Übungen zu Analysis I

Blatt 11

- **1** Sei E ein metrischer Raum und $A\subset E$. Man beweise, daß d(x,A) stetig ist in E.
- 2 Man beweise Proposition 2.2.9.
- 3 Sei $f: \mathbb{R} \to \mathbb{R}$ eine stetige Abbildung mit der Eigenschaft

$$f(x+y) = f(x) + f(y) \quad \forall x, y \in \mathbb{R},$$

dann gilt $f(x) = \lambda x$ mit einer reellen Zahl λ .

4 Sei $n \to r_n$ eine Abzählung der rationalen Zahlen im Intervall I = [0,1]. Für $x \in I$ definiere

$$A(x) = \{ n \in \mathbb{N} \colon r_n < x \}$$

und

$$f(x) = \sum_{n \in A(x)} 2^{-n}.$$

Dann ist die Einschränkung φ von f auf die Menge der irrationalen Zahlen stetig; φ kann aber nicht als stetige Funktion auf ganz I fortgesetzt werden.

- **5** Sei $A: \mathbb{R}^n \to \mathbb{R}^m$ linear, dann ist A stetig.
- **6** Seien E, E' metrische Räume und $f: E \to E'$. Dann gilt

$$f$$
 stetig \iff $f(\bar{A}) \subset \overline{f(A)} \quad \forall A \subset E.$