Übungen zu Analysis III

Blatt 5

- 1 Suppose that the integral kernel k = k(t, x) in Number 8.1.4 is uniformly Hölder continuous with respect to the variable x with exponent α , then the integral operator K in 4 (8.1.12) is compact.
- **2** Define polar coordinates in \mathbb{R}^3 $f(r, t, \theta) = (x, y, z)$ by setting

 $x = r\cos t\sin\theta, \quad y = r\sin t\sin\theta, \quad z = r\cos\theta,$

where $(r,t,\theta) \in U = \mathbb{R}^*_+ \times (0,2\pi) \times (0,\pi)$ and show that $f \in \text{Diff}^{\infty}(U,V)$, where $V = f(U) = \mathbb{R}^3 \setminus H$ and H is the closed half-plane $\mathbb{R}_+ \times \{0\} \times \mathbb{R}$. 4

- **3** Let (ξ_i) resp. (ξ^i) be the components of a covariant resp. contravariant vector in a Euclidean coordinate system in \mathbb{R}^2 . How are these components transformed by switching to polar coordinates (r, t), cf. Remark 7.4.12 on page 79. 24
- 4 Prove Corollary 8.2.5.
- ${\bf 5}\,$ The trajectory of a particle in \mathbb{R}^n satisfies, in Euclidean coordinates, the equation

$$\dot{x}^{i}(\tau) = f^{i}(\tau), \quad x(0) = x_{0},$$

where the parameter τ represents the time. How does this equation look in a diffeomor-2phic coordinate system $\tilde{x} = \tilde{x}(x)$.

8

6 Prove Lemma 8.2.3.