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BOUNDARY VALUE PROBLEMS FOR SURFACES
OF PRESCRIBED MEAN CURVATURE

By Claus GERHARDT

0. Introduction

We are interested in boundary value problems for non-parametric surfaces of prescribed
mean curvature, i. e. we are interested in solutions of the equation

0.1) Au+H(x, uy=0
in a domain Q = R", n22, where A is the minimal surface operator in divergence form
0.2) Au=—D'(a;(Du),  a(p)=p'(1+|p|)~ "2

and where n~' H(x, u) is the mean curvature of the surface & ={(x, u(x)): xeQ}. The
equation (0.1) has been intensively studied with two entirely different types of boundary
conditions, namely, with Dirichlet boundary conditions

0.3) u=@ on 0Q
and with Neumann boundary conditions
0.4 —a;p;=p on 0Q,

where p=(py, ..., p,) is the outward unit normal to 6Q, and where ¢ and B are given
functions on the boundary. These problems are well-known under the names Plateau’s
problem and capillarity problem, respectively.

As the equation (0.1) is the Euler equation of the functional
I(v)=f (1+le|2)”2dx+j j H(x, t)dtdx,
} Q JaJo

there correspond the following variational problems to Plateau’s problem and to the
capillarity problem

(0.5) I)»min, VoeH" (Qn{v|n=0}
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76 C. GERHARDT

and

0.6) I(v)+J Bvds#,_, — min, YveH" 1 (Q),
a

where we use the standard notation for Sobolev spaces and where #, is the k-dimensional
Hausdorff measure.

Many mathematicians investigated these problems, and nowadays we know rather well
the sufficient (and in some sense also necessary) conditions guaranteeing the existence of
solutions to the variational problems (0.5) and (0.6), namely: restricting us to the case of a
bounded domain Q with C2-boundary dQ and to Lipschitz continuous mean curvature
functions H=H(x, ¢), we have to assume for the Plateau problem ¢ € C°(dQ) and

0.7) |H(x, (p(x))|§(n—1)H,,_1(x), VxedQ,
JH
(0.8) Ego
and
0.9 J Hodx|=(1-¢)P(G),
G

for any subset G < Q, where Hy=H{ ., 0), g, is a small positive number independent of G,
and where P (G) denotes the perimeter of G in the sense of de Giorgi [5]. H,_, denotes the
mean curvature of 0Q.

For the capillarity problem we need the conditions fe L* (0Q):

(0.10) |B\§1
and
(0.11) ?ggpo.

Under these assumptions it is known that both problems have uniquely determined solutions
of class C* in the interior of Q, which are uniformly continuous resp. bounded.

Moreover, assuming Be C% ! (6Q) and
0.12) 1B]<1,

we may conclude that the solution of the capillarity problem is of class H?' ?(Q) for any finite
p=1 (cf. [7] and [25], [26] als0). In both cases the regularity (up to the boundary) of the
solutions increases with the regularity of the data.

The condition (0. 7) relating the mean curvature of the surface with the mean curvature of
the boundary of Q is absolutely necessary for the solvability of the Plateau problem. This
has already been recognized by Rado [21] for the classical Plateau problem and by Serrin [22]
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SURFACES OF PRESCRIBED MEAN CURVATURE 77

for the more general problem of finding a surface of prescribed mean curvature having given
boundary values. Nevertheless, starting with works of de Giorgi, Miranda, and Giusti the
variational problem (0. 5), which only makes sense for domains satisfying the mean curvature
inequality, has been generalized to the following version of Plateau’s problem, namely, to
find a solution ue H'** (Q) of the variational problem

(0.13) I(v)+J |v—¢|d#,-y >min, VveH"'(Q).
aQ

It is not yet known if a solution of this problem is always uniquely determined, except in the
case when the condition (0.7) is valid locally on Q. Then we may also conclude

(0.14) u(x)=¢(x),

for those points x e dQ (cf. [8], [20]).

To solve the variational problems (0. 6) and (0. 13) quite different techniques are used, and
one aim of this paper is to indicate a common approach to these problems studying the
corresponding boundary value problems.

To give the idea, let u be a solution of the problem (0.13) and let 15C'(Q) be
arbitrary. Calculating formally the first variation of the functional in (0.13) we obtain

(0.15) J a;(Du)Din dx+J H(x, u)ndx—f—f Bu—o)nd#,_, 30,
Q Q

Q

where B is the subdifferential of the convex function ¢ — | ¢, i. e:

-1, t<0,
0.16) B(t)=<[—1, 1], t=0,
1, t>0.

The “equation” (0.15) says that the multivalued left-hand sight —representing a
set —contains zero. Thus, we are led to the following boundary value problem

{ Au+H(x, u)=0 in Q,

(0.13) —a;p;eB(u—¢@) on 0Q,

where P is a maximal monotone graph ().

This is a boundary value problem of capillary type, and we shall try to solve it using the
techniques appropriate to those problems. The crucial step is to prove a priori estimates for
the gradient of smooth solutions u, of approximating problems
| {A%+HWJQ=OinQ,

(0.18) —a; p; =P, (u,— ) on 0Q,

corresponding to smooth monotone approximations B, of .

(*) For uniformly elliptic (linear) operators A boundary value problems of this type have already been studied
in [2].
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78 , C. GERHARDT

Unfortunately, we cannot apply the methods of [7] since the estimates are not to depend on
|6Ba/6t|; instead we shall use a version of Simon’s and Spruck’s proof for the gradient
estimate of capillary surface [25]. The disadvantage of that proofis, that Simon and Spruck
have to assume H to satisfy the strict inequality (0.11) and not only the less rigorous
condition (0.7). Thus, the minimal surface case is excluded in their setting.

Our methods will also be applicable to variational problems of the form
(0.19) Iv)>min, VeeH"' Q) n{9;=v|0nZ02},

where constraints are given on the boundary. We shall prove the existence of uniformly
Lipschitz continuous solutions in this case under suitable assumptions on the data. In the
physical interesting case n=2 we are able to consider general mean curvature functions H
satisfying (0.7) instead of (0.11). The parametric analogue of (0.19) for minimal surfaces
has been considered by Hildebrandt and Nitsche [15].

In Section 6 we also prove local regularity results for solutions of mixed boundary value
problems which have been studied by Giusti [14].

Finally, let us mention the striking result that in the case of strictly increasing mean
curvature H, i. e. in the case when (0. 11) is valid, the solutions of the generalized Plateau
problem (0.13) are uniformly Holder continuous provided ¢ is Lipschitz and dQ of

classe C*. This result also holds locally near the boundary if the assumptions are only
locally fulfilled.

At this place we should like to thank Leon Simon for his interest in this paper and for some
stimulating discussions.

1. Notations and preliminaries

In the next section we shall be interested in a priori estimates for the gradient of smooth
solutions of the boundary value problem

(1.1) { Au+H(x, )=0 in Q,

—a;p;=PB(x, u—@) on 09Q,

where Q is a bounded domain of R", n>2, with boundary 0Q of class C*. H=H(x, t),
B=B(x, t), and @ =@ (x) are given Lipschitz continuous functions satisfying the conditions

JH
>
(1.2) = =>%>0,
ap
. —+=2>0,
(1.3) 3 =
and
(1.4) |B|<1—a, a>0.
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SURFACES OF PRESCRIBED MEAN CURVATURE 79

d will denote the distance function, d (x)=dist(x, Q). We shall derive local estimates
near the boundary, i. e. we shall work in a neighbourhood Q;=B;(x,) N Q of a point
Xo€0Q. & will be assumed small enough to ensure that d is of class C* in Q.

Let L, M, and N be constants such that

0
1.5) sgsp 5;13(3«7, u—w)\éL,
. 0
(1.6) sup{|u|+|H(x, u)|+‘—H(x, u) }éM,
a, Ox
and
a.mn su i(p =N
' anngn, ox T

The definitions that will follow are almost identical to the corresponding ones in [25].
We repeat them for the convenience of the reader.

