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We shall show that the derivatives of @ can be obtained by formally
differentiating inside the integral and applying the chain rule. However, one
has to be a bit careful, since @ maps into W and not into E.

Let us first consider the most difficult part, namely, the function ¥ : U —
W, where

(9.4.52) W@W%ﬁéthﬂ%

to which we want to apply the results of Lemma 9.4.3.
Define the mapping

(9.4.53) X :Jo— L(W,E)
by setting
(9.4.54) x(T)y =y(1) V1€ Jy, VyeWw.

Obviously, x(7) € L(W, E) and ||x(7)|| < 1. With the help of x we shall be
able to apply the chain rule.
First define

(9.4.55) F:JoxU—E
by setting
(9.4.56) F(r,y) = f(1,x(T)y).

Since x(7) is a continuous linear mapping, the partial derivatives of F' with
respect to y exist up to order m and the chain rule yields

(9.4.57) Dy F(1,y) = Daf (1, x(7)y) o x(7)
and for 2 <k <m
(9.4.58) DYF(1,y) = D5 f(r,x(T)y) o (x(7), ..., x(1)),

where DEF(7,y) is viewed as an element of L, (W; E); explicitly there holds
for h; e W, 1<i<k,

(9.4.59) D§F(T, y)(hi,..., hg) = D§f(7, X(T)y)(x(T)h1, ..., x(7)hg).

With the help of the just defined mapping x, the equation (9.4.52) can
be written as

¢
(9.4.60) ¥ = [ Firy).
0
For fixed t € Jy, x(t)¥(y) is therefore of class C™ (U, E) and also of class
C"™ (U, E), if f is of class C™®| in view of Lemma 9.4.3, and

(9.4.61) D%mwwm}zéﬁﬁﬂnw, 0<k<m,

and all t € Jj.
We shall prove in Lemma 9.4.7 that then ¥ € C"™ (U, W), such that, in
view of the chain rule,

(9.4.62) X(t) o DFW(y) = D {x(1)¥(y)}  0<k<m.
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The function @ in equation (9.4.50) can written as

(9.4.63) D(&,y) =y — C&—V(y),

where C' € L(E,W) maps { € E to the constant function in W the image of
which is &, completing the proof that @ is of class C™ resp. C"™“.

Notice that any y satisfying @(£,y) = 0 is an integral curve of f with
initial value £, i.e., y = z[¢] restricted to the interval Jy. Since by assumption
yo = z[&o] € U, we now omit the reference that the integral curves have to
be restricted to Jy, it is tempting to use the implicit function theorem to
deduce that there is a smaller ball B, (£), po < p, and a function ¢ €
C™*(B,, (&), U) satisfying the equation

(9.4.64) P& p(8) =0 V&€ By (o)
We would then deduce that the flow = = z(t,£) could be expressed as

(9.4.65) z(t,§) = e(§)(t) = x(t) o p(§)  V(,€) € Jo X By, (&o)-

Moreover, differentiating (9.4.64) with respect to £ we would obtain, in
view of (9.4.63),

(9.4.66) Dy — C — D¥(p) o Dp =0,

i.e., Dp(€)(t) = x(t) o Dp(€) would be of class C! with respect ¢ and would
satisfy the differentiated flow equation with initial value Dg(£)(0) = idg, in
view of (9.4.50), (9.4.66), (9.4.61) and (9.4.59).

In order to apply the implicit function theorem A = Dy®(&g, yo) has to
be a topological isomorphism. From (9.4.63) we deduce

(9.4.67) A = idy —D¥(yp)

Let h € W satisfy Ah = 0, then we infer from the preceding equation and
(9.4.61)

(9.4.68) h(t):/o DgF(r,yo)hz/o D f(7,90)h(T),

in view of (9.4.57), and due to Gronwall’s lemma it follows h = 0.

If we can also prove that A is surjective, then the open mapping theorem,
Theorem 6.4.7 on page 12, would imply A € Lo, (W, W).

Thus let ¢ € W, we then have to find h € W such that Ah = g or
equivalently,

(9469) h(t) = /0 D2f(7', yo)h(T> + g(t) Vte Jp.

If g were of class C!, then this equation could be solved immediately,
since h would be required to be a solution of the affine equation

(9.4.70) h = Daf(t,y0)h+ g,
which exists, cf. Remark 9.3.3 on page 139.
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From the equation (9.4.65) and the remarks following it, we deduce that
y = Dox(t,€) is a solution of the affine equation

(9.4.79) y=Dzyf(t,x)oy

with initial condition y(0,€) = idg, and y,y € C°(Jo x B,, (&), L(E, E)).
The original flow z = x(¢, &) satisfies x € C%'(Jy x B,(&), E), cf. part (1)
of the proof. Assuming m = 1 we see that the coefficients of the affine
equation are continuous or Holder continuous of class C%% in both variables
depending, if f € C! or f € C%®. Stipulating that a = 0, if f only satisfies
f € C', we conclude from Theorem 9.3.4 on page 140 that y € C%%(Jy x
B, (), L(E, E)).

On the other hand, since z satisfies the flow equation, we infer & €
CY1(Jo x B,(&), F) and hence x € C1*(Jy x B,, (&), E). Employing the
flow equation once again, we also obtain & € C1*(Jy x B, (&), E).

