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Existence and Regularity of Capillary Surfaces.
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Sunto* - Si prova che il problema variazionale

f(1 + IDv\*)*dx + f fH(x, t) dtdx — LvdRn_x-> min
0 a o e n

in BV(Q) ha una soluzione ueC0tl(Q) nL^lQ) nelVipotesi che H9 x
e dQ verifichino opportune condizioni.

0. - Introduction.

Let jQcRn, n > 2, be a bounded domain and let

A = -D<(ai(p))(1)

be the minimal surface operator, i.e.

The classical problem of capillarity [9] consists in determining
a function ueC2(Q) n G^Q) such that

( 1 ) A u - \ - e u = 0 i n Q
and

(2 ) D 'u -Vi = * (1 + \Du \2 )^ on dQ ,

where v{ are the components of the outward normal vector at dQ,
and c and x are given constants such that

( 3 ) c > 0 a n d M < 1 .

(x) Here and in the following repeated indices will denote summation
over them from 1 tow.
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If there exists a solution u e C2(Q) n GX(Q) of problem (1) and (2),
then this solution also minimizes the functional

(4) I{v): = ((l+ \Ih\*)*ax+ef\D\*ax--xfvaX^l
Q Q d Q

in the function class BV(Q) (see Appendix I for the definition of
BV(Q) and for some properties of its elements).

In a recent paper M. Emmer[4] has proved that the func
tional I has a minimum in BV(Q) which is locally bounded pro
vided that \x\< (1 + JL?)-**, where I is a constant which depends
on the boundary of Q. Moreover, by a result due to Massari [8]
he could show that u is real analytic in the interior of Q for n<6.

In this paper we shall consider a slightly more general varia
tional problem in BV(Q), namely, we want to minimize the func
tional

V

(5) J(v) : = f(l + \Dv\*)*dx+j JH(x, ^dtdx-LvdM^
Q Q 0 d Q

where % belongs to L™ (dQ), \x\dQ<l, and ffGC^xR) satisfies
the conditions

m ¥ > »
and

( 7 ) f H ( x , J c 0 ) > l + C l ,
I jrj(a?,-fc0)<--(l + c1),

for some Jc0>0, where cx is a constant which appears in the fol
lowing.

The main theorem which we shall prove is
Theorem 1. - Suppose that dQ is of class G2 and that jtt|$fl<

<1 — a, a> 0. Then the variational problem

8 ) J ( t f ) - > m i n i n B V { Q )
(
has a solution ueGQ'1(Q)r\E1'1(Q)r\L°(Q).

When writing the manuscript I heard from E. Finn that
P. Concus and he have considered a similar problem. They have
shown that a solution u e G0tl(Q) of the equation

Au + H(x, u) = 0 in Q



E X I S T E N C E A N D R E G U L A R I T Y O P C A P I L L A R Y S U R FA C E S 3

is bounded in Q provided that dQ satisfies an internal sphere con
dition, i.e. for any boundary point x0edQ, there is a ball B of
fixed radius such that BcQ and xQ e dB. The result of Concus
and Finn does not seem to apply in its present form to that step
in the existence proof. Moreover, our method is also applicable
in the case of Lipschitz domains, using Lemma 1.1 in [4], with
the natural restriction on |*|, instead of Lemma 1 below.

Applying the results of Concus and Finn one might show by
approximation that Theorem 1 remains valid under the natural
condition |k|$o<1.

1. — A priori estimate for \u\.

Since Concus and Finn have shown in fl] that in general one
cannot expect a bounded solution of (8) if dQ has vertices, the
a priori estimate will depend on the fact that we assumed dQ
to be smooth. In this case we can prove the following lemma
(compare [4]; Lemma 1.1).

Lemma 1. - Let veBV(Q) and suppose that dQ is of class G1
satisfying an internal sphere condition of radius B. Then we have

(9) J|«|d3ew_1<J"|J>v|dbp +
d Q Q Q

d o ) C l = | .

Proof. - In view of our assumption the distance function d,

d(x) = dist (x, dQ) ,

belongs to H^-^iQ^, where Qm is the boundary strip {xeQ:
d(x)<Rj2}. Moreover, we have the relation (cf. [13]; Chap. 1.3)

( 1 1 ) - A d ( x ) = n f ^ ,

where k{ are the components of the normal curvature vector of that
point yedQ having smallest distance to x. From the interior sphere
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condition we derive h^l/B. Hence, we have
0 i f & t .<0 ,

( 1 2 ) * '1 — Jc±d 2 1- i f O < f c , < - .