We define (D u); (x) to be the tangential derivative of u relative to the hypersurface {E€Q;:
d(x)=d()}, i. e.:
(Du)(x)=Du(x)—[Du(x).Dd(x)] Dd(x),
vr is defined oh Qs by .
vr=(1+|(Du)|H*2.
0 is assumed to be small enough to ensure that we can introduce local coordinates y = y (x)

in Q; which “flattens” dQ near x,. We may choose y=(y', ..., y") to be a diffeomorphism
from Q; into R" such that

y'eC3(Q,), i=1,..., n—1,
y'=d on Q;,

and such that the transposed Jacobian matrix J [i. e. the matrix with ith row (dy/dx’)(x)]
satisfies

T)IX)=((),  xeQs,
where

(1.8) e"=0, i=1,...,n—1, em=1
and

AME|P<ei(y)EE,  EeR", yeG,

for some positive constant A, where G; is the image of Q; under the transformation y = y (x).
A will denote a constant such that

%y
O0x 0x

%y
0x 0x 0x

|2 <A,

0x

uniformly in Q.
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80 C. GERHARDT

If fis a function defined on Q;, then f'is defined on G by f (»)=f(x). For functions f,
geC' (Q;) we have

(1.9 Di f (x).Dig(v)=€"(y). D} (). Dig(y),

in view of the definition of the e”'s.
p will denote the Jacobian of the transformation y — x, i. e.:

p()=(det(e’)” 2,  yeGs.
1/2 We also introduce the following functions on Gy:

5(Y)=(1+eij(Y)-D§L7-D’§5)1/ZEU (x)=(1+|Du(x)|**'2,
n—1 1/2
vT(y)=<1 + Y €7(y).Diu.DJ u> =v;(x),
i,j=1 . )

n—1 s 1/2
vT(Y)=<1+ > |D;”2|> )
i=1
vi=e/(Diu/v), i=1,...,n,

X=(5T/5)2’
and
gi=eéi-v,.v;, i j=1,...,n
Note the relations
(1.10) x=g"=1-V2.

In terms of the transformed coordinates (1.1) becomes

(1.11) ~Dy(r-v)+p.H(y, =0 on G,
—Vv,=Pp(y.u—9) on T,

where .
I'=G;n{yeR": y"=0}.

This can most easily be seen by writing equation (1.1) in integral form, namely,

>

1.12) fai.DiCdx+J H(x, z;).e;dx+J B(x, u—).Ld#,_, =0,
) Q- Q

0

for all Lipschitz continuous { with support in B;(x,). Making the transformation y= y(x)
we obtain

@13 J E‘I.e"ij,E.DJyf.udy+f
G;

F(y, 7.2 pdy +j B, i—3).LndHss =0,
G; T
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SURFACES OF PRESCRIBED MEAN CURVATURE 81

or equivalently

(i.14) j u-%-DinderJ w.H(y, E).ndy+J w.BQy, u—9).nd#,-,=0
G; G; r

for all Lipschitz continuous functions n with support in Us, Us={ jz(x): x€Bs(xo)}. The
relations (1.11) then follow immediately.

We now present some inequalities which will be needed in the next section. First the
Cauchy inequalities

(1.15) a;; E," nj§(aij Ctgi &j)llz Aa;; n"n")”zy
valid for all §, neR" and any symmetric positive semi-definite matrix (a;;), and
(1.16) ab<ga®+(4g)" ' b?,

valid for real a, b and €>0.
Next we have the identity

L.17) {D\'.G,:D". y"iy™ (D) u/v)+v" ' g Dy Dju +7visg™ Dy v* (D u/v),
1. ' ‘

where (y¥) is any differentiable n x n matrix on Gj satisfying
yi=vyli, yiyti=eli i j=1,...,n,
=0, i=1,...,n—1. y™"=1,
and where (y;;)=(y)" 1.
In view of (1.8) we may choose
(YY) =(e")"2.

The coefficients y*/ will then be of class C? in G; and their derivatives up to order 2 will be
bounded in terms of n and A.

The relation (1.17) can be easily derived from the following identities
D! (y™. Dii/0) =" (S —y™ ¥ .(D}u/5).(Dyu/v)}. D}, (v D ),
(1.18)
.m=1,....n,
and
(1.19) Yiem g9 =y —y™ (D} u/v)v;, m,j=1, ..., n.

&s denotes the Kronecker symbol.
Due to the fact that D%y¥ =0 if i or j are equal to n, we derive from (1.19) using (1.15):

(1.20) |DSV:|<c. @+x'3),  i=1,...,n, o=l ....n-1,
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82 C. GERHARDT

where the non-negative function ¥ is defined on G; by
n—1 - o~
(1.21) ¢*=v"%) ¢“DSDLu.DSDu,
c=1

- and where the constant ¢ depends on n and A (in the following we shall denote varying
constants with the same letter c).

Moreover, since
Dyv,=Dj(u~ .. v,)=(Dsp™ ). p.V, +1 1. Do (. V)
=(D;u“)-u-3,.—u“:ZlDi(u-ViHﬁ(y, u)
we obtain from (1.20):
(1.22) | DV, |<c(@+1),

where ¢ depends on n, M, and A.
The quantity %2 of (1.21) satisfies

(1.23) v 1Y Did,. Db <0. 42,

as is easily calculated.

2. Gradient estimates

We are going to prove that the gradient of u or equivalently the gradient of # is uniformly
bounded in some boundary neighbourhood Qs resp. G;. First we prove that the tangential
derivatives of u are uniformly bounded.

THEOREM 2.1. — Let ue C*(Q) be a solution of the boundary value problem (1.1). Then,
~the tangential gradient of u, (Du);, is uniformly bounded in a suitable boundary
neighbourhood Qs in terms of the quantities L, M, N, A, 6, and x«.

Proof. — We use the identity (1.14) with n=p ™' {, where § is of class C2 ! (U;) and obtain

(2.1) j{%D;z;w.D;u-‘.V,-cm(y,ro.c}dy +jﬁ(y,ﬂ—<7>>cdyf,,_1=o.
Gs r

Replacing { by — i DS (. DS u), where {e C ! (Uj) is arbitrary, and integrate partially
c=1
we get
(2.2 J{ngi.D;(z;.Dgﬁ)JrD;(p.D;u'l).\“/i.D;ﬂ.z;
Gs

o1 e~ e~y OH o~ 0H | ~2
+p.Dyp 1'Dyvi'Dyu'C'i'W'Dyu'C"'E"Dyul .C}dy

0 G 0 o (5~ Gy
= —L{%.Dylu.C+£—.Dy(u—(p).D,u.C}d&f,,_l,

where we sum over Greek indices from 1 to n—1.
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SURFACES OF PRESCRIBED MEAN CURVATURE 83

Inserting { =max (;n?—h, 0) in this identity, where neC!(U;), 0Sn <1, is a cut-off
function and h is a positive number greater than max (N, 1), and using the relations (1.2),
(1.3), (1.17), and (1.20) we derive the inequality

2.3 j{x.|D‘;§|2.C+5‘1g“D‘y’DJyﬂ.D;(C.D‘;J)}dy
G,
éj —{Dgy™ ™ (D} u/0) + 745 ™ DS v (D} /)
Gs

xDi(C.D;’J)dy+c1.j br.Cdy

Gs
'|‘C1.Jv ((g+xl/2)'ﬁT'Cdy+cl'fﬁT'Cd‘#n—l'
G; r

Note that the second term of the boundary integral in (2. 2) is nonnegative in view of (1 . 3) and
the definition of .

The constant ¢, in (2.3) depends on L, M, and A.
Moreover, we remark that no boundary integral occurs in (2.3) if B only depends on t.

Denoting the first integral on the right-hand side of (2.3) by I, and taking the relations
(1.15), (1.16), (1.21), :

(2.4 2|Dgul?.t26% .8,
and |

Didr=06;'.DiDJu.DSu, i=1, ..., n,
into account we deduce from (2.3):

2.5) J{ﬁ%.§+5.<€2.c}dy+[ X2 DL 6 Dy 6,12 dy
G,

A(h.m)

§C1~I+01-J ﬁT-Cde—H'CpJ
r

Gs

ﬁT.Cdy+c2.f br.y.vdy,

A(h,m)

where the constant ¢; depends on %, L, M, A, where ¢, depends on the same quantities and on
|Dn|, and where

A(h, m)={yeGs: br.n*>h}.

