\xi, \eta) \in \Omega \times L(E, E)$, where $z = z(t, \xi, \eta) = (z^1, z^2)$. The vector field Φ is now of the form $\Phi = (0, F)$.

Since the vector field F is affine, we conclude from Remark 9.3.3 on page 139 that $\mathcal{D}(\Phi) = \mathcal{D}(f) \times L(E, E)$. Let us check that the open set are C^m -diffeomorphisms, where, in case of x[t], we only consider $t \in J$ satisfying $\mathcal{D}(f)[t] \neq \emptyset$. If $f \in C^{m,\alpha}$, $0 < \alpha \leq 1$, then the diffeomorphisms are also of class $C^{m,\alpha}$.

Proof. "(9.4.105)" Let $\xi \in \mathcal{D}(f)[t]$. We already know that x[t] is injective and of class C^m resp. $C^{m,\alpha}$, hence it suffices to prove, in view of Theorem 8.2.4 on page 107, that $Dx[t](\xi)$ is a topological isomorphism

$$(9.4.107) Dx[t](\xi) \in L_{top}(E, E).$$

Let $J_0 = [0, t]$, where we assume without loss of generality t > 0, and set

(9.4.108)
$$A(\tau) = Dx[\tau](\xi) \qquad \tau \in J_0.$$

Then $A \in C^{m-1}(J_0, L(E, E))^3$ and is a solution of the linear initial value problem

(9.4.109)
$$\begin{aligned} \dot{A} &= D_2 f(\tau, x) \circ A, \\ A(0) &= I = \mathrm{id}_E, \end{aligned}$$

cf. (9.4.40), hence $A \in C^1(J_0, L(E, E))$.

By continuity $A(\tau) \in L_{top}(E, E)$ for small $\tau, 0 \leq \tau < \epsilon$. Let $J_{\epsilon} = [0, \epsilon)$ and

(9.4.110)
$$B(\tau) = A^{-1}(\tau) \qquad \tau \in J_{\epsilon},$$

then

(9.4.111)
$$\dot{B} = -A^{-1}\dot{A}A^{-1} = -B\dot{A}B,$$

cf. exercise 4 of Exercises 3.5.5 of Analysis I, i.e., B solves the initial value problem

(9.4.112)
$$\dot{B} = -B \circ D_2 f(\tau, x)$$
$$B(0) = I$$

in J_{ϵ} .

This is also a linear differential equation in the sense of Definition 9.3.2 on page 139 even though the product is written in the form $B \circ D_2 f(\tau, \xi)$ instead of $D_2 f(\tau, x) \circ B$. For linear initial value problems the solutions are defined on the whole interval in which the vector field is defined, cf. Remark 9.3.3 on page 139, the solution $B = B(\tau)$ of (9.4.112) exists for all $\tau \in J_0$, in particular for $\tau = t$, and there holds $B \in C^{m-1}(J_0, L(E, E))$.

Thus, if we could prove that

$$(9.4.113) A(\tau)B(\tau) = B(\tau)A(\tau) = I \forall \tau \in J_0,$$

then (9.4.107) would immediately follow.

³Notice that A is defined in an open interval containing J_0 .

158 9. Ordinary differential equations

Proof. It suffices to prove $(9.5.4)^{\circ}$. Differentiating

(9.5.8)
$$\varphi(t) = \Phi(t) \circ \Phi(\tau)^{-1},$$

we deduce

(9.5.9)
$$\dot{\varphi} = \dot{\Phi}(t) \circ \Phi(\tau)^{-1} = A\Phi(t) \circ \Phi(\tau)^{-1} = A\varphi,$$

and of course there holds $\varphi(\tau) = \mathrm{id}_E$.

Variation of constants

Consider now the inhomogeneous differential equation

(9.5.10)
$$\dot{x} = A(t)x + \psi$$
$$x(\tau) = \xi.$$

Let y = y(t) be a special solution of the inhomogeneous equation

(9.5.11)
$$\begin{aligned} \dot{y} &= A(t)y + \psi\\ y(\tau) &= 0, \end{aligned}$$

then the solution of (9.5.10) is represented as

(9.5.12)
$$x(t) = \Lambda(t, \tau)\xi + y(t).$$

In order to find a solution of (9.5.11) we use the ansatz

(9.5.13)
$$y(t) = \Lambda(t,\tau)\xi(t)$$

trying to determine $\xi(t)$ such that y is a solution.

Setting $\xi(t) \equiv \text{const}$, then (9.5.13) is just a solution of the homogeneous equation with initial value ξ , cf. (9.5.5). Therefore the ansatz with variable ξ is often called *variation of constants*.

Differentiating the equation (9.5.13) yields

(9.5.14)
$$\dot{y} = \dot{\Lambda}\xi + \Lambda\dot{\xi} = A\Lambda\xi + \Lambda\dot{\xi} = Ay + \Lambda\dot{\xi}$$
$$\stackrel{!}{=} Ay + \psi,$$

in view of (9.5.4), where the symbol "="" means "should be equal to".

Thus, if y is supposed to be a solution of (9.5.11), then there must hold

$$(9.5.15) \qquad \qquad \Lambda \xi = \psi$$

or equivalently,

(9.5.16)
$$\dot{\xi} = \Lambda(t,\tau)^{-1}\psi(t),$$

but this can also be expressed as

(9.5.17)
$$\xi(t) = \int_{\tau}^{t} \Lambda(s,\tau)^{-1} \psi(s) = \int_{\tau}^{t} \Lambda(\tau,s) \psi(s),$$