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BOUNDARY VALUE PROBLEMS FOR SURFACES
OF PRESCRIBED MEAN CURVATURE

By Claus GERHARDT

0. Introduction

We are interested in boundary value problems for non-parametric surfaces of prescribed
mean curvature, i. e. we are interested in solutions of the equation

( 0 . 1 ) A « + H ( x , w ) = 0

in a domain QcR", n7±2, where A is the minimal surface operator in divergence form

( 0 . 2 ) A u = - D W D t i ) ) , fl i ( p ) = p ' ( l + | p | T 1 / 2 .

and where n~1U(x, u) is the mean curvature of the surface 5^ = {(x, u(x)): xeQ}. The
equation (0.1) has been intensively studied with two entirely different types of boundary
conditions, namely, with Dirichlet boundary conditions

( 0 . 3 ) M = q > o n d Q

and with Neumann boundary conditions

( 0 . 4 ) - fl i P , - = P o n d a ,

where p = (pi, ..., p„) is the outward unit normal to 3Q, and where <p and P are given
functions on the boundary. These problems are well-known under the names Plateau's
problem and capillarity problem, respectively.

As the equation (0.1) is the Euler equation of the functional

I(i>)=| (l + |Dt;|2)1/2dx+| H(x, t)dtdx,

there correspond the following variational problems to Plateau's problem and to the
capillarity problem

( 0 . 5 ) I ( t ; ) - » m i n , V u e H 1 ' x ( Q ) n { v \ d Q = y }
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7 6 C . G F R H A R D T

and

( 0 . 6 ) I ( i > ) + V v d t f t - ^ m i n , Vy e H 1 ' 1 ^ ) ,
da

where we use the standard notation for Sobolev spaces and where Jf k is the /c-dimensional
Hausdorff measure.

Many mathematicians investigated these problems, and nowadays we know rather well
the sufficient (and in some sense also necessary) conditions guaranteeing the existence of
solutions to the variational problems (0.5) and (0.6), namely: restricting us to the case of a
bounded domain Q with C2-boundary 3Q and to Lipschitz continuous mean curvature
functions H = H(x, t), we have to assume for the Plateau problem (peC°(3Q) and

( 0 . 7 ) | H ( x , ( p M ^ t n - ^ H ^ M , V x e d Q ,

( 0 . 8 ) ^ 0
ot

and

(0.9) H0rfx g(l-80)P(G),

for any subset GcQ, where H0 = H ( ., 0), e0 is a small positive number independent of G,
and where P(G) denotes the perimeter of G in the sense of de Giorgi [5]. H„_ j denotes the
mean curvature of 3Q.

For the capillarity problem we need the conditions PeLx(<5Q):

( 0 . 1 0 ) | p | ^ i

and

( 0 . 1 1 ) - ^ x > 0 .ot

Under these assumptions it is known that both problems have uniquely determined solutions
of class C2'a in the interior of Q, which are uniformly continuous resp. bounded.

Moreover, assuming PeC0' * (3Q) and

( 0 . 1 2 ) | p | < l ,

we may conclude that the solution of the capillarity problem is of class H2' P(Q) for any finite
pTz. 1 (cf. [7] and [25], [26] also). In both cases the regularity (up to the boundary) of the
solutions increases with the regularity of the data.

The condition (0.7) relating the mean curvature of the surface with the mean curvature of
the boundary of Q is absolutely necessary for the solvability of the Plateau problem. This
has already been recognized by Rado [21] for the classical Plateau problem and by Serrin [22]
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for the more general problem of finding a surface of prescribed mean curvature having given
boundary values. Nevertheless, starting with works of de Giorgi, Miranda, and Giusti the
variational problem (0.5), which only makes sense for domains satisfying the mean curvature
inequality, has been generalized to the following version of Plateau's problem, namely, to
find a solution weH1'1 (Q) of the variational problem

( 0 . 1 3 ) I ( » ) + | r j - ( p | d ^ f „ _ 1 ^ m i n , V n e H 1 ' 1 ^ ) .
J da

It is not yet known if a solution of this problem is always uniquely determined, except in the
case when the condition (0.7) is valid locally on dQ. Then we may also conclude

( 0 . 1 4 ) w ( j c ) = c p ( x ) ,

for those points xedQ (cf. [8], [20]).
To solve the variational problems (0.6) and (0.13) quite different techniques are used, and

one aim of this paper is to indicate a common approach to these problems studying the
corresponding boundary value problems.

To give the idea, let u be a solution of the problem (0.13) and let qaC^Q) be
arbitrary. Calculating formally the first variation of the functional in (0.13) we obtain

(0.15) Oj (D u) Dir\dx + H(x, u)r\dx+\ p(«-cp)q ri?f„_ ! 30,

where p is the sub differential of the convex function t-* I rl, i. e:

- 1 , f < 0 ,
( 0 , 1 6 ) P ( / M [ - 1 , 1 ] , t = 0 ,

1 , r > 0 .

The "equation" (0.15) says that the multivalued left-hand sight —representing a
set —contains zero. Thus, we are led to the following boundary value problem

f n J A m + H ( x , m ) = 0 i n Q ,
{ — at p,- e (3 (u — cp) on dQ.,

where P is a maximal monotone graph (1).
This is a boundary value problem of capillary type, and we shall try to solve it using the

techniques appropriate to those problems. The crucial step is to prove a priori estimates for
the gradient of smooth solutions me of approximating problems

j AwE + H(x, we) = 0 in Q,
1 -a,P, = PE("E-9) °n <?Q,

corresponding to smooth monotone approximations p,, of p.

(') For uniformly elliptic (linear) operators A boundary value problems of this type have already been studied
in [2].
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7 8 C . G E R H A R D T

Unfortunately, we cannot apply the methods of [7] since the estimates are not to depend on
|dpe/3r|; instead we shall use a version of Simon's and Spruck's proof for the gradient
estimate of capillary surface [25]. The disadvantage of that proof is, that Simon and Spruck
have to assume H to satisfy the strict inequality (0.11) and not only the less rigorous
condition (0.7). Thus, the minimal surface case is excluded in their setting.

Our methods will also be applicable to variational problems of the form

(0.19) I(t?)->min, VueH1' x(Q)n {cpx ^t;|aQ^cp2},

where constraints are given on the boundary. We shall prove the existence of uniformly
Lipschitz continuous solutions in this case under suitable assumptions on the data. In the
physical interesting case n = 2 we are able to consider general mean curvature functions H
satisfying (0.7) instead of (0.11). The parametric analogue of (0.19) for minimal surfaces
has been considered by Hildebrandt and Nitsche [15].

In Section 6 we also prove local regularity results for solutions of mixed boundary value
problems which have been studied by Giusti [14].

Finally, let us mention the striking result that in the case of strictly increasing mean
curvature H, i. e. in the case when (0.11) is valid, the solutions of the generalized Plateau
problem (0.13) are uniformly Holder continuous provided <p is Lipschitz and 3Q of
classe C4. This result also holds locally near the boundary if the assumptions are only
locally fulfilled.

At this place we should like to thank Leon Simon for his interest in this paper and for some
stimulating discussions.

1. Notations and preliminaries

In the next section we shall be interested in a priori estimates for the gradient of smooth
solutions of the boundary value problem

, . . , J A u + H ( x , m ) = 0 i n Q ,
( — flIp, = P(x, u — cp) on <3Q,

where Q is a bounded domain of R", n^2, with boundary dQ of class C4. H = H(x, t),
P = P(x, t), and (p = <p(x) are given Lipschitz continuous functions satisfying the conditions

5H
( 1 . 2 ) - f c x > 0 .

( 1 . 3 ) ^ 0 ,

and

( 1 . 4 ) | p | g l - a f a > 0 .
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SURFACES OF PRESCRIBED MEAN CURVATURE 79

d will denote the distance function, d(x) = dist(x, dQ). We shall derive local estimates
near the boundary, i. e. we shall work in a neighbourhood Q5 = B6(x0)nfi of a point
x0 e dQ. 8 will be assumed small enough to ensure that d is of class C4 in Q6.

Let L, M, and N be constants such that
d

P(x, u — cp) ^L,(1.5)

(1.6)

and

(1.7)

supn5 dx

sup< |w| + |H(x, w)| + dx H(x, u) ^ M ,

sup t o ' <N,

The definitions that will follow are almost identical to the corresponding ones in [25].
We repeat them for the convenience of the reader.