Dividing the integral I into the parts
I,= _L DS y™ y™ (D} u/v). D}, (§. DS u)dy

and

1=~ | g D5y D30,y D3,
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84 C. GERHARDT

and noting pérticularly the relations (1.18), (1.19), and
DSyY=0, if iorj areequal to n,
we transform the term I, via integration by parts as follows
2.6) I=Z _{Dy D3y (D). Dy L
+ DS Y™ [8 s — Y™ v . (D) u/v). (D} u /)]
x (D% u/v). DLy . Du.L+0" DSy™ . vmg® . DiDiu. DS u. } dy.

Then, using (1.15), (1.16), and (1.21) we obtain

2.7 Ilga.J J%chyﬂlf 67.Cdy,
G; G;
where € is an arbitrary positive constant and where ¢, depends on A and «.
Similarly I, is estimated by

(2.8) Izé&J

Gs

E%ZCdy+cl.j dpCdy

Gs

+8.j xl/zg”D;ﬁTD{,ﬁTnzdy+c2.J br.y.vdy,
A(hm) A(h, m)
with constants ¢, ¢, depending on €, A, resp. on €, A, and |Dn].

Combining the relations (2.5), (2.7), and (2.8), and using the estimate

2.9) 9" Di{DI{< -8 ¢Y D}, Didr.n%+ 8 gV DinDin.#2.1n?

we then conclude

(2.10) L ﬁ%.cdy+J WZ.UHJ 12 g" Dyt DiCdy

G, G,

(h, m)

éCI.J ﬁT.Cdy+c1.J ﬁT-Cde—l‘l'Cz-J br.x vdy,
) Gs ro A
where ¢; dependsonx,L, M, N, A, §, and ¢, in addition on | Dn | and where we note that the

boundary term vanishes if B = (t).

To estimate the boundary integral in (2.10) in the general case when B=B(x, t) we
use (1.4) and the inequality

(2.11) Jx“z.f.z?d;f"_lgcl.f {X S+%(@" Dy f Dy f)2+312 1.9} Tdy,
r Gs
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valid for all non-negative functions feC?2 !(Us), where ¢c; depends onn, A, M,
and a. Note that in view of (1.4) the estimates

(2.12) brSv=c,.0r,

hold on I', where the constant c¢; depends on a. A proof of (2.11) is given in [25],
formula (2.13).

Inserting f=¢ in (2.11) we conclude

>

(2.13) jﬁT.Cd%n_lgcl.J Z;xf;'dy+s.j xM* g DLC DIt dy
r

G; G;

+8.J E%ZQdy+cl.J br.yvdy.
G, A(h.m)

Thus, we finally deduce from (2. 10):
(2.14) J ﬁ%.gdy+J E%Z.Cdy+J x2 g DL DI dy
G; Gs G;
gc,f ﬁT.Cdy+cz.J bryx vdy,
G, A(h. n)

where the constants ¢, ¢, depend on the quantities mentioned above, and where we note that
only ¢, depends on | D7

Since the support of { is contained in the set where 9 is greater or equal to h, we may drop
the first integral on the right-hand side of (2.14) provided that h=2.c;.

Assuming this in the following we obtain

(2.15) J ﬁTCdy+J E%Z.Cdy-kj xllzgifD;CDﬁgdy§cz.J br.y.vdy.
Gs G,

G, A(h, n)

We shall use this inequality twice. First we observe that

2.16) f Cﬁ%dyécz.f B2dy,
G, Alh. n)
since _
&y v<c 2.

From the definition of {=max (#;.1n*—h, 0) we then conclude

(2.17) (k—h).j ﬁ%dyécz-J b7 dy,
Ak, m) A(h,m)

for all k2h=hy=max {1, N, 2.¢,}.

But this implies in view of a lemma due to Stampacchia (¢/. [30], Lemma 4. 1) that d;.12 is
p-summable over Q with respect to the measure 53dy for any finite p provided

that J #2dy is bounded.
Aho. )
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Hence we obtain

(2.18) 6:€L?(Gyp), V1Zp<oo,
provided
(2.19) 6:€L%(Gajays)-

To prove (2.19) we use (2.2) with

_ max(r—h, 0)

Oy

n’=w.n?,

where 7 is a cut-off function, and where h is a fixed number greater than max (1, N). Let
A(h)={xeG;: {(x)>0}. We then deduce using (1.23):

(2.20) f z‘;%.Cdy+J E%Z.Cdy+J 2.2 ¢"Diw.Diw.n*dy
Gy Gs

A(h)

gc.I+c.J br.0dAH,—y +C.J
r

Gs

6T.Cdy+c.f br.dy,

A(h)

where the constant ¢ depends on h, |Dn | and known quantities. The symbol I=1, +1,
has the same meaning as in (2.5). I, can be estimated by

(2.21) I,gc.J ﬁT.ﬁdy+s.j V€2 .Cdy
G; G;

and I, by

(2.22) Izgs.f

Gs

E%Z.Qdyﬂ—s‘j 02.x'?g"Diw.Diwn?dy

Ah)
+cj ﬁT.Cdy+c.J brdy.
Gs A(h)

The boundary integral in (2. 20) can be estimated by applying (2. 11) with ¢ in place of fto
obtain

2.23) J ﬁT.t;de,,_lgc.f
r

Gs

ﬁT.Cdy+c.J dy
A(h)

+8.J J%Z.Cdy+sJ. 0. 4% .g"Diw.Diw.n2dy.
G; A(h)

Combining the inequalities (2.20)-(2.23) we conclude

(2.24) J ﬁ%.gdygc.J ﬁTdygc.J vdy.
G, G; G,
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Hence

J 62.n%dy
G;

j vdy
G,
is bounded.

But this result follows immediately from the fact that

will be bounded provided that

(2.25) f (1+|Du|?"?dx Zconst.,
Q

for any surface we consider. Assuming u to be bounded, (2.25) can easily be derived by
multiplying equation (1.1) with u and integrating by parts.

Now, we return to inequality (2.15). In order to deduce the boundedness of 9 we need
some kind of Sobolev inequality.

LemMa 2.1. — For each non-negative function f € C> ! (Us) we have

1/a . -
(2.26) {J fz“.xzu‘l.x.gdy} §c1.J f2yx.vdy
G; G;

+c1.J x”z.(g”D;f.ny'f)”z.f.x”z.ﬁdy+c1.J €.f2.x'\?.vdy,
G;

Gs

where a=n/(n— 1) and where the constant c, depends on n, A, and M.
Lemma 2.1 is proved in [25], ¢f. the formula following (2.16).
‘Applying (2.26) with { in place of f, we conclude from (2.15):

1/a -
(2.27) J ﬁ%.Cdy+{j Cz“.xz“_l.x.gdy} écz.J {or+03+03} x.vdy,
G; G; A(h, m)

or, if we express every integral in terms of the measure du=y .0 dy, and if we use the trivial
estimate { <, we finally obtain

1/a
(2.28) Jf‘%ﬁwﬂ gzu.xza-ldu} écz-J {dr+07+07} dp
G, G; A(h,m)

On the other hand, we have with g=2(3n+2)/3n+1):

(229) Cq=c4 (n+1)/(3n+1) .x—(n+ 1)/{(3n+1) .CZ n/(3n+ 1)'X("+ 1)/(3 n+1)’

from which we deduce

2(n+1)/(3n+1) (n—1)/(3n+1)
(2.30) f c"dug(f Cz-x'”zdu> (f |€|2“~x2°‘“du) ,
G, Gs Gs
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~ where we used the Holder inequality with

_3n+l1 ,_3n+1 1_'__1__1
P=onv2 P Pty Th

Moreover, noting that

n—1 _n—l n _l n
3n+1  n 3n+1 a 3n+l’

and that :
2(n+1) n 3n+2 -

r= — )
3n+1 3n+1 3n+1

we derive from (2.28) and (2.30):
(2.31) J Z;“duéc'z.{f (ﬁT+ﬁ%+ﬁ%)du}.
G A, )

We have proved before that 1 belongs to L?(Gy/,) for any finite p. Thus, choosing the
support of n sufficiently small, supp n = Gy,, we conclude

(p=1)/p).r
(2.32) J chpgcq du) :
G, A(h,m)

where the constant ¢ depends on r, p, |Dn | and on known quantities.
Denoting

|A(h, n)|=J dp

A(h,m)
and y=((p - 1)/p).r, we get for k>h>h(,:\

(2.33) (k—h?.|Ak, n)|Sc.|A(h, )|,

where vy is greater than 1 if we choose p sufficiently large.

