Übungen zu Analysis III

Blatt 3

1 Consider the function $f : \mathbb{R}^2 \to \mathbb{R}^2$

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

and prove that the second partial derivatives of f exist in the origin, but that they are neither continuous nor symmetric there. 4

- **2** Let $A \in L(E, F)$, then $A \in C^{\infty}(E, F)$ and $D^2A \equiv 0$.
- **3** Prove the relation in (7.5.86).
- 4 Let $a \in L_k(E_1, \ldots, E_k; F)$, then $a \in C^{\infty}(\prod_{i=1}^k E_i, F)$ and $D^{k+1}a \equiv 0$. Note: Give a simple and elegant proof.
- 5 Consider in $\Omega \subset \mathbb{R}^n$ a symmetric, covariant tensor of second order g_{ij} , which is supposed to be invertible with inverse $(g^{ij}) = (g_{ij})^{-1}$. A covariant tensor of this kind is said to be a *metric*.

Prove that

- (i) The inverse g^{ij} is a contravariant tensor of second order.
- (ii) Relative to a fixed metric g_{ij} define the *divergence* of a contravariant vector field $\xi = (\xi^i)$ by

div
$$\xi = \frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^i} \left(\sqrt{|g|} \xi^i \right),$$

where $g = \det(g_{ij})$, and the *rotation* of a covariant vector field $\lambda = (\lambda_i)$ by

$$\operatorname{rot} \lambda = (\lambda_{i,j} - \lambda_{j,i}).$$

The comma indicates an ordinary partial derivative

$$\lambda_{i,j} = \frac{\partial \lambda_i}{\partial x^j}.$$

Prove that div ξ is a function and rot λ a covariant tensor of order two.

6

4

4

4

3