We define (D u)T (x) to be the tangential derivative of u relative to the hypersurface {£ e Q8:
d(x) = d©},i.e.:

(DW)T(x) = Dw(x)-[Dw(x).Dd(x)]Dd(x),
vT is defined on Qs by

vT = (l + \(Du)T\2)^2.
5 is assumed to be small enough to ensure that we can introduce local coordinates y=y (x)

in Q8 which "flattens" dQ near x0. We may choose y = (y1, ..., yn) to be a diffeomorphism
from Qh into Rw such that

/eC3(Q5), i = l, ..., n-1,
yn = d on Q6,

and such that the transposed Jacobian matrix J [i. e. the matrix with ith row (dy/dxi){x)]
satisfies

where

(1.8)

and

y(x)J{x) = (eij(y)), xgQ5,

ein = 0, i = l, ..., n-1, enn=l

X \ $ \ 2 ^ e « ( y ) W , ^ R " , y e G 5

for some positive constant X, where G8 is the image of Q5 under the transformation y=y (x).
A will denote a constant such that

X~lf2 +

uniformly in Q5.
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80 C. GERHARDT

Iff is a function defined on Q5 then /is defined on G6 by/(y) = /(x). For functions/
geC1(Qb) we have

(1 -9 ) ^ i x f ( x ) .D i xg (x ) = e iHy ) .B i y f ( y ) .D ig ( y ) ,

in view of the definition of the eij 's.
|i will denote the Jacobian of the transformation y -> x, i. e.:

^(y) = (det(^))-1/2, yeG8.
i /2 Wc also introduce the following functions on G5:

?(y) = (l+^'(j;).D;M.DiM)1/2 = i;(x) = (l + |Dw(x)|2)1/2,
/ n - 1 \ l / 2

VT(y) = i 1+1 ^W- VyU.VJyU) =VT(X),

/ h - 1 \ l / 2
vT(y)= i+Z lD^2l

and

Note the relations

(1.10)

v.WfDju/S), i=l , . . . , n,
X = (St/S)2.

giJ = eiJ-vimyJt 1,7 = 1, ..., n.

x = ^ = l _ v 2 .

In terms of the transformed coordinates (1.1) becomes

(1.11)

where

-Dj^n.VfHu.HO;, w) = 0 on G5,
-v„ = p0. /7-cp) on T,

r = G5n{j;GRw:yn = 0}.

This can most easily be seen by writing equation (1.1) in integral form, namely,

(1.12) l** i,dx +
JanH(x,u).t)dx+\ P(x, w-^.^rfJf^^O,

for all Lipschitz continuous C, with support in B5 (x0). Making the transformation y = y (x)
we obtain

(1 .13) ?-^D<u.Dj? .Mj ;+ | H(y,%X. \ idy+\$(y,u~-y)X. \ id^n_1=0,
J g 8 J g 5 J r

tome 58 - 1979 - n° 2



S U R F A C E S O F P R E S C R I B E D M E A N C U R V A T U R E 8 1

or equivalently

(1.14) \i.vi.Diyr\dy +y '
G6

]x.H{y, u).r\dy +
G5

(i".P(y, u-y).r]d3#?n-1=0

for all Lipschitz continuous functions r| with support in U5, U5 = { y (x): x e B5 (x0)}. The
relations (1.11) then follow immediately.

We now present some inequalities which will be needed in the next section. First the
Cauchy inequalities

( 1 . 1 5 ) ^ ^ V = K ^ ^ V / ^ K - r | i V ) 1 / 2 ,
valid for all ̂ , r| eRn and any symmetric positive semi-definite matrix (atj), and

( 1 . 1 6 ) a b ^ a 2 + ( 4 e y 1 b 2 ,

valid for real a, b and e >0.
Next we have the identity

{ d;v, = d^Vj'(i>w^
( 1 . 1 7 ) 1 '

I i . / = 1 n ,

where (yij) is any differentiate nxn matrix on G6 satisfying

f j = y j i t y t i y t J = e U t / . / = 1 , . . . , « ,

Ym" = 0. 1 = 1, ..., /j-1. ynn = l,
and where (yy) = (yi"/)"1.

In view of (1.8) we may choose
(Y/j) = (e°')1/2.

The coefficients yij will then be of class C2 in G5 and their derivatives up to order 2 will be
bounded in terms of n and A.

The relation (1.17) can be easily derived from the following identities

(Dy(y^.Diu/v)=v~l {8M5-rV-(I^«/^.(iy,«/5}.DUY^Dj5),
(1.18) <

I / . / ; , = 1 / ? ,

and

( 1 . 1 9 ) y k m g k j = y m J - y m r ( v y u M v j , m j = i , . . . , n .

8m5 denotes the Kronecker symbol.
Due to the fact that Dj;yiJ' = 0 if i or; are equal to n, we derive from (1.19) using (1.15):

(1 .20) iD^v^c .^ + x1 '2 ) , f= l , . . . , n , c t = 1 , . . . , n - l ,
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8 2 C . G E R H A R D T

where the non-negative function # is defined on G6 by

( 1 . 2 1 ) ^ 2 = u - 2 " ^ ^ D J D j u . D J D j i i ,
0 = i

and where the constant c depends on n and A (in the following we shall denote varying
constants with the same letter c).

Moreover, since

DJvn = DJ^-1.^.vn) = (D>-1).^i.vn+^-1.DJ^.vn)
= (D>-1).fi.v„-r1 X1^(^.vf) + H(3;,u)

i= 1

we obtain from (1.20):

( 1 - 2 2 ) | D J v „ | < c ( # + l ) ,
where c depends on n, M, and A.

The quantity #2 of (1.21) satisfies

( 1 . 2 3 ) v - ' g ^ D i v j . D ^ V j ^ v . ^ 2 ,
as is easily calculated.

2. Gradient estimates

We are going to prove that the gradient of u or equivalently the gradient of u is uniformly
bounded in some boundary neighbourhood Q& resp. G8. First we prove that the tangential
derivatives of u are uniformly bounded.

Theorem 2.1. — Let ueC2 (Q) be a solution of the boundary value problem (1.1). Then,
the tangential gradient ofu, (Dw)T, is uniformly bounded in a suitable boundary
neighbourhood Q6 in terms of the quantities L, M, N, A, 8, and x.

Proof - We use the identity (1.14) with r| = |i~' £, where £ is of class C?»* (U8) and obtain

(2.1) {v£D^ + ^.D^-1.v^ + H(3;, u)X}dy + f P(y, S-^AXV^O.g 6 J r

Replacing £ by - £ DJ(^.DJw), where ^eC^'^Ug) is arbitrary, and integrate partially
c = l

we get

(2.2) DJvj.DiK.DjMj + D^ji.Diii-^.v^DJu.C
G6 "

+ ^ .D^-^DJvt . .DJu.C+|p- .DJu.C+^|D^|2.^^

= - *j|t.D°^
where we sum over Greek indices from 1 to n — 1.
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Inserting £ = max(i?Tr|2-/z, 0) in this identity, where rjeC^Ug), 0 = r|^l, is a cut-off
function and h is a positive number greater than max(N, 1), and using the relations (1.2),
(1.3), (1.17), and (1.20) we derive the inequality

(2.3) {x.|Dji?|2.C + 5:"1flyD;DiM.DiK.D;S)}dy
Jg6

g I -{DJy->^(D>/?) + Yfcs^DJy-(D^/?)}
Jg5

xDj,£.D£ u)dy + Cl. dj.^dy
Jg8

+Cl JG(^+xl/2)-^-^+c1.f vj.tdjr^.
Note that the second term of the boundary integral in (2.2) is nonnegative in view of (1.3) and
the definition of h.

The constant cx in (2.3) depends on L, M, and A.
Moreover, we remark that no boundary integral occurs in (2.3) if P only depends on t.
Denoting the first integral on the right-hand side of (2.3) by I, and taking the relations

(1.15), (1.16), (1.21),

(2.4)

and
2\D°u\2.^v2X,

DyV j ^V j1 .DyDayu .Dayu , f = l , . . . , n ,

into account we deduce from (2.3):

(2.5) {v2.i; + v.V2.t;}dy+ [ x^.g^D^.Divj.^dy
G 6 J A ( M )

v1.t)dy + c2. vT.%.vdy,
i 6 J a ( M )

^Ci.I + Ci. vT.(sd^>n-l+c1.

where the constant cx depends on x, L, M, A, where c2 depends on the same quantities and on
| D r| |, and where

A(h,r\) = {yeG6: vT.r[2>h}.