The boundedness of { and hence of #; now follows immediately from a lemma due to
Stampacchia (¢f. [30], Lemma 4. 1), which we have already used before.

Theorem 2.1 is thus proved. Let us note the following remark.

REMARK 2.1. — The result of Theorem 2.1 is also valid if we replace the boundary condition
—a;pi=B(x, u—0o) by

(2.34) —a;pi=PB1(x, u— @)+ B2 (x, u—9,),
where B;and @;,i=1,2, are Lipschitz continuous functions satisfying 0p;/0t =0 for i=1, 2, and

|Bl(x,u—(91)+32(x,”—¢2)|§(1“a), a>0.
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The tangential gradient of u is then bounded in terms of a,|D ;| |(9/¢x)B;|, i=1, 2, and the
quantities mentioned in Theorem 2.1. Wenote particularly that the estimate does not depend
on aif B;=P;(t) fori=1, 2.

An immediate corollary of Theorem 2.1 and of Remark 2.1 is the following:
CoROLLARY 2.1. — Let the assumptions of Theorem 2.1 or of Remark 2.1 hold. Then

(2.35) ueC%*(Qs,),

for some suitable Hélder exponent o, 0 <o < 1, where o and the Holder norm of u depend on the
quantities mentioned in Theorem 2.1 or in Remark 2.1, respectively.

_ This follows from the results in [23].
To bound the gradient of uin Q5/, we take the boundary conditionin (1.1)orin (2.34)into
account yielding that
(236) lcl,-p,~|§(1-—a), a>0,

which together with the estimates for the tangential derivatives of u implies that the normal
derivative of u is bounded on 0Q N 55/2. Thus, the gradient of u is bounded on 0Q N 55,2,
from which we deduce a gradient bound for u in 5;,,3 (cf. [8], Th. A1). We state thisas a
Theorem.

THEOREM 2.2. — Under the assumptions mentioned above the gradient of u is bounded
in 55,3, the estimate depending on L, M, N, A, 8, %, a, and n.

3. Existence of a solution

We shall prove the existence of a solution to the boundary value problem

3.1) { Au+H(x, u)=0 in Q,

—a;p;€B(x, u—@) on 0Q,

where H, ¢, and Q satisfy the conditions stated in Section 1, and where for fixed xe0Q,
B(x, .) is a maximal monotone graph such that

(3.2) |B(x, t)|S1—a, a>0
and
(3.3) ‘iﬁ(x, n|sL,

O0x

uniformly in x and ¢t. Moreover, we assume that ¢ is the trace of a function
0eH*2(Q). For brevity we identify ¢ and ¢ and set

(3.4 Z": J]Din¢|2dx=Lo.
=1 Ja

i
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For the proof we use the a priori estimates of the preceding section together with a
continuity argument (cf. [7], Section 2'). Thus, we must know that the solution of (3.1) is
uniquely determined. This will be derived from the following lemma.

LemMa 3.1. — Let the functions u, ve H*2(Q) n H!* *(Q) satisfy the inequalities

(3.5) Au+H(x, u)=20 in Q,
(3.6) Av+H(x, v)20 in Q,

together with the boundary conditions

(3.7 —a;(Du)p;e By (x, u—@)+ B2 (x, u—@,)
and -
(3.8) —a;(Dv) p;€PBy (x, v—Y1)+ B2 (x, v—1V5),

where B;(x,.) is a maximal monotone graph for i=1,2. Then
(3.9) v—u=max {sup |@; — V|, sup | o, — V2| }.
Q Q

Proof. — Denote the right-hand side of (3.9) by ¢ and let
n=max(@v—u—c, 0).
Multiplying the inequality
0=<Au—Av+H(x, uy—H(x, v)

with n and integrating by parts in the first term yield

(3.10) 0§J {[a:(Du)—a;(Dv)] D (v —u)+[H (x, u)—H(x, v)].(v—u—c)} dx

{n>0}

+J‘ [a:(Dv) p;—a;(Du)p].(v—u—c)d .
Qn{n>0}

In view of the relations (3.7), (3.8) and in view of the definitions of ¢ and the B;’s the
boundary term in this inequality is non-positive, so that the result

n=0 or equivalently v—u=<c,

follows from the properties of the coefficients a; and from the strict monotonicity of H (x, ).

To prove the existence of a solution, let us first assume that H, B, and ¢ are smooth
functions, e.g. of class C*'* for some 0<A<1. Then, for any number 1, 0511, let us
consider the boundary value problems

(3.11) {AMTHH(& w)+(1-1).%.u,=0 in Q,

—a;p;i=1P(x, u.— @) on 0Q.
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Let T be the set -
T={1: there exists a solution u,e C*(Q)}.

T is obviously not empty for uy, =0 belongs to it, and we shall show that it is both open and
closed.

As the mean curvature term now has the formt.H (x, t)+ (1 —1) %. t we deduce an a priori
bound of | u, IQ for any te T independent of t(cf. [4]). Furthermore, let us remark that any

solution u, € C2(Q) is of class C2*(Q) with some fixed o, 0<o < 1, such that the norm of u,
in CZ’“(ﬁ) is bounded independently of .
To prove this, we first deduce from Theorem 2.1 that |Dur|ﬂ is uniformly bounded

(3.12) ’DLIT|Q§C.

Then, we choose a smooth vector field @; such that da;/dp’ is uniformly elliptic, and such
that

(3.13) a;(p)=a;(p) for |p~§3.c.
From [29], Chap. 10, Th. 2.2, we conclude that the problem

Rir+TH(x, i) +(1-1)%i,=0 in Q
(3.14) {A”H‘T (x, u)+(1=1)nu, in

—a;p;="B(x, U~ ) on 0Q,

has a solution ﬂTeCZ'“(ﬁ) for any t.
Moreover, in view of (3.12) and (3.13) we derive

Au,=Au..
Hence, we obtain from the uniqueness of the solution to the boundary value problem (3. 14):

U, =1U,.

Thus, we finally conclude that

(3. 1.5) [uT

U |, o o 1s uniformly bounded

2,4,0=C,

where the constant is determined by known quantities.
From the estimate (3.15) it follows immediately that T is closed.

On the other hand, let 1, e T. Then, we consider the boundary value problem (3.14) as
before. Since | D1 |, depends continuously on t, it turns out that

(3.16) |Du |g=2.c  for |t—1,|<8.

This yields u, = u, for those t’s.  Thus, T is open and we obtain a solution u e C? *(Q) of the
boundary value problem

(3.17) { Au+H(x, u)=0 in Q

—a;pi=PB(x, u—¢@) on 0Q.
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Next we note

REMARK 3.1. — The H* 2(Q) norm of u can.be estimated by a constant depending on ‘ Du | ,
|6B/6x|, Lo, the C*-norm of 0Q, and other known quantities, but not on | 0B/t |.

For a proof we transform a boundary neighbourhood Q5;=Qn Bs(x,) via a
C2-diffeomorphism y=y(x) into an open set G, such that

F=1("QnQy)={yeG, 1"=0}.
The boundary value problem (3.17) is then transformed to
(3.18) —D%(a).DL y*+H(y, )=0 in G;, —a;.Diy"=B.|D,y"|=B on .

