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148 9. Ordinary differential equations

We shall show that the derivatives of Φ can be obtained by formally
differentiating inside the integral and applying the chain rule. However, one
has to be a bit careful, since Φ maps into W and not into E.

Let us first consider the most difficult part, namely, the function Ψ : U →
W , where

(9.4.52) Ψ(y)(t) =
∫ t

0

f(τ, y(τ)),

to which we want to apply the results of Lemma 9.4.3.
Define the mapping

(9.4.53) χ : J̄0 → L(W,E)

by setting

(9.4.54) χ(τ)y = y(τ) ∀ τ ∈ J̄0, ∀ y ∈W.
Obviously, χ(τ) ∈ L(W,E) and ‖χ(τ)‖ ≤ 1. With the help of χ we shall be
able to apply the chain rule.

First define

(9.4.55) F : J̄0 × U → E

by setting

(9.4.56) F (τ, y) = f(τ, χ(τ)y).

Since χ(τ) is a continuous linear mapping, the partial derivatives of F with
respect to y exist up to order m and the chain rule yields

(9.4.57) D2F (τ, y) = D2f(τ, χ(τ)y) ◦ χ(τ)

and for 2 ≤ k ≤ m

(9.4.58) Dk
2F (τ, y) = Dk

2f(τ, χ(τ)y) ◦ (χ(τ), . . . , χ(τ)),

where Dk
2F (τ, y) is viewed as an element of Lk(W ;E); explicitly there holds

for hi ∈W , 1 ≤ i ≤ k,

(9.4.59) Dk
2F (τ, y)(h1, . . . , hk) = Dk

2f(τ, χ(τ)y)(χ(τ)h1, . . . , χ(τ)hk).

With the help of the just defined mapping χ, the equation (9.4.52) can
be written as

(9.4.60) χ(t)Ψ(y) =
∫ t

0

F (τ, y).

For fixed t ∈ J̄0, χ(t)Ψ(y) is therefore of class Cm(U,E) and also of class
Cm,α(U,E), if f is of class Cm,α, in view of Lemma 9.4.3, and

(9.4.61) Dk{χ(t)Ψ(y)} =
∫ t

0

Dk
2F (τ, y), 0 ≤ k ≤ m,

and all t ∈ J̄0.
We shall prove in Lemma 9.4.7 that then Ψ ∈ Cm,α(U,W ), such that, in

view of the chain rule,

(9.4.62) χ(t) ◦DkΨ(y) = Dk{χ(t)Ψ(y)} 0 ≤ k ≤ m.



2 2

2 2

9.4. Regularity results for the flow of a vector field 149

The function Φ in equation (9.4.50) can written as

(9.4.63) Φ(ξ, y) = y − Cξ −Ψ(y),

where C ∈ L(E,W ) maps ξ ∈ E to the constant function in W the image of
which is ξ, completing the proof that Φ is of class Cm resp. Cm,α.

Notice that any y satisfying Φ(ξ, y) = 0 is an integral curve of f with
initial value ξ, i.e., y = x[ξ] restricted to the interval J̄0. Since by assumption
y0 = x[ξ0] ∈ U , we now omit the reference that the integral curves have to
be restricted to J̄0, it is tempting to use the implicit function theorem to
deduce that there is a smaller ball Bρ0(ξ0), ρ0 ≤ ρ, and a function ϕ ∈
Cm,α(Bρ0(ξ0), U) satisfying the equation

(9.4.64) Φ(ξ, ϕ(ξ)) = 0 ∀ ξ ∈ Bρ0(ξ0).

We would then deduce that the flow x = x(t, ξ) could be expressed as

(9.4.65) x(t, ξ) = ϕ(ξ)(t) = χ(t) ◦ ϕ(ξ) ∀ (t, ξ) ∈ J0 ×Bρ0(ξ0).

Moreover, differentiating (9.4.64) with respect to ξ we would obtain, in
view of (9.4.63),

(9.4.66) Dϕ− C −DΨ(ϕ) ◦Dϕ = 0,

i.e., Dϕ(ξ)(t) = χ(t) ◦Dϕ(ξ) would be of class C1 with respect t and would
satisfy the differentiated flow equation with initial value Dϕ(ξ)(0) = idE , in
view of (9.4.50), (9.4.66), (9.4.61) and (9.4.59).