Dividing the integral I into the parts

I1=- D°ymiymj(Dyu~/v).Dy&.D°u)dy
Jg6

and

h = - Jks Qik DJ ysr (Dy u/v). DJ K. DJ u) dy,
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and noting particularly the relations (1.18), (1.19), and

DJy° = 0, if i or; are equal to n,

we transform the term Ix via integration by parts as follows
n - 1 r

(2.6) I, = £ { D< DJ ymi ymj (Dj u/v). D° u . £
«=i Jg8

+ DJ ymi. [bms - y* ysr. (D> £/2). (DJ u /v)]
x{Vyufo.tyys\V°uX + v-lT>°y™

Then, using (1.15), (1.16), and (1.21) we obtain

(2.7) I i = e . v^2^dy + cx. vT.C>dy,
g8

where e is an arbitrary positive constant and where cx depends on A and 8.
Similarly I2 is estimated by

(2.8) I2=-e. vVitdy + d. vTt,dy

+ 8 X1/2gijDyvTDyvTri2dy + c2. vT.%.vdyf
J M h , r \ ) J A ( h , r | )

with constants clt c2 depending on s, A, resp. on 8, A, and | D r| |.
Combining the relations (2.5), (2.7), and (2.8), and using the estimate

(2.9) ^ D ^ D j £ = 8 ^ D ' S T D j ^

we then conclude

(2.10) f v2^dy + vtf2Xdy +
G8

X^g^D^Dt tdy

= C l Vj^dy + c^l vT.C,dJ^n.1+c2.\ vT.xvdy,
J r J M h . r \ )

where cx depends on x, L, M, N, A, 8, and c2 in addition on | D r\ |, and where we note that the
boundary term vanishes if p = p(t).

To estimate the boundary integral in (2.10) in the general case when P = P(x, t) we
use (1.4) and the inequality

(2.11) i"1 / 2 . / - i ^ V i ^ i . {x.f+X(gijtyfDif)ll2 + Xmf.<#}Zdy,
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valid for all non-negative functions /gC^'^Us), where cx depends on n, A, M,
and a. Note that in view of (1.4) the estimates

( 2 . 1 2 ) V j ^ v ^ C i . V j ,

hold on T, where the constant cx depends on a. A proof of (2.11) is given in [25],
formula (2.13).

Inserting/=£ in (2.11) we conclude

(2.13) &t.^dMrH.l^c1. £,%vdy + E. X ^ g ^ D ^ D t t d yy ^ ^ y \

+ 8. v&^dy + ct. vT.%vdy.
A(/i. n)

Thus, we finally deduce from (2.10):

(2.14) v2.£>dy + v~<$2Xdy+\ x1,2giJVyZ>V&dy

= cx vT.r9dy + c2. vTxvdy,
J G A J A ( / m i )

where the constants cx, c2 depend on the quantities mentioned above, and where we note that
only c2 depends on | D r| |.

Since the support of £ is contained in the set where vT is greater or equal to h, we may drop
the first integral on the right-hand side of (2.14) provided that h^2.c1.

Assuming this in the following we obtain

(2.15) I v2L^dy +
Jg8

d<$2Xdy+\ Xll2giJVytVttdy^c2. vT.x.vdy.
A (/Ml)

We shall use this inequality twice. First we observe that

r
(2.16)

since

\ v 2 d y ^ c 2 . \ v 2
JMh. n>

r-Y>X-V^c.v2.

From the definition of £ = max (z3T.r|2 — h, 0) we then conclude

(2.17) (k-h) . v2dySc2.
A(fc.-n)

v2dy,
A ( A . t i )

for all/c = /? = /70 = max (1. N, 2.c{}.
But this implies in view of a lemma due to Stampacchia (cf. [30], Lemma 4.1) that £T.r|2 is

p-summable over Q with respect to the measure v\ dy for any finite p provided
that v2dy is bounded.

Ja(/»0. ti)
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86 C. GERHARDT

vTeLp(Gdj2) , Vl^p<oo,

Hence we obtain

(2.18)

provided

( 2 . 1 9 ) t 3 T e L 2 ( G ( 3 / 4 ) 5 ) .

To prove (2.19) we use (2.2) with

Y m a x ( u T- / z , 0 ) 2 2
S = ' U — W - M r

where r| is a cut-off function, and where h is a fixed number greater than max(l, N). Let
A(/i) = {xgG6: £(x)>0}. We then deduce using (1.23):

(2.20) v$.t)dy +
r r

2v%2.(sdy + VT.XmgijVyw.T>yw.r[2dy
A(fc)

■ i *
= c.I + c. Vj.^dJfpH-x+c. vT.t,dy + c. vT.dyf

A (/i)

where the constant c depends on A, | Dtj |, and known quantities. The symbol I = Ii +I2
has the same meaning as in (2.5). lt can be estimated by

(2.21)

and I2 by

I i = c . vTXdy + £. vW2.C,dy
G 8 J G 8

(2.22) I2ge. v<€2Xdy + z.\ v2 .xw g'^yW ."Dyw v2 dy
J G 8 J A ( f t )

+ C vT.C,dy + c
g8 ■J •■jA(/»)

dy.

The boundary integral in (2.20) can be estimated by applying (2.11) with £ in place of /to
obtain

( 2 . 2 3 ) V j . t i d J f ^ ^ c A v T X d y + c . \ d y
J r J g 8 J a ( / i )

+ 8. v&.Zdy + e v^x1/2'gij^yu).Dyw.T]2dy.
A (A)

Combining the inequalities (2.20)-(2.23) we conclude

( 2 - 2 4 ) v 2 ^ d y ^ c . v T d y ^ c . \ v d y .
J g * J g 6 J g 8
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Hence

will be bounded provided that

v2.T}2 dy

Jg<
vdy

is bounded.
But this result follows immediately from the fact that

(2.25) (l + |Dw|2)1/2dx = const.,

for any surface we consider. Assuming u to be bounded, (2.25) can easily be derived by
multiplying equation (1.1) with u and integrating by parts.

Now, we return to inequality (2.15). In order to deduce the boundedness of vT we need
some kind of Sobolev inequality.

Lemma 2.1. — For each non-negative function feCc0,1 (U8) we have

(2.26) {[ f2a.x2"-1-X-vdyy'"^cl.[ 'f2.x-vdy
( . J g s J J g 5

+ c, Xil2.(giiDiyf.Dif)ll2.f.Xm.vdy + c1. J2.Xm-vdy,

where <x = n/(n— 1) and where the constant cx depends on n, A, and M.
Lemma 2.1 is proved in [25], cf the formula following (2.16).
Applying (2.26) with £ in place of/ we conclude from (2.15):

(2.27) f %Xdy + \[ ^.X^-'-X.ZdyY* =c2. | {^t^ + ^X.vdy,J g 8 ( J o , J J a ( M )
or, if we express every integral in terms of the measure d\x = x. vdy, and if we use the trivial
estimate £ ^ vT, we finally obtain

(2.28) x"1/2C2^+{ f ^x2*"1^}1^. f {fir+iJ?+fl|}djiU g 8 J J A ( M )

On the other hand, we have with g = 2(3rc + 2)/(3n + l):

(2.29)

from which we deduce

£«__£4(i!+l)/(3n+l) y-(n+l)/(3n+l) j-2 «/(3 n+1) «.(«+l)/(3 «+1)

(2.30) l?**s(J ¥-X-U2dli
2 ( n + l ) / ( 3 n + l ) / ( *

Kl2".xa"-1̂
( n - l ) / ( 3 n + l )
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where we used the Holder inequality with

_ 3 n + l , _ 3 n + l 1 J _
P~2n + 2 ' P ~ n- f ' p + p7 ~ '

Moreover, noting that

n — 1 n — 1 n 1 w
3 n + l n * 3 n + l a # 3 n + l '

and that
2 ( n + l ) n 3 n + 2 4r = — - H = > 1 ,
3 n + l 3 n + l 3 n + l

we derive from (2.28) and (2.30):

(2.31) (?d\L£<f2.\ I (vT + v2 + v*)d\xX.g s I j A ( h , n ) J

We have proved before that vT belongs to Lp(G5/2) for any finite p. Thus, choosing the
support oft] sufficiently small, suppr|czG6/2, we conclude

r / r \ « p - i ) / p ) . r
( 2 - 3 2 ) ? d \ i ^ c ( d j i )

J G 8 \ j A ( f c . 7 1 ) /

where the constant c depends on r, p, | Dr| | and on known quantities.

Denoting

|A( / i , t i ) |= [ d^
JA(fc.Ti)

and y = ((/> - l)/p).r, we get for k>h>h0:

( 2 . 3 3 ) ( / c - / i ) 2 . | A ( / c , t i ) | = c . | A ( / z , t i ) | \

where y is greater than 1 if we choose p sufficiently large.
The boundedness of £ and hence of vT now follows immediately from a lemma due to

Stampacchia (cf [30], Lemma 4.1), which we have already used before.
Theorem 2.1 is thus proved. Let us note the following remark.