Let Us={y(x): xeB; (xo)} and 1 any Lipschitz continuous function with
suppncUs. From (3.18) we then deduce

(3.19) J{Ei.Diy"D’;.n+5,-D§D’;y".n+171(y,J).n}dy-i—j B.nd#,_,=0.
G; r

Inserterting in this identity n= — DS(DS (i —@)?), where {, 0<( <1, is a cut-off function
with support in U and where o runs from 1 to n— 1, we obtain in view of the monotonicity
of B and the ellipticity of the coefficients a; a bound for

n n—1
(3.20) >y J | Di Dy u|?.¢*dy,
i=1 =1 G,
depending on { and known quantities. Then, a bound for
J | D5 Dy |2 dy,
Gs

follows from the equation in view of the ellipticity. The interior bounds are trivial.

Thus, approximating the maximal monotone graph B by smooth monotone graphs B, and
taking the a priori estimates’ for |Du,| and |u,,, into account, where u, is the
corresponding solution, we conclude

THEOREM 3.1. — The boundary value problem (3.1) has a unique solution
ueH"*(Q)nH>2(Q). The estimates for |u|, |Du|, and |u|,, , are of local nature
depending only on local quantities. Moreover, if B does not depend on x, then the C® ®-norm
of u for some o, 0 <a <1, can be bounded independently of a; the (local) estimate only depends
on % and the other quantities mentioned in Theorem 2.1.

4. Plateau’s problem for H-surfaces

We consider the weak formulation of Plateau’s problem for H-surfaces, namely, we look at
the variational problem

4.1) J(v)=J (1+|Dv|2)1/2dx+J :rH(x,t)dtdx
Q a Jo

+f |v—@|d#,-y > min, VveH"!(Q).
P
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For simplicity we shall first assume dQ e C* and ¢ € C?(0Q), while H is Lipschitz satisfying
the monotonicity condition

4.2) —H2u>0.

Let B be the maximal monotone graph

-1, t<0,
B(t)=<1[-1,1], t=0,
1, t>0

and let B, (t)=A.B(¢) for 0<r<1.

Then we deduce from Theorem 3.1 the existence of a solution u, e H!* ® (Q) n H2 2(Q) of
the boundary value problem

@.3) Au,+H(x, u,)=0 in Q

. —a;p;eP(u—9) on 0Q,
where
(4.4) |42 ]o, o, o = cODS.,

uniformly in A for some O<a < 1.
It is not hard to verify that the solution of (4.3) also solves the variational problem

@.5) Jx(v)=.[ (1+|Du|2)1/2dx+~f J H(x, t)dtdx
Q 2 Jo
+?».J |v—@|d#,_; >min, VoeH"'(Q),
Q

€.g. we can approximate the monotone Lipschitz continuous function j(t)= | t| by smooth
monotone functions j,(t) with corresponding smooth monotone graphs B°(t)=j;(¢) and
Bi(t)=AP°(t). Then, the solutions of the approximating variational problems (which exist,
¢f. [9]) coincide with the solutions of the corresponding boundary value problems. If & goes
to zero we get the desired result in view of the a priori estimates which hold independently
of €.

Hence, the u,’s are a minimizing sequence of the variational problem (4. 1) with uniformly
bounded C°’°‘(§)—norm. Therefore, a subsequence converges (in fact the sequence will
do it) to a solution ue H* 1(Q) A C*>*(Q) A C%*(Q). The fact that ue C® ! (Q) follows
from the interior gradient estimates for the u,’s (¢f. [1], [8], [17], [27)).

In general the solution u of (4. 1) will not take on the prescribed boundary values ¢, and the
question arises when this will be the case. A sufficient answer has been given in [8], [20],
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namely: if in a neighbourhood of a boundary point x, the mean curvature H,_; of 0Q
satisfies the inequality

(4.6) [H(x, ¢ ()| S(1— ) H, - (x),

then u=¢ in that neighbourhood. The proof, at least that in [8], uses the variational
property of u. By the method we described above it will be possible to get this information
directly from the approximating sequence u,.

Precisely, let Qg be a boundary neighbourhood of x, whose boundary 0€s is decomposed
into the parts I'y c0Q and I', Q. We assume that (4.6) is valid on some open connected
subset I'y of 0Q with I'y =c=T'y. Then, as in ([8], Chap. 4,) we can find upper and lower

barriers 8* and 8~ in C?(Q;) satisfying

4.7) A8t +H(x, 6%)=0 in Q,
(4.8) Ad”"+H(x,07)<0 in Q;,
(49) 6_§LIL§6+ on rzu(rl—r3),
for all A,

(4.10) 8 Ze<8* on I3,

and

(4.11) 8" =p=8" on Ty,
where

INyccl'sccTy.

Let

. 57| o |De*|
o =max sgﬁp(—l:"mvzl Sgp(1+]D8+|2)”2 :

Then, Ay <1, and we claim that

4.12) 8" Zu, £8% in Q4
for all A with Ao <A<1. Hence,

(4.13) : wm=¢ on Iy,
and therefore

(4.14) u=¢ on I,

Let us remark, that if the inequality (4. 6) will hold on 0Q then the relation (4. 13) will also
be valid on 0Q for Ay <A<1. Thus, the u,’ , for Ag<A <1, are all identical in this case.
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We only prove the second inequality in (4.12). The proof of the lower estimate will be
similar.

Let n=max(u—3%, 0). Then n vanishes on 6Q;—TI'3 and on I'5 there holds
(4.15) —a;(D87).p;i <87 — o),

[i. e. there exists in element in B, (8% — @) s. t. the inequality is valid] for Ay <A <1, in view of
(4.10) and the definition of B,. Thus, the proof of Lemma 3.1 yields the result.

In general the mean curvature function H is not assumed to be strictly monotone, but it has
to satisfy the isoperimetric inequality (0.9), which will be the right condition for solving the
variational problem (4.1). Thus, the way we here proposed to solve it is not applicable.

But considering the mean curvature functions

H,(x, t)=H(x, t)+nt,

for »>0, we see that to each » there corresponds a solution u, of the perturbed variational
problem, for which we can derive a priori estimates in L® (Q) n C% ! (Q) independent of x,
cf. [8]. If H (not H,!) satisfies the relation (4.6) on certain boundary parts, then by similar
arguments as above we can conclude that u, = ¢ on those boundary parts. The construction
of appropriate barrier functions is still possible in this case; for details we refer to [22].

Moreover, let Q5 be a boundary neighbourhood with u, =@ on dQ N Q;, and assume @to

o, (- (8],

be of class C2. Then, we have u,eC!(Q;,) with a uniform bound for |Du,
Th. 2).

If » tends to zero the u, ’s will converge to a solution ue C? (Q)n L® (Q) n C°* (55,2) of the

variational problem (4.1) satisfying u=¢ on aﬁmﬁw, provided ¢eC2(8Q N Q;), and
provided (4.6) is valid on 9Q N Q;.
5. Variational problems with constraints on the boundary

In this section we consider variational problems whose classical formulation is

(1+|Dv|2)1/2dx+J J H (x, t)dt dx — min,
(5.1) a a Jo
VoeK={veH" (Q): ¢, Sv|:n = 02}

If @; =@, then we have Plateau’s problem.

The weak formulation of (5.1) is

(5.2) J(v)=j(1+|Du|2)1/2dx+J J H(x, t)dtdx
Q Q 0
+J {—min(v—¢;, 0)+ max (v—g@,, 0)} d#,_, - min, YoeH:1(Q).
Q i
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This is justified by the fact, that any solution of (5.1) also solves (5.2). Another motivation
is, that writing the side conditions

¢ = Ulan S 02,

as an isoperimetric constraint, namely, as
(5.3) J {—min(u—¢,, 0)+max (v—¢,, 0)} d#,_,=0,
a0

the Lagrange multiplier method, formally applied, leads to the problem
(5.4) 7, (v)=j (1+|Dv|2)”2dx+j J H(x, t)dtdx

Q QJO0

+K.[ {—min(u—¢,, 0)+max (u—q,, 0)} ds#,_,; - min, VveHY 1 (Q),
Q

with some unknown Lagrange multiplier A e R. In order that the functional remains convex
2 has to be nonnegative, and setting the first variation of the functional to be zero, it is clear
that |A|<1. Hence, we seek A in the interval [0, 1].