In order to apply the implicit function theorem A = D2Φ(ξ0, y0) has to
be a topological isomorphism. From (9.4.63) we deduce

(9.4.67) A = idW −DΨ(y0)

Let h ∈W satisfy Ah = 0, then we infer from the preceding equation and
(9.4.61)

(9.4.68) h(t) =
∫ t

0

D2F (τ, y0)h =
∫ t

0

D2f(τ, y0)h(τ),

in view of (9.4.57), and due to Gronwall’s lemma it follows h = 0.
If we can also prove that A is surjective, then the open mapping theorem,

Theorem 6.4.7 on page 12, would imply A ∈ Ltop(W,W ).
Thus let g ∈ W , we then have to find h ∈ W such that Ah = g or

equivalently,

(9.4.69) h(t) =
∫ t

0

D2f(τ, y0)h(τ) + g(t) ∀ t ∈ J0.

If g were of class C1, then this equation could be solved immediately,
since h would be required to be a solution of the affine equation

(9.4.70) ḣ = D2f(t, y0)h+ ġ,

which exists, cf. Remark 9.3.3 on page 139.
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From the equation (9.4.65) and the remarks following it, we deduce that
y = D2x(t, ξ) is a solution of the affine equation

(9.4.79) ẏ = D2f(t, x) ◦ y

with initial condition y(0, ξ) = idE , and y, ẏ ∈ C0(J0 × Bρ0(ξ0), L(E,E)).
The original flow x = x(t, ξ) satisfies x ∈ C0,1(J0 × Bρ(ξ0), E), cf. part (1)
of the proof. Assuming m = 1 we see that the coefficients of the affine
equation are continuous or Hölder continuous of class C0,α in both variables
depending, if f ∈ C1 or f ∈ C1,α. Stipulating that α = 0, if f only satisfies
f ∈ C1, we conclude from Theorem 9.3.4 on page 140 that y ∈ C0,α(J0 ×
Bρ0(ξ0), L(E,E)).

On the other hand, since x satisfies the flow equation, we infer ẋ ∈
C0,1(J0 × Bρ(ξ0), E) and hence x ∈ C1,α(J0 × Bρ0(ξ0), E). Employing the
flow equation once again, we also obtain ẋ ∈ C1,α(J0 ×Bρ0(ξ0), E).

Since (t0, ξ0) ∈ D(f) were arbitrary, the theorem is thus proved in the
case m = 1.

Let us emphasize that in order to prove the regularity of the flow it is
not necessary that the vector field is globally defined in a cartesian product
J × Ω, it suffices to assume that f is defined in an open set Λ ⊂ R × E
containing D(f) satisfying the condition

(9.4.80)
For any (t0, ξ0) ∈ D(f) there exists an open interval J containing
0 and t0, an open set Ω ⊂ E and ρ > 0 such that J ×Ω ⊂ Λ and
x(t, ξ) ∈ Ω for all (t, ξ) ∈ J ×Bρ(ξ0).

(3) The inductive step.

Assume now that the theorem has already been proved for m− 1, m > 1,
and let f be of class Cm,α. Then the flow of the vector field f = f(t, x) is
of class Cm−1,α(D(f), E) by the inductive hypothesis. As we have proved in
part (2), the function y = Dξx is then well defined and is a solution of the
affine equation (9.4.79), which can be viewed as a flow equation

(9.4.81)
ẏ = F (t, ξ, y),

y(0, ξ) = idE ,

The vector field F is defined in D(f) × L(E,E) which is an open set
contained in J × Ω × L(E,E) and F ∈ Cm−1,α(D(f) × L(E,E)). In order
to apply the inductive hypothesis it is advisable first to look at the modified
flow problem

(9.4.82)
ż = (0, F (t, ξ, z2)),

z(0, ξ, η) = (ξ, η),

for arbitrary initial conditions (ξ, η) ∈ Ω × L(E,E), where z = z(t, ξ, η) =
(z1, z2). The vector field Φ is now of the form Φ = (0, F ).