Remark 2.1. — The result of Theorem 2.1 is also valid if we replace the boundary condition
— 0iPi = P(x, w-<p) by

( 2 - 3 4 ) - 0 i P i = P i ( x , w - c p i ) + P 2 ( * > w - c p 2 ) ,

u;/zere pf and cp£, /= 1,2, are Lipschitz continuous functions satisfying dfyi/dt = Ofor i = 1, 2, and

|Pi(x, w-(p!) + p2(x, w-(p2)|^(l-a), a>0.
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The tangential gradient ofu is then bounded in terms of a, | D cp* |, | (d/vx) pf |, i= 1, 2, and the
quantities mentioned in Theorem 2.1. We note particularly that the estimate does not depend
onaif$i = $i(t)fori=l,2.

An immediate corollary of Theorem 2.1 and of Remark 2.1 is the following:

Corollary 2.1. — Let the assumptions of Theorem 2.1 or of Remark 2.1 hold. Then

( 2 . 3 5 ) w G C ° ' a ( Q 5 / 2 ) ,

for some suitable Holder exponent a, 0 < a < 1, where a and the Holder norm of u depend on the
quantities mentioned in Theorem 2.1 or in Remark 2.1, respectively.

This follows from the results in [23].
To bound the gradient of u in Q8/2 we take the boundary condition in (1.1) or in (2.34) into

account yielding that

( 2 . 3 6 ) l ^ . p ^ a - a ) , a > 0 ,

which together with the estimates for the tangential derivatives of u implies that the normal
derivative of u is bounded on dQ n Q5/2. Thus, the gradient of u is bounded on dQ n Q5/2,
from which we deduce a gradient bound for u in Q8/3 (cf [8], Th. A 1). We state this as a
Theorem.

Theorem 2.2. — Under the assumptions mentioned above the gradient ofu is bounded
in Q8/3, the estimate depending on L, M, N, A, 8, x, a, and n.

3. Existence of a solution

We shall prove the existence of a solution to the boundary value problem

Au + H(x, w) = 0 in Q,
— at pfGp(x, u — cp) on dQ,

where H, cp, and Q satisfy the conditions stated in Section 1, and where for fixed xedQ,
P(x, .) is a maximal monotone graph such that

( 3 . 2 ) | p ( x , r ) | = l - a , a > 0
and

<5P(3.3) dx (X' ° ^ L ,

uniformly in x and t. Moreover, we assume that <p is the trace of a function
cpeH2,2(Q). For brevity we identify <p and q> and set

" f
( 3 . 4 ) £ \ D i D J ( p \ 2 d x = L 0 .
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For the proof we use the a priori estimates of the preceding section together with a
continuity argument (cf [7], Section 2). Thus, we must know that the solution of (3.1) is
uniquely determined. This will be derived from the following lemma.

Lemma 3.1. - Let the functions u, ueH2,2(Q)n H1- °°(Q) satisfy the inequalities

( 3 . 5 ) A u + H ( x , u ) = 0 i n Q ,

( 3 . 6 ) A u + H ( x , v ) ^ 0 i n Q ,

together with the boundary conditions

( 3 - 7 ) - a ^ D w j p f G p ^ x , w - ( p i ) + P 2 ( x , w - ( p 2 )

and

( 3 - 8 ) - a f ( D i > ) p f e M * . 0 - * i ) + M * . fl - * 2 ) .

where P,(x,.) is a maximal monotone graph for i = 1, 2. Then

( 3 . 9 ) r - w ^ m a x { s u p | c p i - \ | / i | , s u p | c p 2 - x | / 2 | } •
e n d n

Proof - Denote the right-hand side of (3.9) by c and let

r|=max(i;-w-c, 0).

Multiplying the inequality

0^Au-Au + H(x, w)-H(x, v)

with r\ and integrating by parts in the first term yield
/»

(3.10) 0^ { [a iP iO-aiPuflD'^- tO + rHOc, u)-H(x, v) ] . (v-u-c)}dx
J{n>o)

+ [ a i ( D v ) p i - a i ( D u ) p i ] . ( v - u - c ) d 3 f ( r n _ l .
JdQr\{r\>0}

In view of the relations (3.7), (3.8) and in view of the definitions of c and the pf's the
boundary term in this inequality is non-positive, so that the result

r|=0 or equivalently v — u^c,
follows from the properties of the coefficients at and from the strict monotonicity of H (x, .).

To prove the existence of a solution, let us first assume that H, p, and cp are smooth
functions, e.g. of class C1'* for some 0<A,<1. Then, for any number x, O^x^l, let us
consider the boundary value problems

/- . . . . f Awt + tH(x, wt ) + (1- t ) .x .wt = 0 in Q,
{ _a .p . = Tp(X) Wt-cp) on dQ.
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Let T be the set
T= {t: there exists a solution uxeC2(Q)}.

T is obviously not empty for u0 =0 belongs to it, and we shall show that it is both open and
closed.

As the mean curvature term now has the form x. H (x, t) + (1 — x) x. r we deduce an a priori
bound of |«T|nfor any tgT independent of x(cf. [4]). Furthermore, let us remark that any
solution mtgC2(Q) is of class C2,ct(Q) with some fixed a, 0<a<l, such that the norm of uT
in C2'a(Q) is bounded independently of x.

To prove this, we first deduce from Theorem 2.1 that | DuT|n is uniformly bounded

( 3 . 1 2 ) \ D u r \ a ^ c .

Then, we choose a smooth vector field a( such that dai/dpj is uniformly elliptic, and such
that

( 3 . 1 3 ) a i ( p ) = a i ( p ) f o r | p | r g 3 . c .

From [29], Chap. 10, Th. 2.2, we conclude that the problem

JAux + xH(x, wT) + (l — x)x(/t = 0 in Q,
\ — a;p,- = Tf3(x, uz — <p) on 8Q,

has a solution MTeC2,a(Q) for any x.
Moreover, in view of (3.12) and (3.13) we derive

At/T = A((T.

Hence, we obtain from the uniqueness of the solution to the boundary value problem (3.14):

uT = w.T.

Thus, we finally conclude that | uj2 a n is uniformly bounded

( 3 . 1 5 ) H : , n ^ ~

where the constant is determined by known quantities.
From the estimate (3.15) it follows immediately that T is closed.
On the other hand, let x0 eT. Then, we consider the boundary value problem (3.14) as

before. Since J D«T|n depends continuously on x, it turns out that

( 3 . 1 6 ) | D m t | q ^ 2 . c f o r | x - x 0 | < 5 .

This yields ux = wT for those x's. Thus, T is open and we obtain a solution u e C2, * (Q) of the
boundary value problem

f 3 . ? s f A u + H ( x , m ) = 0 i n Q
\ — OiPi = $(x, u — cp) on dQ.
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Next we note
Remark 3.1. — The H2,2 (Q) norm ofu can.be estimated by a constant depending on | Du |,

|3p/3x|, L0, the C2-norm of dQ, and other known quantities, but not on |3p/<3f |.
For a proof we transform a boundary neighbourhood Q8 = QnB5(x0) via &

C2-diffeomorphism y = y(x) into an open set G5, such that

r=r(rQnQ5)={yeG(i:r" = 0}.
The boundary value problem (3.17) is then transformed to

(3.18) -Dk(ai).Dixyk + H(y,u) = 0 in G5, -a^D^y^^.] D,/| =p on T.

Let U5 = {j;(x): xgB6(x0)} and r\ any Lipschitz continuous function with
supp r| c U6. From (3.18) we then deduce

p . T i r f ^ ^ O .(3.19) f {ai.DixykDk.^ + KiDixDkyk.r\ + H(y,u)^}dy +
J g 6 J

Inserterting in this identity r| = -D°(D£(<7-(p)i;2), where £, 0^£_-l, is a cut-off function
with support in U5 and where a runs from 1 to n— 1, we obtain in view of the monotonicity
of P and the ellipticity of the coefficients ax a bound for

( 3 . 2 0 ) £ i I | d ; d ° u | 2 . ^ ,
i"=1 c=l Jo.,

depending on £ and known quantities. Then, a bound for

\DnyD';u\2¥dy,

follows from the equation in view of the ellipticity. The interior bounds are trivial.
Thus, approximating the maximal monotone graph p by smooth monotone graphs pe and

taking the a priori estimates for |Dwe| and|wE|2,2 into account, where ue is the
corresponding solution, we conclude

Theorem 3.1. — The boundary value problem (3.1) has a unique solution
wGH1'0O(Q)nH2'2(Q). The estimates for \u\, \Du\, and\u\2t2 are of local nature
depending only on local quantities. Moreover, if P does not depend on x, then the C0' *-norm
of ufor some a, 0 < a < 1, can be bounded independently of a; the (local) estimate only depends
on x and the other quantities mentioned in Theorem 2.1.