Let us consider the problem (5.4) for 0O<A<1. The corresponding boundary value
problem would be

(5.5 { Au,+H(x, u,)=0 in Q

_ai-piE}“{ By (“—(P1)+Bz(u—(Pz)} on 0Q,

where B, and B, are the maximal monotone graphs

-1, t<0,
(5.6) Bi(t)=< [-1,0], t=0,

0, t>0
and

0, t<0,
(5.7 B,(t)=< [0,1], t=0,

1, t>0.

Again we first assume 0Qe C*, ¢;€C?(0Q), and H to be strictly monotone, i. e.:

0H
s .
o =>u>0

Moreover, we suppose at the beginning

(5.8) ©; <@, on 0Q.
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Then approximating the B;’s by Lipschitz continuous monotone functions B ’s we deduce
from the existence theorem in Section 3, which is still applicable in this case, the existence of
functions u € H*F (Q) solving the corresponding perturbed boundary value problems. We
note that

(5.9 |Bi(t— @) +B2(t—@2) |1,

for all ¢, and that the approximations B¢ can be chosen such as to satisfy the same estimate.
From the a priori estimates in Section 2 we know

(5.10) |45 | o,0.0 < comst.,
for some o, 0<a <1, uniformly in € and A, and
(5.11) ‘ | D u§ | o< const.,
uniformly in ¢.

Asin Section 4 we can conclude that the 4§ ‘s converge uniformly to a Lipschitz continuous
solution of the variational problem (5.4). We callit u,, since we shall see that it will also be
the solution of (5.5).

Indeed, since u, is uniformly continuous and since the convergence of the uf’s to u, is
uniform, we deduce that the coincidence sets

E{={x€0Q: uj(x)=0, (x)}
and
s ={xedQu(x)=0,(x)},

can be separated by open sets uniformly in €. Let U, for i=1, 2, be open sets in R"
separating them, and let 1, 0=n <1, be a cut-off function with support in U,, where

Ei c U1 and E; < Uz,

for all e. We shall show show that the u§ s are uniformly bounded in H? % (Q), uniformly
with respect to €. To prove this, we suppose the support of i to be small enough to ensure
the existence of some C2-difftomorphism y=y(x) flattening Q in some boundary
neighbourhood Q; with suppn = Q;. Denoting the transformed cut-off function n with the
same letter and the image of Q; with G; we derive an estimate for

- (5.12) | DD ug |2 n? dy,
& e,

13

foranyr, 1<r<n—1, interms of n, | @, |, , o and known quantities. The proof is identical
to the first part of the proof of Remark 3.1: first we observe that there exists y >0 such that

(5.13) #<p,—y on Uy,
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uniformly in € and A, and hence that
(5.14) P2 (ui—@2)=0 on Uy,

for small values of €. Indeed, if we choose

0, t<0,
(5.15) Br(t)=<t/e, O0=t=eg,
1, t=¢g,

then the relation (5. 14) is valid for all & for which (5. 13) holds. Second, we note that the test
function {= — D’ (D', (u — ¢,).n?) corresponding to that in the proof of Remark 3.1 has
supportin y(U,), so that in view of (5. 13) the boundary term % (15 — @,) is notinvolved in the
derivation of an estimate for (5.12). Similarly, we get a bound of the integral in (5. 12) for
cut-off functions n with suppn = y(U,). Hence, we finally derive:

THEOREM 5.1. — If @, <@, on 0Q then the boundary value problem (5.5) has a unique
solution u, € C* 1 (Q) n H* % (Q), where

(5.16) |4]0,0.0

can be bounded independently of A and inf (¢, — @),
0Q

(5.17) |Duy g,

is bounded independently of inf (¢, —@4), and where
o

(5.18) |5 8.600

depends on A and inf(@, —¢1). All estimates also hold locally. From the approximation
b

procedure it is clear that u, also solves the variational problem (5.4).

In the limit case when \ tends to 1, the w,’s converge uniformly to the unique solution
ueC%*(Q) A H*(Q) N C2(Q) of the variational problem (5.2).

If the obstacles ¢;, i=1, 2, are only Lipschitz continuous satisfying the weak inequality
@1 <9, on 0Q, then, via approximation, we can still find a unique solution

ueC%*(Q) nH 1 (Q) n C2(Q) of the variational problem (5.2).

REMARK 5.1. — (i) We note that the preceding results only hold under the general
assumption that H satisfies 0H /0t 2% >0, though it is possible to bound | u, | or | u | independent
of % provided H satisfies the isoperimetric inequality (0.9). We shall see below how to get rid
of this restriction in some special cases.

(i) If H is not strictly monotone but satisfies the isoperimetric inequality (0.9), then by
looking at the perturbed problems where H is replaced by H, (x, t)=H(x, t)+x.t, x>0, we
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get the existence of solutions u,e H* ' (Q) n C*(Q) n L (Q) which converge uniformly on
compact subsets of Q to a solution ueH"1(Q)NC*( Q) NL®(Q) of the variational
problem (5.2).

Again the question arises under which assumptions on the data a solution u of (5 . 2) satisfies
the relation @; Su =@, (locally) on the boundary. This inequality will be valid if, as in the
case of Plateau’s problem, the mean curvature of the boundary and the mean curvature
function H are (locally) related by the inequalities

(5.19) —H(x, ¢))=(n—1)H,_;(x)
and
(5.20) H(y, ¢))=(n—1)H,_(x),

for these relations ensure the existence of barrier functions 6% and 8~ in some boundary
neighbourhood Qz where (5.19) and (5.20) are valid on 6Q,; N 0Q such that

(5.21) 3" Zu<d* in Q4

and

(5.22) ;=0 =Z06"=¢, on dQ;nIQ,
provided

(5.23) @;€C?(Qs5) for i=1,2.

If the @;’s are only continuous then a modified version of proof still leads to the result
(5.24) Q1=Sus@, on 0Q;nQ,

where the inequalities in (5.24) only hold /#,_; —a.e. on 0Qs N 0Q, for we do not know if u is
continuous up to the boundary in the general case of non-strictly monotone H. (5.24)can
be proved using the variational property of u (cf. [8], the methods developed there can also be
applied in this case).

Now, we shall show that in the case when Q < R?, the solutions of the variational problem
(5.4) are uniformly Lipschitz continuous in those boundary neighbourhoods €5, where the
inequalities (5.19) and (5.20) are valid on 0Q,; N Q.

THEOREM 5.2. —Let Q = R? be a bounded domain with Lipschitz boundary 0Q and let T,
be an open subset of 0Q being of class C*. Assume that the functions ¢, ¢,€L!(09Q),
with @< @,, belong to C*(T'y) and that H=H(x, t) satisfies besides the conditions (0.8)
and (0.9) the inequalities (5.19) and (5.20) in Ty. Then the variational problem (5.2) has
a solution ueH"1(Q)ACO! (ﬁ;) NC*(Q) such that (5.24) holds. Qg is a suitable
boundary neighbourhood with 0Qs mdQ =< T'y. The gradient of u is bounded in Qg by
a constant depending on €9, 8, || @i 11 @n) | D? ;i (@/0x)H(x, u(x))|q,, |H(.. 0)|q, and
the C*-norm of Ty.

Ty
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Proof. — First we observe that without loss of generality we may assume that Qe C*,
0H/0t=%>0,and@, <@, on Iy. For otherwise we approximate Q by smooth domains Q,
and @; by functions ¢ such that

(5.25) —H(x, ¢5(x)<(n—1)H;_, (x)+y
and
(5.26) H(x, oi (x))=(n—1)H;_; (x)+7,

for all xeI'§, where y is an arbitrarily small positive constant and the relations hold
uniformly in ¢ for all e<e*(y). Replacing H by H,(x, t)=H(x, t)+x%.t if necessary the
inequalities (5.25) and (5.26) are also valid for H,, if » is sufficiently small. Thus, the
construction of barrier functions 8;", §; is still possible for the perturbed problems provided
v is sufficiently small depending on the C?-norms of the @;’s. The estimate for |Du lng ,
where u;, is a solution of the perturbed problem will hold uniformly in & and x, since | Ul | o is
bounded independently of ¢ and (cf. the proof of [8], Lemma 1).