Thus, we deduce the estimate

( 1 3 ) - A d ( x ) < 2 { n ~ 1 > j V x e Q B I 2Jtc

In order to prove the inequality (9) we may restrict ourselves
to the case i?>0. Assuming this, we get by partial integration
(cf. Appendix I, Lemma A3)

(13a) -(Ad• v• (E/2- d)dx = -\vdx +
Q u i t Q R i %

+ ((RI2-d)Did-Divdx+RI2(vctt£n_1.
Q r H d Q

Hence,

(136) h?&&„_!< |Zto|d# + | |max(— Ad, 0)+— \vdx
d Q Q Q R i %

from which the assertion follows.
With the help of Lemma 1 we immediately get
Lemma 2. - Let dQ be of class G2 and \x\<l — a, a> 0. Then

a solution ueBV(Q) of the variational problem (8) is absolutely
bounded by some constant c2, which depends on a, cx, Q, and the
structure of E.

Proof. - Let fc>0 be a real number and set A(k) := {xgQ:
u(x)>k}. Since v: = min [u, Tc) belongs to BV(Q) we obtain from
the minimum property of u

( 1 4 ) J ( u ) ^ J ( v )
and hence

u

(15) J|Dmax(w-fc, 0)\dx+j JH(x,t)dtdx-
Q M k ) k

— p«max(w— h, 0)dXn_1<\A(k)\ (2)
dQ

(see Lemma A4 in Appendix I for the verification of (15).)

(2) For any measurable set E c Rn, \E\ denotes its Lebesgue measure
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Setting w:=u — v = max (u— k, 0), we get from Lemma 1

(16) J jxwdXn_t < (1 - a) f \Dw\ dx + (1 - a)cjwdx .
d Q Q a

Combining the inequalities (15) and (16) we obtain

u

( 1 7 ) a j \ D w \ d x + j f { H ( a > , t ) - e J d t d a > < l A ( k ) \
a A O e ) k

or finally

(18) a(\Dw\dx + inf{H(x,k) — c1}-f(u — k)dx<\A(k)\ .
i x e Q JQ A ( k )

Since dQ is regular we have the following Sobolev imbedding result:

Any function veBV(Q) belongs to Ln/n-1(Q), and

(19) ( J" I« 1-̂—"- ̂fe»)C~—"X~ "̂̂  ̂»" t J" I-̂̂ Î ̂̂^ —I— /" I« I ̂*»J -
Q Q Q

Taking v = w in (19) we get from (18)

(20) a\cz ( JM"'-1 dx^1),n + inf {H(x, k) - cx- a) •

•f(i* — k)dx<\A(k)\
A(k)

From the assumption (7) and using the Holder inequalities we
therefore obtain for fc>ft„

( 2 1 ) j ( u - k ) d x < C t - \ A ( J c ) \ ^ l " , o 4 > 0 ,
A(k)

and hence

( 2 2 ) \ h - k \ - \ A ( h ) \ < C t - \ A ( k ) \ i + H " f o r h > k .

From a lemma due to Stampacchia [14; Lemma 4.1] we now con
clude that

w<&o+04-|£|1/n*2(w+1).

In order to get a lower bound for u, we set v: = max (u, — k)
in (14). Then one could complete the proof of Lemma 2 by sim
ilar conclusions, which will be omitted.
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2. - Existence of a solution in BV(Q).

We shall show that under the assumptions of Theorem 1 the
variational problem (8) has a solution in BV(Q).

Let ve be a minimizing sequence

( 2 3 ) J { v e ) - > i n f J ( v ) < J { 0 ) = : o 5 .
vesv(Q)

From Lemma 1 we conclude that

(24) af|2ty,|cte + f{ (E(x, t)dt- c^v^dx^c^
Q Q o

Hence, we easily derive from the assumption (7)

( 2 5 ) j \ D v e \ d x + j \ v 8 \ d x < c e .

From [12; Theorem XVI], the Sobolev imbedding theorem, and
[11; Theorem 2.1.3] we then conclude that the sequence ve is pre-
compact in any LP(Q), l<p<njn— 1. Since the functional J is
lower semicontinuous with respect to a minimizing sequence in
BV(Q) (see Appendix II), a subsequence of ve converges to some
element ueBV(Q), which is a solution of problem (8).

Eemark 1. - Since we assume H(x, •) to be strictly increasing
a.e., the variational problem (8) has a unique solution. Or more pre-
cisely, if x^x', and u, u' are the respective solutions of (8) according
to the funciionals J, J' then u^u'.

Proof of Eemark 1. - From the strict monotonicity of H(x, •)
we deduce

(26) J(u) < J(min (u, u')) or u = min {u, u')

and

(27) J'{W) < J'(max (u, u')) or u' = max (u, u').
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Combining these relations and using the fact that

(28) —\x{u — min(u, u'))d&n_x>[x'{u! — max (u, u')) d&n_x
d Q d Q

it follows from (26) or (27) that u = min (u, u').