4. Plateau's problem for H-surfaces

We consider the weak formulation of Plateau's problem for H-surfaces, namely, we look at
the variational problem

(4.1) J(u) = (l + |Dt;|2)1/2dx + H(x, t)dtdx

+ \ v - < p \ d J t T n - ^ m i n , Vy e H 1 ' 1 ^ ) .
JdQ
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For simplicity we shall first assume dQeC4 and q*eC2(dQ), while H is Lipschitz satisfying
the monotonicity condition

( 4 . 2 ) f r = x > 0 -

Let P be the maximal monotone graph

t<0,
t = 0,
t>0

and let px(f) = A..p(0 for 0<A,<1.
Then we deduce from Theorem 3.1 the existence of a solution ux e H1, °° (Q) n H2'2 (Q) of

the boundary value problem

rA^ + H(x, ux) = 0 in Q
( — aipiE^iu — cp) on 3Q,

where

( 4 . 4 ) | w x | 0 a n = c o n s t . ,

uniformly in X for some 0<a< 1.
It is not hard to verify that the solution of (4.3) also solves the variational problem

(v)= I (l + |Di;(4.5) h(v)=\ (l + |Di;|2)1/2dx+*
Q J

H(x, t)dtdx

+ X. \v-v\d j rn-1-+min, VueH1-1^),
dQ

e. g. we can approximate the monotone Lipschitz continuous function7 (0= 111 by smooth
njonotone functions jE(t) with corresponding smooth monotone graphs $e(t)=j'e(t) and
PUO = ̂ Pe (t). Then, the solutions of the approximating variational problems (which exist,
cf- [9]) coincide with the solutions of the corresponding boundary value problems. If e goes
to zero we get the desired result in view of the a priori estimates which hold independently
of 8.

Hence, the w '̂s are a minimizing sequence of the variational problem (4.1) with uniformly
bounded C°'a(Q)-norm. Therefore, a subsequence converges (in fact the sequence will
do it) to a solution ueHu(Q)n C0'a(Q) n C0'x (Q). The fact that weC0,1 (Q) follows
from the interior gradient estimates for the wx's (cf [1], [8], [17], [27]).

In general the solution u of (4.1) will not take on the prescribed boundary values cp, and the
question arises when this will be the case. A sufficient answer has been given in [8], [20],
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namely: if in a neighbourhood of a boundary point x0 the mean curvature H„_! of dQ
satisfies the inequality

( 4 . 6 ) | H ( x . < p ( x ) | g ( n - l ) H 1 1 _ 1 ( x ) ,

then u = <p in that neighbourhood. The proof, at least that in [8], uses the variational
property of u. By the method we described above it will be possible to get this information
directly from the approximating sequence ux.

Precisely, let Q& be a boundary neighbourhood of x0 whose boundary <3Q5 is decomposed
into the parts rx c dQ and Y2 <= Q- We assume that (4.6) is valid on some open connected
subset F0 of dQ with Yl ccf0. Then, as in ([8], Chap. 4,) we can find upper and lower
barriers 5+ and 5~ in C2(Q6) satisfying

( 4 . 7 ) A 5 + + H ( x , 5 + ) ^ 0 i n Q s ,
( 4 . 8 ) A 5 " + H ( x , 5 ~ ) g 0 i n Q 6 ,

( 4 . 9 ) 6 - ^ i / ^ 5 + o n r 2 s J ( r 1 - r 3 ) ,

for all X,

( 4 . 1 0 ) 5 - ^ c p ^ 5 + o n r 3 ,

and

( 4 . 1 1 ) 5 - = c p = § + o n F 4 ,

where

Let
r3<=crt.

f I d s - I | D 5 + |
^o = max|sup(1 + |D5_|2)1/2-, sup (1 + |Dg+|2)1/2-

Then, X0 < 1, and we claim that

( 4 . 1 2 ) 5 " ^ % ^ 8 + i n Q &

for all X with X0 < X < 1. Hence,

( 4 . 1 3 ) u x = q > o n r 4 ,

and therefore

( 4 . 1 4 ) u = ( p o n r 4 .

Let us remark, that if the inequality (4.6) will hold on dQ then the relation (4.13) will also
be valid on dQ for X0<X<1. Thus, the 14' , for X0<X<1, are all identical in this case.
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We only prove the second inequality in (4.12). The proof of the lower estimate will be
similar.

Let r|=max(w-5 + , 0). Then r\ vanishes on dQ&-r3 and on T3 there holds

( 4 - 1 5 ) - a i ( D 5 + ) . p ^ p , ( 8 + - ( P ) ,

[i. e. there exists in element in (3, (5+ -<p) s. t. the inequality is valid] for X0<X<l,'m view of
(4.10) and the definition of p\. Thus, the proof of Lemma 3.1 yields the result.

In general the mean curvature function H is not assumed to be strictly monotone, but it has
to satisfy the isoperimetric inequality (0.9), which will be the right condition for solving the
variational problem (4.1). Thus, the way we here proposed to solve it is not applicable.

But considering the mean curvature functions

Hx(x, t) = U{x, t) + xr,

for x>0, we see that to each x there corresponds a solution wx of the perturbed variational
problem, for which we can derive a priori estimates in L00 (Q) n C0'' {Q) independent of x,
cf. [8]. If H (not Hx!) satisfies the relation (4.6) on certain boundary parts, then by similar
arguments as above we can conclude that ux = cp on those boundary parts. The construction
of appropriate barrier functions is still possible in this case; for details we refer to [22].

Moreover, let Qs be a boundary neighbourhood with mx = cp on dQ n Q&, and assume cp to
be of class C2. Then, we have mxeC1 (£J8/2) with a uniform bound for |DwJns2 (cf. [8],
Th. 2).

If x tends to zero the wx 's will converge to a solution u e C2 (Q) n L°° (Q) n C0,1 (Q6/2) of the
variational problem (4.1) satisfying «=ip on 3QnQ6/2, provided (peC2(3QnQ8), and
provided (4.6) is valid on dQr\Qs.

5. Variational problems with constraints on the boundary

In this section we consider variational problems whose classical formulation is

(5.1) (l + |Di;|2)1/2dx + H(x, t)dtdx -* min,
J a jo

VueK={i;eH1-1(Q):(p1^i; |sn^(p2}.

If 9i =<f>2 then we have Plateau's problem.
The weak formulation of (5.1) is

(5.2) J(t,) = (l + |Dt;|2)1/2rfx + H(x, t)dtdx

+ -minfa-cp!, 0) + max(u-(p2, 0)}dJtf'l,_l -> min, VveUul(Cl).
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This is justified by the fact, that any solution of (5.1) also solves (5.2). Another motivation
is, that writing the side conditions

<Pi ^1*2=^2*

as an isoperimetric constraint, namely, as

(5.3)
8Q

{ — min(w — cp!, 0) + max(v — q>2, 0)}rfjf„_1=0,

the Lagrange multiplier method, formally applied, leads to the problem

(5.4) J,»=| (l + \Dv\2)ll2dx+\ [H(x,t)dtdx
J n J q J o

+ X. {-min(w-(p1, 0) + max(w-92» d)}dJtfn-1,-^mint VueH1,1(Q),

with some unknown Lagrange multiplier X e R. In order that the functional remains convex
X has to be nonnegative, and setting the first variation of the functional to be zero, it is clear
that | X | ̂  1. Hence, we seek X in the interval [0, 1].

Let us consider the problem (5.4) for 0<A,<1. The corresponding boundary value
problem would be

| Aw, + H(x, wj = 0 in Q
1 -^.ple?i{p1(W-(p1) + p2(w-(p2)} on dQ,

where px and p2 are the maximal monotone graphs

r - 1 , t < 0 ,
( 5 . 6 ) P i ( 0 = < [ - 1 , 0 ] , t = 0 ,

I 0 , t > 0
and

r 0 , t < 0 ,
( 5 . 7 ) p 2 ( 0 = < [ 0 , 1 ] , t = 0 ,

I 1 , t > 0 .

