Übungen zu Analysis III

Blatt 4

1 Let *E* be a Banach space, *H* a Hilbert space, and $f : \Omega \subset E \to H$ a map of class C^m , $m \in \mathbb{N}$, such that

$$f(x) \neq 0 \qquad \forall x \in \Omega.$$

Let P(x) be the projection onto the subspace $\langle f(x) \rangle$, then the map

$$P: \Omega \to L(H, H)$$
$$x \to P(x)$$

is also of class C^m .

2 Let *E* be a Banach space, $\Omega \subset E$ open, and $u_i \in C^m(\Omega, \mathbb{R}^n)$, $1 \leq i \leq n$, such that the *n*-bein $(u_i(x))$ is a basis of \mathbb{R}^n for all $x \in \Omega$. Consider $f \in C^m(\Omega, \mathbb{R}^n)$, then *f* can be expressed in the form

$$f = f^i u_i$$

with real valued functions $f^i : \Omega \to \mathbb{R}$. Prove that $f^i \in C^m(\Omega)$. *Note:* Exercise 1 is of little help in this situation.

3 Let E, F be Banach spaces, $\Omega \subset E$ open and I = [a, b] an interval. Assume that the partial derivative of $f \in C^0(I \times \Omega, F)$ with respect to $x \in \Omega$ exists such that $D_2 f \in C^m(I \times \Omega, L(E, F))$, then

$$\Phi(x) = \int_{a}^{b} f(t, x)$$

is of class C^{m+1} and

$$D^k \Phi(x) = \int_a^b D_2^k f(t, x) \qquad \forall 1 \le k \le m+1,$$

cf. Theorem 5.9.3.

4