3. - Regularity of solutions in BV(Q).

The regularity of u will follow from a general theorem con
cerning the regularity of solutions weBV(Q) of the variational
problem

V

(29) L(v): = [(1 + \DvYY2dx +\ jH(x> *)dtdx + i(«) >
Q Q 0

where j(v) denotes a boundary term continuous in L1(dQ), e.g.

( 3 0 ) j t o > ) = j \ o - f \ d K n ^ , f e L * ( d Q )
dQ

or

( 3 1 ) m ^ X V d X ^ .
dQ

Theorem 2. - Let w be a bounded (3) solution in BV(Q) of the
variational problem (29). Suppose that Se(J0,1(RnxR) is strictly
increasing in t. Then w is locally Lipschitz in Q,

Proof. - We shall use the results of Serrin [13] concerning
the existence of surfaces of prescribed mean curvature together
with the a priori estimates of Ladyzhenskaya and Uraltseva [7].

Without loss of generality we may assume H to be bounded
in Q (4). Then for B sufficiently small, B< B0, we can solve the
Dirichlet problem in any Ball BccQ of radius B

f Ave + H(x, ve) = 0 in B ,
( 3 2 ) \ * ' * '

(3) If E = H(x) or H(x, t) = ct, c> 0, then it suffices to assume w to
be locally bounded.

(4) Choose e.g. Hk : = min (H, k) + max [H9 — k) — H. Then H(x9u) =
= Hk(x9 u) if k is large enough.
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where we is a mollification of w. From the results of Serrin we
conclude that (32) has a solution veeC-(B) such that

( 3 3 ) K \ B < c 7 = c 7 { \ w \ B J B , \ H \ ) .

From the a priori estimates of Ladyzhenskaya and Uraltseva we
then deduce

(34) \Dve\a<c8 = c8(c1, \DH\,Q') for Q'ccB.

Moreover, we know that vB minimizes the functional

(35) I,{v):=j(l+ \Bv\ f* + ^E(x,t)dtax+^\v- w,\&&n_t
B o d Q

in BV(B).
Hence we have the inequality

(36) f(l + \DvBY)^dx + j JH(x,t)dtdx<

f(l.+ \DweYyi2dx + [ (H(x,t)dtdx.

B 0

<
B B o

Setting
in B ,
in Q — B,

we derive in view of (36)

( 3 7 ) « . : = ( %

( 3 8 ) L ( v e ) < L ( w e ) .

From Appendix I, Lemma Al and Lemma A2, and from Lebesgue's
theorem of dominated convergence we conclude, that the right side
of (38) tends to L(w), if e goes to zero. From the estimates (33),
(34), and from the definition (37) we conclude, that the vg's converge
in BV(Q) to some element v0 which is locally Lipschitz in B and
agrees with w in Q—B. Moreover, we immediately derive on
account ot Lemma A2 in Appendix I that

(39) L(v0) <l im ml L(ve) < L(w) .

Hence, v0 equals to w, since vQ]dQ = wm and the variational prob
lem (29) has no distinct solutions withe qual boundary values.
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As we mentioned in the Introduction P. Concus and E. Finn
proved a priori estimates for the modulus ol solutions to the equa
tion

Au -f- H(x, u) = 0 in Q

provided that dQ satisfies an internal sphere condition.
In order to prove Lemma 1, which is the key lemma in the

existence proof, we made the more restrictive assumption that dQ
should be of class G1. However, we shall show that a conclusion
similar to that of Lemma 1 is valid in the more general case.

Eemark 2. - Let Q be a bounded domain in Rn with Lipschitz
boundary dQ which satisfies an internal sphere condition of radius B.
Then

(40) (\v\d3tn_1<(\Dv\dx+ c^ (\v\dx VveBV(Q)
d Q Q R / t Q

where cx depends on n, B, and dQ.

Proof of Eemark 2. - Let r be an relatively open subset of
dQ which is representable as the graph of a Lipschitz function <p
defined on some open subset Vr of R*-1, 7r=»{a?'6Rn-1: |#'|<r},
such that 0<<p<a, and for /?>a let

(41) Urtfi = {(x',x»): x'eVr} cp{x')<x«<(}}cQRI2.

Furthermore, choose two positive numbers rx, r2 with rx<r2< r,
and let qf be a mollification of cp with a mollifier r\. Then cp* is
well defined in Vri if e is sufficiently small and

(42) Z7Ji</?, = {(x', x«): x' e Vr%, <f(x') < x»<p'}c QBf2

for some /?', a<|8,</?, independent of e.
We shall show that the principal curvatures k\ of re = graph <pelVf

(with respect to the internal normal vector) are bounded from above
by some constant c0 which depends on B and the Lipschitz con
stant of <p.