Again we first assume 3QgC4, (p£GC2(3Q), and H to be strictly monotone, i. e.:

dH— > x > 0 .dt ~

Moreover, we suppose at the beginning

( 5 . 8 ) 9 i < < p 2 o n d Q .
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Then approximating the pf 's by Lipschitz continuous monotone functions P- 's we deduce
from the existence theorem in Section 3, which is still applicable in this case, the existence of
functions u{ e H2P (Q) solving the corresponding perturbed boundary value problems. We
note that

( 5 . 9 ) | P i ( * - q > i ) + p 2 ( ' - q > 2 ) | = l ,

for all t, and that the approximations P* can be chosen such as to satisfy the same estimate.
From the a priori estimates in Section 2 we know

( 5 . 1 0 ) | ^ | o , a , n = c o n s t . ,

for some a, 0<a< 1, uniformly in e and X, and

( 5 . 1 1 ) | D u l | Q = - c o n s t . ,

uniformly in e.

As in Section 4 we can conclude that the u\ 's converge uniformly to a Lipschitz continuous
solution of the variational problem (5.4). We call it ux, since we shall see that it will also be
the solution of (5.5).

Indeed, since ux is uniformly continuous and since the convergence of the m£'s to u% is
uniform, we deduce that the coincidence sets

Ei = {xg3Q: u{(x) = (pl(x)}
and

E| = {x g dQ :u{(x) = q>2 (x)},

can be separated by open sets uniformly in s. Let Uif for i = \, 2, be open sets in R"
separating them, and let r|, 0^r| ^ 1, be a cut-off function with support in Ulf where

Ei c Ux and Ee2 <= U2,

for all 8. We shall show show that the u{ 's are uniformly bounded in H2,2 (Q), uniformly
with respect to s. To prove this, we suppose the support of r| to be small enough to ensure
the existence of some C2-diffeomorphism y = y(x) flattening 3Q in some boundary
neighbourhood Q5 with supp r\ <= Q5. Denoting the transformed cut-off function r| with the
same letter and the image of Q6 with G5 we derive an estimate for

(5.12)
i= l J DiDJt4|2r,2^,y ^ y

for any r,l^r^n— 1, in terms of r|, | cpj 12 2 Q and known quantities. The proof is identical
to the first part of the proof of Remark 3.1: first we observe that there exists y > 0 such that

( 5 . 1 3 ) n £ ^ q > 2 - Y o n U l f
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uniformly in s and X, and hence that

( 5 . 1 4 ) P 2 ( i 4 - c p 2 ) = 0 o n U „

for small values of s. Indeed, if we choose

( 5 . 1 5 ) p | ( t )

then the relation (5.14) is valid for all s for which (5.13) holds. Second, we note that the test
function £= -Dry(Dry(ul-(p1).r\2) corresponding to that in the proof of Remark 3.1 has
support in y (Uj), so that in view of (5.13) the boundary term ff2 {u{ - cp2) is not involved in the
derivation of an estimate for (5.12). Similarly, we get a bound of the integral in (5.12) for
cut-off functions r\ with supprj <=. y(U2). Hence, we finally derive:

Theorem 5.1. — //cpi<cp2 on SQ then the boundary value problem (5.5) has a unique
solution %eC0, * (Q) n H2'2 (Q), where

( 5 . 1 6 ) K | o , « , a .

can be bounded independently ofX and inf (cp2 — cpi),
an

( 5 . 1 7 ) | D i n | 0 ,

is bounded independently o/inf((p2 — (pi), and where
on

( 5 . 1 8 ) | % | 2 , 2 , n .

depends on X and inf(cp2—(pi). All estimates also hold locally. From the approximation
da

procedure it is clear that ux also solves the variational problem (5.4).
In the limit case when X tends to 1, the ux's converge uniformly to the unique solution

ueC°'a(Q) nHu(Ojn C2 (fi) of the variational problem (5.2).
If the obstacles <pif i=l, 2, are only Lipschitz continuous satisfying the weak inequality

cp1^cp2 on dQ, then, via approximation, we can still find a unique solution
«eC°'I(Q)nH1'1(n)nC2 (Q) of the variational problem (5.2).

Remark 5.1. — (i) We note that the preceding results only hold under the general
assumption thatH satisfies 3H/3r^x>0, though it is possible tobound\ u%\ or\ u\ independent
ofv. provided H satisfies the isoperimetric inequality (0.9). We shall see below how to get rid
of this restriction in some special cases.

(ii) IfH is not strictly monotone but satisfies the isoperimetric inequality (0.9), then by
looking at the perturbed problems where H is replaced by Hx(x, t) = H(x, t) + y..t,x>0,we
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get the existence of solutions K^eH1'l (Q)nC2(Q)n L°°(Q) which converge uniformly on
compact subsets of Q to a solution ueH1'1(n)nC2(fi)nLI<>(ri) of the variational
problem (5.2).

Again the question arises under which assumptions on the data a solution u of (5.2) satisfies
the relation cpj ^ u ^ cp2 (locally) on the boundary. This inequality will be valid if, as in the
case of Plateau's problem, the mean curvature of the boundary and the mean curvature
function H are (locally) related by the inequalities

( 5 . 1 9 ) - H ( x , < p 2 ) ^ ( n - l ) H „ - A x )

and

( 5 . 2 0 ) H ( * , < p 1 ) £ ( n - l ) H , _ 1 ( x ) .

for these relations ensure the existence of barrier functions 5+ and 5" in some boundary
neighbourhood Q& where (5.19) and (5.20) are valid on 3Q28 n dQ such that

( 5 . 2 1 ) 5 - ^ u g § + i n Q s

and

( 5 . 2 2 ) ( p 1 = 5 - ^ 5 + = ( p 2 o n < 3 Q 6 n c 3 Q ,

provided

( 5 . 2 3 ) c p , £ C 2 ( 0 2 5 ) f o r i = 1 , 2 .

If the cp; 's are only continuous then a modified version of proof still leads to the result

( 5 . 2 4 ) ( p i ^ u ^ s p , o n d Q s n d Q ,

where the inequalities in (5.24) only hold 3^„-i — a.e. on<3Q6 n dQ, for we do not know if u is
continuous up to the boundary in the general case of non-strictly monotone H. (5.24) can
be proved using the variational property of u (cf. [8], the methods developed there can also be
applied in this case).

Now, we shall show that in the case when Q c R2, the solutions of the variational problem
(5.4) are uniformly Lipschitz continuous in those boundary neighbourhoods 08, where the
inequalities (5.19) and (5.20) are valid on 3fi25n3Q.

Theorem 5.2. —Let Q a R2 be a bounded domain with Lipschitz boundary dQ and let T0
be an open subset of dQ being of class C2. Assume that the functions (p1( cp26L1(3Q),
with (p1^92, belong to C2(T0) and that H = H(x, f) satisfies besides the conditions (0.8)
and (0.9) the inequalities (5.19) and (5.20) in F0. Then the variational problem (5.2) has
a solution HeH1'1(Q)nC°'1(r2j)nC2(f!) such that (5.24) holds. Q6 is a suitable
boundary neighbourhood with dQ& nfficc F0. The gradient of u is bounded in Q6 by
a constant depending on e0, §, || cp;||Li(an), |D2(p;|r(), | (<3/3x)H(x, u(x))\Qi, |H(., 0)L, and
the C2-norm ofT0.
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Proof - First we observe that without loss of generality we may assume that SQgC4,
dU/dt^x>0, andcpi < cp2 on T0. For otherwise we approximate Q by smooth domains QE
and ^ by functions <pf such that

( 5 - 2 5 ) " H ( x , ^ 2 ( x ) ^ ( n - l ) W n . 1 ( x ) + y

and

( 5 - 2 6 ) H ( x , < p i W J ^ - l J H S - x M + y ,

for all xeTe0, where y is an arbitrarily small positive constant and the relations hold
uniformly in e for all e^e* (y). Replacing H by Hx(x, t) = H(x, t) + x. r if necessary the
inequalities (5.25) and (5.26) are also valid for Hx, if x is sufficiently small. Thus, the
construction of barrier functions 5e+, 8£~ is still possible for the perturbed problems provided
y is sufficiently small depending on the C2-norms of the <pf '5. The estimate for | D wx |Q|,
where wx is a solution of the perturbed problem will hold uniformly in e and x, since | ux |Q| is
bounded independently of e and x (cf. the proof of [8], Lemma 1).

Let us therefore assume that dQ, H, and the q>£ 's satisfy the stronger assumptions. Then,
from the results of [4] we know that any solution of the equation

Au + H(x, w) = 0,

in Q is bounded by some constant m depending on x and the C2-norm of dQ,

( 5 . 2 7 ) | M | fi  = m .

