Übungen zu Analysis III

Blatt 10

3

3

- **1** Prove the claim (9.4.48).
- **2** Prove Lemma 9.5.10.
- **3** Let E, F be Banach spaces, $\Omega \subset E, U \subset F$ open, J an open interval containing 0 and $f \in C^0(J \times \Omega, E)$ satisfying $D_2^k f \in C^0(J \times \Omega)$, $1 \leq k \leq m$, and $D_2^m f$ is locally in J uniformly Hölder continuous with respect to $x \in \Omega$ with exponent $0 < \alpha \leq 1$. Let $\varphi \in C^{m,\alpha}(U, \Omega)$, and assume that the initial value problem

$$\dot{x} = f(t, x)$$
$$x(0) = \varphi(\eta_0)$$

has a solution in a compact interval I = [a, b], a < 0 < b, such that $x \in C^1(I, E)$, then there exists an open interval J_0 and $\rho > 0$ such that $I \subset J_0 \subset J$, $B_\rho(\eta_0) \subset U$ and the flow $x = x(t, \eta)$ exists for all $(t, \eta) \in J_0 \times B_\rho(\eta_0)$ solving

$$\dot{x} = f(t, x)$$

 $x(0, \eta) = \varphi(\eta)$

and $D_2^k x \in C^{0,\alpha}(J_0 \times B_{\rho}(\eta_0)), 0 \le k \le m.$

Hint: I know of two proofs by induction. Both use already known facts, some of which have first to be checked that they are still valid under the present assumptions. 10