Since the vector field F is affine, we conclude from Remark 9.3.3 on
page 139 that D(Φ) = D(f) × L(E,E). Let us check that the open set
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are Cm-diffeomorphisms, where, in case of x[t], we only consider t ∈ J sat-
isfying D(f)[t] 6= ∅. If f ∈ Cm,α, 0 < α ≤ 1, then the diffeomorphisms are
also of class Cm,α.

Proof. ”(9.4.105)“ Let ξ ∈ D(f)[t]. We already know that x[t] is injective
and of class Cm resp. Cm,α, hence it suffices to prove, in view of Theorem 8.2.4
on page 107, that Dx[t](ξ) is a topological isomorphism

(9.4.107) Dx[t](ξ) ∈ Ltop(E,E).

Let J0 = [0, t], where we assume without loss of generality t > 0, and set

(9.4.108) A(τ) = Dx[τ ](ξ) τ ∈ J0.

Then A ∈ Cm−1(J0, L(E,E))3 and is a solution of the linear initial value
problem

(9.4.109)
Ȧ = D2f(τ, x) ◦A,

A(0) = I = idE ,

cf. (9.4.40), hence A ∈ C1(J0, L(E,E)).
By continuity A(τ) ∈ Ltop(E,E) for small τ , 0 ≤ τ < ε. Let Jε = [0, ε)

and

(9.4.110) B(τ) = A−1(τ) τ ∈ Jε,

then

(9.4.111) Ḃ = −A−1ȦA−1 = −BȦB,

cf. exercise 4 of Exercises 3.5.5 of Analysis I, i.e., B solves the initial value
problem

(9.4.112)
Ḃ = −B ◦D2f(τ, x)

B(0) = I

in Jε.
This is also a linear differential equation in the sense of Definition 9.3.2 on

page 139 even though the product is written in the form B◦D2f(τ, ξ) instead
of D2f(τ, x) ◦ B. For linear initial value problems the solutions are defined
on the whole interval in which the vector field is defined, cf. Remark 9.3.3
on page 139, the solution B = B(τ) of (9.4.112) exists for all τ ∈ J0, in
particular for τ = t, and there holds B ∈ Cm−1(J0, L(E,E)).

Thus, if we could prove that

(9.4.113) A(τ)B(τ) = B(τ)A(τ) = I ∀ τ ∈ J0,

then (9.4.107) would immediately follow.

3Notice that A is defined in an open interval containing J0.
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Proof. It suffices to prove ”(9.5.4)“. Differentiating

(9.5.8) ϕ(t) = Φ(t) ◦ Φ(τ)−1,

we deduce

(9.5.9) ϕ̇ = Φ̇(t) ◦ Φ(τ)−1 = AΦ(t) ◦ Φ(τ)−1 = Aϕ,

and of course there holds ϕ(τ) = idE . �

Variation of constants

Consider now the inhomogeneous differential equation

(9.5.10)
ẋ = A(t)x+ ψ

x(τ) = ξ.

Let y = y(t) be a special solution of the inhomogeneous equation

(9.5.11)
ẏ = A(t)y + ψ

y(τ) = 0,

then the solution of (9.5.10) is represented as

(9.5.12) x(t) = Λ(t, τ)ξ + y(t).

In order to find a solution of (9.5.11) we use the ansatz

(9.5.13) y(t) = Λ(t, τ)ξ(t)

trying to determine ξ(t) such that y is a solution.
Setting ξ(t) ≡ const, then (9.5.13) is just a solution of the homogeneous

equation with initial value ξ, cf. (9.5.5). Therefore the ansatz with variable
ξ is often called variation of constants.

Differentiating the equation (9.5.13) yields

(9.5.14)
ẏ = Λ̇ξ + Λξ̇ = AΛξ + Λξ̇ = Ay + Λξ̇

!= Ay + ψ,

in view of (9.5.4), where the symbol ”
!=“ means ”should be equal to“.

Thus, if y is supposed to be a solution of (9.5.11), then there must hold

(9.5.15) Λξ̇ = ψ

or equivalently,

(9.5.16) ξ̇ = Λ(t, τ)−1ψ(t),

but this can also be expressed as

(9.5.17) ξ(t) =
∫ t

τ

Λ(s, τ)−1ψ(s) =
(9.5.7)

∫ t

τ

Λ(τ, s)ψ(s),