Let Q5 be a boundary neighbourhood such that 3Q8 nfflccr0, and decompose SQ6 into
the parts rx and T2 such that T2 c Q and rx c T0. Then, there exist upper and lower
barriers 5+ and 6" gC2(Q5) satisfying

( 5 . 2 8 ) A 5 + + H ( x , 5 + ) = 0 i n Q 5 ,
( 5 . 2 9 ) A 5 " + H ( x , 8 " ) ^ 0 i n Q 5 ,

( 5 . 3 0 ) 5 - = - m = m = 5 + o n S Q 5 - r 3 ,
( 5 . 3 1 ) 5 - ^ 9 1 ^ ( p 2 = 8 + o n T 3 ,

and

( 5 . 3 2 ) ( p i = S " = 8 + = ( p 2 o n T 4 ,

where r4<=czr3c=cr1. The C2-norms of the barriers only depend on 8, the C2-norm
of T0, I cp£ |2 0 r<>, m, and on other local quantities.

Let

A,0 = max<J sup ——
a (1 +

D8_
D8 + w Tar D§-

D8-|2)
- I2U/2

tome 58 - 1979 - n° 2



S U R F A C E S O F P R E S C R I B E D M E A N C U R V A T U R E 1 0 1

and let Xc be a sequence of smooth functions such that

( 5 . 3 2 ) a 0 ^ a e ( x ) < 1 , x e d Q ,

( 5 . 3 3 ) a e ( x ) = a . 0 , x e r 4 ,

and

( 5 . 3 4 ) l i m A . E ( x ) = l , x e d Q - T 4

Then, we consider the boundary value problem

Aus + Hfx, i/E) = 0 in Q,
(5.35)

-a,p,EAE{ pi(t/E-(p1) + (32(i/E-(p2)} on dQ,

where p\ and (32 are the maximal monotone graphs in (5.6) and (5.7).
From our preceding results we know, that for each s the boundary value problem (5.35)

has a solution wE e C0'1 (Q) n H2'2 (Qs) such that

( 5 . 3 6 ) | D u e l ^ M ^ M t ( X 0 )
and

( 5 . 3 7 ) | u E | 2 , 2 . n „ , ^ M 2 = M 2 ( ^ 0 , i n f ( ( p 2 - < P i ) ) .
r„

uniformly in e provided dQ6/2 n <3fi<=r4. We shall always assume this.
From the definitions of the barrier functions 8 +, § ~ and from the definition of Xs we deduce

as in Section 4:

( 5 . 3 8 ) b - ^ u , ^ 8 + i n Q 6 .

Note that ut satisfies (5.27)
Hence, we obtain

( 5 . 3 9 ) c p , ^ i ( E ^ ( p 2 o n T 4 ,

so that in the limit case, e -» 0, we conclude that the i(E's converge uniformly on compact
subsets of Q and uniformly in Q„ 2 to a solution

k 6 H' ■ ' (Q) n C2 (Q) n C°-' (Q6I2) n H2'2 (Q8;2)

of the variational problem (5. 2). Indeed, to prove that u is a solution it is sufficient to show
that the uE's are a minimizing sequence of (5.2): let

X t ( x ) i f x E r Q - r 4 ,

and let

h(») = (l + \Dv\2)1/2dx +
a J a J o

L(x)= , 1 , i f x e V 4

H(x, t)dtdx

+ u{ — min(y —cpj, 0) + max(f —cp2, 0)} dJ>t„-lt
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for u = XE or [i = Xz. Then, we have

( 5 . 4 0 ) J K ( u e ) ^ K ( v ) , V ^ e H ' - ^ Q ) ,
( 5 . 4 1 ) J ~ K ( u e ) = } K ( u J S J K ( v ) S k M ) . V v e W - ^ Q ) ,

in view of (5.39). The conclusion that uz is a minimizing sequence for the functional J is now
immediate.

Moreover, on r = 3Q6/2 ndQ u satisfies the boundary condition

( 5 . 4 2 ) - a ( p i E A . 0 { fi 1 ( " - c p i ) + P 2 ( w - < P i ) } .

in view of (5.36), (5.37), and the maximal monotonicity of the P,'s. Indeed, regarded as a
multivalued operator in L2 (T) each P, (. - cp,) is maximal monotone; furthermore we deduce
from (5.36) and (5.37) that uE converges strongly and —a;(DuE).p; weakly in L2(r) to u
and — a{ (Dm) . p, respectively. The conclusion (5.42) then follows from well-known results
on maximal monotone operators (cf. e.g. [3], Chap. I, Prop. 2.5).

Remark 5.2. — The preceding considerations are valid for QcE", «^2.

But, in the case n = 2 Frehse [6] has proved that u is not only Lipschitz continuous in Qs/2
but also of class C1 (05/2). This result will enable us to estimate | Dm |fls3 independent ofx
and independent of the further assumptions we supposed dQ and the cp.'s to satisfy.

Theorem 5.3. - Let ueC1 (Q5/2)nH2,2(Q6/2) satisfy the relations

( 5 . 4 3 ) A m + H ( x , m ) = 0 i n Q 8 / 2 ,
( 5 - 4 4 ) - fl i P i e A - o l M w - ' P i H M " - ^ ) } o n T ,

and

( 5 . 4 5 ) ( P i ^ w ^ c p , o n T ,

where 0 < X0 < 1.
Then,

( 5 . 4 6 ) | D m L < M 3 ,
I I " 5 / 3 J '

where the constant depends on 5, X0, \l><pi\r, |Dcp2|r, \u\ttm, |(3/3x)H(x, u(x)\a ,
|H(x, m(x))|Qj/2, and on the C2-norm ofT.

Proof of Theorem 5.3. - Let y = (l + | Du|2)1/2, and £,0^^ 1 a cut-off function such that
supp^c=Q(3/8)6. Furthermore, let h be a positive number such that

( 5 - 4 7 ) f c ^ m a x fl D c p i l r , | D c p 2 | r } + 1 = h 0 .

The idea is to estimate

( 5 . 4 8 ) r \ = m a . x { v . t , 2 - h , 0 } .
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Let k(h, Q be the set where r\ is positive, and let Ej and E2 be defined by

E! = {x6r: u(x) = cp! (x)}
and

E2 = {xeF: M(x) = cp2(x)}.

Since u and the cp;'s are of class C1 we know that the tangential derivatives of u and cp;
coincide on E,- for r'= 1, 2. From (5.44) we then conclude

( 5 . 4 9 ) | D u | ^ / i i = / i 1 ( / z o A o ) o n E ; f o r ; = 1 , 2 .

Thus, we obtain

( 5 . 5 0 ) k ' h , Q n E , - = < 3 ,

for z=l, 2, if h>h1. But this implies the important result, that

( 5 . 5 1 ) - a , P , = 0 o n A ( f t , Q n T ,

for those values of h.
Now, we are ready to apply the a priori estimates of [7] to conclude that n, =0 if h is large

enough depending on the quantities mentioned in the theorem. We proved in [7] a priori
estimates for the gradient of solutions to the capillarity equation

( 5 . 5 2 ) A u + H ( x , u ) = 0 i n Q ,
( 5 . 5 3 ) fl ; P ; = P o n d Q ,

where P = P(x) was assumed to be Lipschitz such that |p|^l — a, a>0. But since the
estimates are of local nature and since the calculations are performed on the set A (ft, Q, we
can use these estimates in our special case setting formally P = 0 in (5.53) in view of (5.51),
(5.44), (5.45), and the definition of px and p2.

Strictly speaking there is a formal difficulty to apply the results of [7] directly, namely, we
had there to estimate the integral

(5.54)
Ms*.

for large h, where w; = logi>, and W = (l + |Dm|2)1/2 (i.e. u = W in our special case), and for
simplicity we proved a stronger estimate, namely, we gave a bound for

(5.55) w2Wdx,
B(A„)

where B(h0)= {xeQ: v(x)>h0} and h0 is sufficiently large (cf [7]; formula (1.62)).
It is not difficult to bound the integral in (5.54) using only local informations. Indeed we

shall show in the Appendix, that if U is a local boundary neighbourhood, then the gradient of
a solution u of the boundary value problem (5.52), (5.53) can be estimated in U in terms of

( 5 - 5 6 ) | D p | U n | | D u | > / l ) ,
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where h is large, a, and some other local quantities. Applied to our case we conclude that the
gradient of u is bounded in Q5/3 in terms of the quantities mentioned in Theorem 5.3.

Thus, Theorem 5.2 is also proved.

6. Mixed boundary value problems

In [14] Giusti considered the variational problem

(6.1) J(i?) = ( l + |D i ; |2)1/2+ H(x, t )d tdx
Q JO

| " - < p | ^ , . - i + P o . t f d ^ - i - ^ m i n , V p g H 1 ' 1 ^ ) ,

where dQ is decomposed into the disjoint subsets rx and T2, and where cpeL1^) and
Po e L00 (T2) are prescribed. Imposing some natural conditions on H, p, and T2 he could
prove the existence of a solution ueH1-1 (Q) of this variational problem.