Let us therefore assume that 4Q, H, and the @, ’s satisfy the stronger assumptions. Then,
from the results of [4] we know that any solution of the equation

Au+H(x, u)=0,
in Q is bounded by some constant m depending on % and the C?-norm of Q,
(5.27) |ulqSm.

Let Q; be a boundary neighbourhood such that 4Q; N 6Q << I'y, and decompose 0Q; into
the parts I'y and I, such that ', cQand I, = T o- Then, there exist upper and lower

barriers §* and §~ e C2 (55) satisfying

(5.28) AS*+H(x, §*)20 in Q;,
(5.29) A8~ +H(x, 5°)<0 in Q;,
(5.30) "= -m=m=8* on 0Q;—T;,
(5.31) 8" S¢; =0, <3" on T,
and

(5.32) : ¢;=8"<8"=¢p, on I,

where 'sccT3ccTy. The C?-norms of the barriers only depend on 8, the C2-norm
of To, | @i]2 0.1, m, and on other local quantities.

Let

Ao=ma |D8+| IDS—l
TR Dot 3P T+ Do |
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and let A, be a sequence of smooth functions such that

(5.32) A<k (X)<1, xedQ,

(5.33) A (X) =N, xely,

and

(5.34) lim A.(x)=1, xedQ—T*.
e—>0

Then, we consider the boundary value problem

Au,+H(x, u)=0 in Q,
(5.35) f
—aipie}\'ﬂlBl(“a_(Pl)_*—BZ(“a_(pz)} on OQ’

where B; and B, are the maximal monotone graphs in (5.6) and (5.7).
From our preceding results we know, that for each ¢ the boundary value problem (5.35)

has a solution u,e C% ! (Q) n H* 2(Q;) such that

(5.36) \Dlls‘ﬂmléMl:MlO\.o)
and
(5.37) |t |55, 0,, M2 =M, (Ao, inf(¢, — 1)),

r()
uniformly in € provided 0Q;, N dQ<T,. We shall always assume this.

From the definitions of the barrier functions 6%, 8~ and from the definition of A, we deduce
as in Section 4:

(5.38) &~
Note that u, satisfies (5.27)
Hence, we obtain

(5.39) @1=u, =@, on Iy,

I\

u,<8% in Q.

so that in the limit case, ¢ — 0, we conclude that the u,’s converge uniformly on compact

subsets of Q and uniformly in Q; , to a solution
ueH" Q) A C*(Q) N CO ' (Qy2) M HZ 2(Qy)

of the variational problem (5.2). Indeed, to prove that u is a solution it is sufficient to show
that the u,’s are a minimizing sequence of (5.2): let

T.(x)= A (X) ¥f xedQ—T,,
1, if xely,

and let

Jp(v)=j (1+[Dv[2)“2dx+Jj H(x, t)dtdx
Q aJo
+J u{—min(v—(p,,.O)—l—max(v—(Pz,0)}d.}f,,_1,
o0
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for p=%, or p=2,. Then, we have

(5.40) J,w)<), (v,  VoeH“'(Q),
(5.41) Ji () =7, (u)=J, ()<J;. (v), VYveH"(Q),

in view of (5.39).  The conclusion that u, is a minimizing sequence for the functional J is now
immediate.

Moreover, on I'=0Q;,, N 0Q u satisfies the boundary condition

(5.42) _aipi57‘-o{Bl(““PJ‘*‘BZ(“_(Pl)}v

in view of (5.36), (5.37), and the maximal monotonicity of the B;’s. Indeed, regarded as a
multivalued operator in L? (') each B; (. — ;) is maximal monotone; furthermore we deduce
from (5.36) and (5.37) that u, convérges strongly and —a;(Du,). p; weakly in L?(I') to u
and —a;(Du). p; respectively. The conclusion (5.42) then follows from well-known results
on maximal monotone operators (c¢f. e. g. [3], Chap. I, Prop. 2.5).

REMARK 5.2. — The preceding considerations are valid for Q< E", n=2.

But, in the case n=2 Frehse [6] has proved that u is not only Lipschitz continuous in 55/2

but also of class C!(Q;,). This result will enable us to estimate |Du/,,, independent of
and independent of the further assumptions we supposed dQ and the @;’s to satisfy.

THEOREM 5.3. — Let ue C!(Q;),) n H? % (Q2) satisfy the relations

(5.43) Au+H(x, u)=0 in Q;,,

(5.44) —a;pi€ho {B1 (u—9y)+B,(u—9,)} on T,
and

(5.45) ¢1=Sus@, on I,

where 0 <Ay <1.
Then,

(5.46) |Du

QE/J§M3:
where the constant depends on §, A, |D(p1]l-, |D(p2‘r,
|H(x, u(x)|q,,, and on the C*-norm of T.

Proofof Theorem5.3. — Let v=(1+|Du|*"? and §,0<{ <1 a cut-off function such that
suppCC§(3,8)5. Furthermore, let i be a positive number such that

u

Qur |(0/0x)H (x, u(x)

Qy2°

(5.47) hzmax {| Do, |r. |Do,|r}+1=h,.
The idea is to estimate
(5.48) n=max {v.{>*—h, 0}.
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Let A (h, {) be the set where m is positive, and let E; and E, be defined by

E;={xel:u(x)=9;(x)}
and
E,={xel: u(x)=cp2(x)}.

Since u and the @;’s are of class C' we know that the tangential derivatives of u and ¢;
coincide on E; for i=1, 2. From (5.44) we then conclude

(5.49) |Du|<hy=hy(ho, ko) on E; for i=1,2.
Thus, we obtain

(5.50) Ah, ))nE;=0Q,

fori=1, 2, if h>h;. But this implies the important result, that
(5.51) —a;p;=0 on A(h, {)nT,

for those values of h.

Now, we are ready to apply the a priori estimates of [7] to conclude that n=0if his large
enough depending on the quantities mentioned in the theorem. We proved in [7] a priori
estimates for the gradient of solutions to the capillarity equation
(5.52) Au+H(x, u)=0 in Q,

(553) aipi:B on aQ,

where f=f(x) was assumed to be Lipschitz such that lBl <1—a, a>0. But since the
estimates are of local nature and since the calculations are performed on the set A (h, (), we
can use these estimates in our special case setting formally =0 in (5.53) in view of (5.51),
(5.44), (5.45), and the definition of B, and B,.

Strictly speaking there is a formal difficulty to apply the results of [7] directly, namely, we
had there to estimate the integral

(5.54) J w?. W.dx,
A(h. Q)

for large h, where w=logv, and W=(1+|Du|?)"? (i.e. v=W in our special case), and for
simplicity we proved a stronger estimate, namely, we gave a bound for

(5.55) J W2 W dx,
B (ho)

where B (ho)= { xeQ: v(x)>h, } and h, is sufficiently large (cf. [7]; formula (1.62)).

Itis not difficult to bound the integral in (5.54) using only local informations. Indeed we
shall show in the Appendix, that if U is alocal boundary neighbourhood, then the gradient of
a solution u of the boundary value problem (5.52), (5.53) can be estimated in U in terms of

(556) ‘DB|Um{|Dul>h}’
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where his large, a, and some other local quantities. Applied to our case we conclude that the
gradient of u is bounded in Q;/5 in terms of the quantities mentioned in Theorem 5. 3.

Thus, Theorem 5.2 is also proved.

6. Mixed boundary value problems
In [14] Giusti considered the variational problem

6.1) J(v)zf (1+|Dv|2)1/2+Jf H(x, t)dtdx
Q alJo )
+j |v—(p|d}/,,_1+J Bo.vdH#,_, — min, VveH: 1 (Q),
r, I,

where 0Q is decomposed into the disjoint subsets I'; and I',, and where eeL!(Il',) and
BoeL®(I',) are prescribed. Imposing some natural conditions on H, B, and I'; he could
prove the existence of a solution ue H' ! (Q) of this variational problem.

