Übungen zu Analysis III

Blatt9

1 Let $f \in C^1(\Omega, E)$ be a time independent vector field, and let $x_1 \in C^1(J_1, \Omega)$, $x_2 \in C^1(J_2, \Omega)$ be two maximally defined integral curves of f that intersect, then there exists $\tau \in \mathbb{R}$ such that $J_1 = J_2 + \tau$ and

$$x_1(t+\tau) = x_2(t) \qquad \forall t \in J_2.$$

2

2

2 Let $\varphi \in C^1([0, b))$ be a solution of the linear differential equation

with $a \in C^0([0,b))$, then $\varphi \equiv 0$, if $\varphi(0) = 0$, $\varphi > 0$, if $\varphi(0) > 0$, and $\varphi(0) < 0$, if $\varphi(0) < 0$.

 $\dot{\varphi} = a \varphi$

3 Let $J = [0, b), a \in C^0(J)$ and assume that $\varphi \in C^1(J)$ satisfies the differential inequality $\dot{\varphi} \ge a \varphi$,

then $\varphi \ge 0$, if $\varphi(0) \ge 0$.

Note: Consider the function $\tilde{\varphi} = \varphi e^{\lambda t}$ with $\lambda \in \mathbb{R}$ chosen appropriately. 4 Let H be a real Hilbert space, $f \in C^1(H, H)$ and suppose

 $\langle f(x), x \rangle \ge c ||x||^{2+\epsilon} \quad \forall x \in H$

with positive constants c, ϵ . Let x = x(t) be an integral curve of f with initial value x_0 and maximal domain of definition J = (a, b), then b is a priori bounded, $b \leq \operatorname{const}(x_0, c, \epsilon)$, unless $x_0 = 0$ and f(0) = 0.