We do not know any physical problem where a variational problem of this type occurs,
but, nevertheless, it will be of mathematical interest to study those problems.

Giusti raised the question if the solution is smooth near T2 if p0 and T2 are smooth, but he
could not solve it.

Using the preceding results it is very easy to give an affirmative answer. We shall prove
that in every boundary neighbourhood of T2, where T2 is of class C2, and where p0 is
Lipschitz and strictly less than 1, the solution is of class H2p for any finite p, provided u is
bounded in that neighbourhood. We might also treat the case where p0 = p0(x, t),
and p0 (x, .) is a maximal monotone graph. Then, if (locally) T2 is of class C4, | p01 < 1,
dH/dt^x>0, and p0(., t) is Lipschitz, the solution would be Lipschitz continuous and of
class H2'2 up to those boundary parts, where the assumptions are satisfied. Moreover, if
(locally) p0 is of the form p0 = P0 (t), Po a maximal monotone graph, then the solution would
be Holder continuous up to the boundary even in the most general case where | p01 ^ 1,
provided H and T2 locally satisfy appropriate assumptions.

We could also generalize the Dirichlet data on rx to boundary constraints of the kind:
91^^92- But we shall not treat the most general cases. Instead we assume 3QgC4,
that H = H(x, t) and p0 = po(x) are Lipschitz continuous functions such that

( 6 . 2 ) ? ^ = x > 0dt

and

( 6 . 3 ) | p 0 | = l - a , a > 0 .

(p is assumed to be of class C2.
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Let T\ = {xe dQ: dist (x, r2) < s}, and let A.E, 0 ^ Xt S 1, be a sequence of smooth functions
such that

f 1 , x e Y 2 ,
( 6 . 4 ) X t ( x ) = < 0 , x e T I - F f ,

t 1 - 8 , x e d Q - r e 2 ,

Then, we define

( 6 . 5 ) p E ( x , t ) =

where P(t) is the maximal monotone graph

r - l , « o ,
( 6 - 6 ) P ( t ) = < [ - 1 , 1 ] , f = 0 ,

I 1 , r > 0

and consider the boundary value problem

Ame + H(x, me) = 0 in Q,

K(x)Ht), xe<3Q-r2,
0. x 6 r2 - Tf-

^WPo(a-), x e f f ,

(6.7)
-fl;PiePE(x, me —cp) on dQ.

From Theorem 3.1 we conclude that there exist solutions me e Hl- °° (Q) n H2,2 (Q). Let x0
be a boundary point interior to T2. Then, for sufficiently small 8, | Dme | can be estimated
inf!8 = QnB5(x0) in terms of local quantities involving 5, |m,L and the C2-norm
of dQnQ2S.

Since the estimate is independent of s, we can go to the limit obtaining a solution u of (6.1)
satisfying the same estimate in Q&.

Appendix

In the proof of Theorem 5.3 we needed a completely local version of the a priori estimates
given in [7], Th. 1.1. Unfortunately, some of the estimates in [7] are not of local nature, so
that the results can not be applied directly. We now indicate how to prove a completely
local version.

In the following we shall use the notations in [7]. Let Q be a bounded domain of R",
n ^ 2, with C2-boundary dQ, and let ueC2 (Q) be a solution of the boundary value problem

Am + H(x, m) = 0 in Q,
a;Y; = P on dQ,
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where y = (Yi. • • •, Y„) is the exterior normal to dQ and where P = P (x) 6 C0,' (dQ) satisfying

( A l ) | p | < l - a , a > 0 .

We extend y and p as Lipschitz continuous functions inside Q such that the estimate (A 1)
remains valid for p. H is Lipschitz continuous satisfying

d H „
^ s - ^ 0 .dt ~

Let x0e<3Q and f!6o = Qn B5o(x0), So>0.
Then we shall prove:

Theorem Al. — Under the assumptions stated above |Dw|n can be estimated by a
constant depending on \u\n. , | H(x, u(x))|n. , \(d/dx)H(x, u(x))\n. , the Q2-norm of
dQ n dQSa, n, a, 80, and on the supremum of\ D p | in Q6o with respect to the set where the
gradient ofu is sufficiently large.

Proof. — We introduce the function

i> = W-PD*u.Y;, W = (1+|Dm|2)1/2,

and we shall show that luL. is bounded in terms of the above quantities, and hence
I . ' ' 0 0 / 2Du o in view of (A 1).I "So/2

We denote by Sf the graph of u:

£f = {(x, u(x)):xeQ}

and by 8 = (81, . .., 8"+1) the usual differential operators on Sf, i. e. for geCl(R"+l) we
have

b i g = D i g - v i " ^ v k D k g , i = \ n + 1 ,
fc=i

where v = (v1, . . ., v„+1) is the exterior normal to y:

v = W-1(-D1M, . .., -D"u, l).

Furthermore, let aij = dai/dpi, then, the following relations are valid

( A 2 ) a , . J . D , ' g D ^ = W - 1 | 8 g | 2 , g e C ^ Q ) ,

( A 3 ) | a , 7 D , ' fi f D J ' c p | g W - 1 | 8 g f | . | D ( p | . g , c p e C ^ Q ) ,
£ 1

(A 4) aVj p' qJ g- atj P'P' + J^ aa <t °3 •

and

( A 5 ) a . W ^ i ^ 2 . W .
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Let it> = logp. In view of the results in [7], p. 167.
Theorem A 1 would be proved provided the integral

(A 6) Wdx
n5„/2n {»>*}

could be estimated in terms of local quantities for large values of ft. Equivalently we could
ask to estimate

(A 7) w2.W.t,2dx,
Hh.Q

where £, 0^£^1, is any smooth function with supply c B6o(x0) and where

B(ft, Q = {xeQ:max(v-h, 0).^2>0}.
To estimate the integral in (A 7) we prove (cf. [7], Lemma 1.5):
Lemma Al. — Suppose the assumptions of Theorem A 1 to be satisfied. Then we have

(A 8) [W~31 Du|2 + i;]cix^const.,
B(/..C)

where the constant depends on local well-known quantities.

Proof of Lemma A 1. — We use the crucial inequality (cf. [7], (1.49)):

~|5u|
y\d-?f„-x +c(A9) aij[DJv + DJ($yk).Dku].D,r\dx ^c W -+1 r[dx,

where c is a suitable constant and n, any nonnegative Lipschitz function with
supp T) c [v>h], ft sufficiently large. Inserting r\ = max(v — ft, 0) C,2 in this inequality
and using (A 2)-(A 5) we obtain

(A 10)
Si;

B(/..Q w -£,2dxSc Wdx + c
B (ft,?)

D.C2^^„- i ,

where the constant c depends on | D£| and known quantities.
On the other hand we know from ([7], Lemma 1.4) that

v . ^ d t f ^ ^ c

Now, look at the identity

( A l l ) a; D' n, dx + \ H. n, dx —

[isd .c;+c2]Ws7x.

p.TidjrB_1 = 0, VtigC^Q).

Choosing r|=u.^2 and taking the estimate

(A 12) p r, | r f ^ „ _1^ ( l - a ) | Dr) \dx + c I n, I dx,
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into account ([10], Lemma 1) we deduce

( A 1 3 ) I W " 3 | D t ; | 2 . t ; 2 r f x =
B(fc.Q W

c » I 2

£2dx_- const.

To estimate the integral in (A7) we use the relation (All) once more, this time with
r|=u.max(u;2-/i,0).£2, and we obtain in view of (A 12):

(A 14)
w2>h}

{aiDiu(w2-h).C>2^u.aiDiv.v-1.C)2.2 w

+ u.ai.2.Di().£>(w2-h) + H.u.(w2-h).t)2}dx

£(!-*)
w2>h}

+ 1

{| D m |. (u;2 - ft). t;2 +1«12 w. | D1 u |. u-x. C2

■|«|.(w2-ft).2.(;|Dl(;|}<foe + c \u\(w2-h)¥dx.
J{w*>h}

Using the inequality |aft|̂ i(e/2)a2+(l/2E)&2 we deduce from (A 14):

( A 1 5 ) \ D u \ w 2 ^ 2 d x ^ c \ { W - 3 | D p | 2 . s ; 2 - l - f t . W + W } d x ,
J { w 2 > h ] J { w 2 > h } n s u p p t )

where the constant depends on a, | DC, |, and known quantities.
Here we also used the estimate

u;2^c.W,

with some suitable constant c.
The result now follows in view of Lemma A 1.
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