We do not know any physical problem where a variational problem of this type occurs,
but, nevertheless, it will be of mathematical interest to study those problems.

Giusti raised the question if the solution is smooth near I', if B, and I', are smooth, but he
could not solve it.

Using the preceding results it is very easy to give an affirmative answer. We shall prove
that in every boundary neighbourhood of I',, where I'; is of class C2, and where B, is
Lipschitz and strictly less than 1, the solution is of class H* ? for any finite p, provided u is
bounded in that neighbourhood. We might also treat the case where Bo=PBo(x, t),
and B, (x, .) is a maximal monotone graph. Then, if (locally) I', is of class C*, |BO| <1,
0H/0t=%>0, and B, (., t)is Lipschitz, the solution would be Lipschitz continuous and of
class H? % up to those boundary parts, where the assumptions are satisfied. Moreover, if
(locally) B, is of the form By =B, (t), Bo a maximal monotone graph, then the solution would
be Holder continuous up to the boundary even in the most general case where |Bo| <1,
provided H and I, locally satisfy appropriate assumptions.

We could also generalize the Dirichlet data on I'; to boundary constraints of the kind:
R Sv=@,. But we shall not treat the most general cases. Instead we assume 0Q e C*,
that H=H (x, t) and B, =, (x) are Lipschitz continuous functions such that

(6.2 %—I;Igu>0
and
6.3) |[30|§1—a, a>0.

¢ is assumed to be of class C2.
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Let I's = {x € 0Q: dist (x, ',)<e}, and let A,, 0<A, <1, be a sequence of smooth functions
such that

L, xel,,
(6.4) A (x)= 0, xel's —-T'Y?,
1—c¢, xedQ—TI%,

Then, we define

Ao (x) B (1), x€0Q—T3,
(6.5 B.(x, t)= 0, xel'y—TY?,
Ae(X)Bo(x),  xel¥?,

where B(t) is the maximal monotone graph

-1, <0,
(6.6) B(r)y=4[-1,1, =0,
1, t>0

and consider the boundary value problem

6.7) { Au+H(x, u)=0 in Q,

—a; p;€Be(x, u;—@) on 0Q.

From Theorem 3.1 we conclude that there exist solutions u,e H"* © (Q) n H> 2(Q). Let x,
be a boundary point interior to I',. Then, for sufficiently small §, | Du£| can be estimated

in Q;=Q N B;(xo) in terms of local quantities involving §, u€|Qﬁ and the C2?-norm
of 0Q N Q,;.

Since the estimate is independent of &, we can go to the limit obtaining a solution u of (6.1)
satisfying the same estimate in Q.

Appendix

In the proof of Theorem 5.3 we needed a completely local version of the a priori estimates
givenin [7], Th. 1.1. Unfortunately, some of the estimates in [7] are not of local nature, so
that the results can not be applied directly. We now indicate how to prove a completely
local version.

In the following we shall use the notations in [7]. Let Q be a bounded domain of R,
n=2, with C%-boundary 0Q, and let ue C?(Q) be a solution of the boundary value problem

Au+H(x, uyy=0 in Q,
ai'Y,'=B on GQ,
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where Y =(y;, ..., v,)is the exterior normal to dQ and where p =B (x)e C° ! (0Q) satisfying

(A1) |B|<1—a,  a>0.

We extend y and P as Lipschitz continuous functions inside Q such that the estimate (A 1)
remains valid for B. H is Lipschitz continuous satisfying

J0H
—=0.
ot —

Let eraQ al’ld Q50=Q (B B5(, (xO), 60 >O.
Then we shall prove:

THEOREM A 1. — Under the assumptions stated above |D“|050/2 can be estimated by a
constant depending on |u 'QEU, |H(x, u(x))|950, |(0/0x)H (x, ”(x))'ﬂso’ the C%-norm of
00N 0Q; , n, a, 8y, and on the supremum ofl D [3‘ in Qs with respect to the set where the
gradient of u is sufficiently large.

Proof. — We introduce the function
v=W-—BD'u.y;, W=(1+|Du|?)"?,

and we shall show that ‘vlf26 2 is bounded in terms of the above quantities, and hence
lDule , in view of (A 1).

We denote by % the graph of u:

S ={(x, u(x)):xeQ}

and by §=(8', ..., 8"*!) the usual differential operators on %, i. e. for ge C' (R""') we
have
) ) n+1
d'g=D'g—v; ) v, Dy, i=1,...,n+1,
k=1
where v=(vy, ..., V,+1) is the exterior normal to .9
v=W 1 (=D'u, ..., —=D"u, 1).

Furthermore, let a;;=0a;/dp’, then, the following relations are valid

(A2) a;D'gDIig=W~1|8g| geC'(Q),
(A3) |a;DigDIg|SW![3g].[Do|. ¢, 0eC'(@),
(A4) a;; p' qjégaijpipj"f‘zl—gaijqi ¢,

and

(A5) a. W=v=2.W.
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Let w=logv. In view of the results in [7], p. 167.
Theorem A 1 would be proved provided the integral

(A 6) J w? W dx
Qﬁn/zr\{v>h}

could be estimated in terms of local quantities for large values of h. Equivalently we could
ask to estimate

(A7) J w? W .(%dx,
B(h.0)

where , 0= (<1, is any smooth function with supp( < By, (x,) and where
B(h, )={xeQ:max(v—h, 0).(*>0}.
To estimate the integral in (A 7) we prove (cf.[7], Lemma 1.5):
Lemma A1l. — Suppose the assumptions of Theorem A1 to be satisfied. Then we have

(A8) J [W™3|Dv|?+v]dx Zconst.,
B(h,0)

where the constant depends on local well-known quantities.

Proof of Lemma A1. — We use the crucial inequality (cf.[7], (1.49)):

, |30 ]
d#,-1+c —+1 |ndx,
Mlsie “ W

where ¢ is a suitable constant and m any nonnegative Lipschitz function with
supp n = {v>h}, hsufficiently large. Inserting n=max(v—h, 0) {* in this inequality
and using (A 2)-(A 5) we obtain

2
(A 10) J mCzdx§cj de+cj v.(2dAH,_,
B(h.§) W B(h,0)

(A9) J a;[D’v+D’(By,). D*u]. D' dx §Cj
Q

oQ

where the constant ¢ depends on |DC| and known quantities.
On the other hand we know from ([7], Lemma 1.4) that

J U.Czd#n_1§cj [|8C] . C+C*1 W dx.

Now, look at the identity

(A11) JaiDindx+J H.ndx—j B.nd#,_,=0, V¥neCl(Q).
Q Q aQ

Choosing n=u.{? and taking the estimate

(A12) J |Bn|d7f,,_1§(1—a)J\Dnldxﬂj\n\d"'
aQ Q Q
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into account ([10], Lemma 1) we deduce

2
(A13) J W'3|Dv|2.§2dx§J M§2dx§const.
B(h) By W

To estimate the integral in (A7) we use the relation (A 11) once more, this time with
n=u.max (w?—h,0).(?, and we obtain in view of (A 12):

(A14) J {a;D'u?—h).>+u.a;D'v.v™ 1.2 2w
{w*>h}
+u.a;.2.D'C.5(w? —h)+H.u. w?—h).¢* } dx

§(1—a)j (|Du]. @0 —h).C+|u|2.| Dio| .o~ .¢2
{w?>h}
+|u|.(w2—h).2.§|Di§|}dx+cf |u|(w?—h)§? dx.
{w?>h}
Using the inequality | ab|<(e/2) a*+(1/2¢€)b* we deduce from (A 14):

(A15) J |Du|w?(?dx §CJ {W3|Dv|2.02+h. W+ W }dx,
{w?>h) {

w?>h} A suppl

where the constant depends on a, | D¢ |, and known quantities.
Here we also used the estimate

w*<c.W,

with some suitable constant c.
The result now follows in view of Lemma A 1.
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