Since (tg,&p) € D(f) were arbitrary, the theorem is thus proved in the
case m = 1.

Let us emphasize that in order to prove the regularity of the flow it is
not necessary that the vector field is globally defined in a cartesian product
J x §2, it suffices to assume that f is defined in an open set A C R x F
containing D(f) satisfying the condition

For any (to,&0) € D(f) there exists an open interval J containing
(9.4.80) 0 and tp, an open set {2 C F and p > 0 such that J x 2 C A and
x(t,&) € 2 for all (¢,£) € J x By(&o).

(3) The inductive step.

Assume now that the theorem has already been proved for m — 1, m > 1,
and let f be of class C™®. Then the flow of the vector field f = f(¢, z) is
of class C™~1:%(D(f), E) by the inductive hypothesis. As we have proved in
part (2), the function y = D¢z is then well defined and is a solution of the
affine equation (9.4.79), which can be viewed as a flow equation

y=Ft&y),

y(0,¢) =idpg,

The vector field F' is defined in D(f) x L(E, FE) which is an open set
contained in J x 2 x L(E,E) and F € C™~1%(D(f) x L(E, E)). In order
to apply the inductive hypothesis it is advisable first to look at the modified
flow problem

(9.4.81)

£=(0,F(t,€,2%)),

2(0,&,m) = (&,n),

for arbitrary initial conditions (§,n) € {2 x L(E, E), where z = z(t,£,n) =
(21, 2?). The vector field @ is now of the form & = (0, F).

Since the vector field F' is affine, we conclude from Remark 9.3.3 on
page 139 that D(®) = D(f) x L(E,FE). Let us check that the open set

(9.4.82)
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are C™-diffeomorphisms, where, in case of z[t], we only consider t € J sat-
isfying D(f)[t] # 0. If f € C™>, 0 < o < 1, then the diffeomorphisms are
also of class C™*.

Proof. ,,(9.4.105)¢ Let £ € D(f)[t]. We already know that z[t] is injective
and of class C™ resp. C™ %, hence it suffices to prove, in view of Theorem 8.2.4
on page 107, that Dz[t](§) is a topological isomorphism

(9.4.107) Dx[t](¢) € Liop(E, E).
Let Jy = [0, t], where we assume without loss of generality ¢ > 0, and set

(9.4.108) A(r) = Dz[7](§) T € Jp.

Then A € C™ Y(Jo, L(E,E))® and is a solution of the linear initial value

problem
A = D2f(7—7 x) © A7

(9.4.109) .
A(O) =1= 1dE,

cf. (9.4.40), hence A € C'(Jy, L(E,E)).
By continuity A(7) € Liop(E, E) for small 7, 0 < 7 < e. Let J. = [0,€)
and

(9.4.110) B(ry=A"Y7) rtelJ,
then
(9.4.111) B=-A"1'AA"' = —BAB,

cf. exercise 4 of Exercises 3.5.5 of Analysis I, i.e., B solves the initial value
problem

B=—BoDyf(r,x)

(9.4.112) B(O) =1

in J..

This is also a linear differential equation in the sense of Definition 9.3.2 on
page 139 even though the product is written in the form Bo D5 f(7,§) instead
of Dyf(7,2) o B. For linear initial value problems the solutions are defined
on the whole interval in which the vector field is defined, cf. Remark 9.3.3
on page 139, the solution B = B(7) of (9.4.112) exists for all 7 € Jy, in
particular for 7 = ¢, and there holds B € C™~!(Jy, L(E, E)).

Thus, if we could prove that

(9.4.113) A(T)B(t) = B(1)A(t) =1 V7€ Jo,
then (9.4.107) would immediately follow.

3Notice that A is defined in an open interval containing Jo.
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Proof. It suffices to prove ,,(9.5.4)¢“. Differentiating

(9.5.8) o(t) = ®(t) o (1)1,

we deduce

(9.5.9) p=d(t)od(r)" = AD(t) o O(7) ! = Ap,

and of course there holds ¢(7) = idg. O

Variation of constants

Consider now the inhomogeneous differential equation

T =Alt)x + ¢
(9.5.10) o) = £
Let y = y(t) be a special solution of the inhomogeneous equation
(9.5.11) i=Alty+v
y(r) =0,
then the solution of (9.5.10) is represented as
(9.5.12) x(t) = A(t, 7)€ + y(t).

In order to find a solution of (9.5.11) we use the ansatz

(9.5.13) y(t) = A(t, 7)E(t)

trying to determine £(t) such that y is a solution.

Setting £(t) = const, then (9.5.13) is just a solution of the homogeneous
equation with initial value &, cf. (9.5.5). Therefore the ansatz with variable
¢ is often called wvariation of constants.

Differentiating the equation (9.5.13) yields

g = AE + AE = AAE+ AE = Ay + AE

(9.5.14) '
= Ay + 1,
in view of (9.5.4), where the symbol ,,;“ means ,,should be equal to*.
Thus, if y is supposed to be a solution of (9.5.11), then there must hold
(9.5.15) A€ =)

or equivalently,
(9.5.16) £=A(t,m) " (),

but this can also be expressed as

(0517) &) = / A(s,r) " M(s) = / A(r, )6 (s),

(9.5.7)