Let x0 e Vr be given and let L be the Lipschitz constant of cp.
In view of the interior sphere condition there exists a ball B with
radius B such that Be Q and x0 = (xf0, cp(xQ)) e dB. Since cp is
Lipschitz, a part of the sphere containing x0 might be represented
as the graph of a G1 function / defined in a suitable neighbour-
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hood V oi x'0. Thus, we obtain

(43) 9>(*J) = /(0j) and <p(x')<f(x') Vx'eV.

Let 16 Rn~l be an arbitrary unit vector and let t> 0 be sufficiently
small. Then, we deduce from (43)

(44) f(x'0 + m- f(x'0)>cp(x'0 + t£)-<p(x'0)>-t-L ,

hence

( 4 5 ) D f ( x [ ) ^ > - L

which implies

( 4 6 ) \ B f « ) \ < L

since £ was arbitrary.
Therefore, we conclude that the second derivatives of / are

bounded by a constant depending on B and L, independent of x'Q.
Now, let *=£0 be any vector in R""1 of sufficiently small norm

and set for any function v

(47) vh(xf) = ji; •{*(*' + h)-2v(a>') + v(x' — K)} .

In view of (43) and (46) we deduce that there are some positive
number h0 and a constant c0 such that for any x' e Vr% we have

(48 ) <Pk(x ' )< fk (x ' )<o0 V f t ^O, \h \<h0 ,

where only / depends on xf but not c0.
Thus, for sufficiently small e, we derive

(49) <p*h(x') = j rj(z)<ph(xf+ ez)dz<Co Vx'eVri.

Moreover, let leR*-1 be auy unit vector and set

( 5 0 ) h = t - £ w i t h Q < t < h 0 .
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Inserting h into (49) and letting t go to zero this yields

( 5 1 ) B 2 c P e ( x ' ) ^ < C o V x ' e V r i .

Throughout the rest of the proof of Eemark 2 let us observe
that the indices which will appear run from 1 to n— 1. To com
pute the principal curvature k\ of re at x= (xr, cpB(x')), we set

( 5 2 ) x i = D ' x = ( 6 , , D Y ( 0 ' ) ) ,

where dt = (d£i)i-i,....»-i. and

(53) gik = x,-xh = d**+D*<fJDk<f •

Furthermore, let n = (aly..., aw) be the internal normal vector
at x and define Lik by

(54) Lik = n • !>*#, = ot.nDiDkcpB

where we observe that an>a*>0, since re is a Lipschitz graph.
Then, the principal curvatures k\ of F8 at a? are the extrema

of the quadratic form

( 5 5 ) e - + £ * £ * ?

subject to the constraints

( 5 6 ) f l r , * - * ' ! » = l .

Therefore, since

( 5 7 ) f f i » f ' l * = | f | 4 + | l > ^ - f | 1 > | f | a
and

( 5 8 ) 0 < a n < l

we derive in view of (51) and (54)

( 5 9 ) * J < c 0 \ f x ' e V r i .

To complete the proof of the remark, we observe that in view
of (59) and [13; Chapter 1.3] there is some positive number y,
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a<y</?', where y is independent of e, such that the distance
function de(x) = dist (x, Te) is of class G2 in

(60) Ueriy = {(xf, x«): x' e Vn, cp°(x') <x«<y)

for sufficiently small values of s and that

( 6 1 ) — A d e < c = c ( n , C o t y )

taking the relation (13) into account.
Now, let UcRn be open such that U n Q c Ur ,, for somerl.y 7fixed y', oc<y'<y, and let v>0 be a smooth function whose sup

port is contained in U. Then, using integration by parts we obtain

(62) I — Ade-vdx= I JfDide-Divdx + IvdS&n^

r i . Y r i . y

for small values of e. Hence, we conclude from (61)

( 6 3 ) j v d S t ^ K j \ D v \ d x + c [ v d x .
vky

Ta.king the limit on both sides this yields

(64) [v d&n_t = (v d3tn^ < f \Dv\ dx + c • [v dx .
d Q r Q R f 2 Q

Finally, we let Uk, k = 1,..., m be a finite covering of dQ by
open sets of the kind we described above, and we let <pk, k = l,...,m,
be a subordinate partition of unity by smooth functions cpk such that

m

( 6 5 ) 2 > * ( » ) = 1 V x e d Q .

Let v>0 be an arbitrary smooth function. Then, applying the
estimate (64) to cpk-v and summing over k we obtain

(66) \v dH^ < j\Dv\dx + { f sup \Dcpk\ + c\ • (v dx .
d Q Q R fi  Q

The estimate (40) now follows by approximation in view of the
Lemmata Al and A2 in Appendix I.
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Eemark 3. - If we take H(x, t) = c-t, c> 0, then we may also
solve the variational problem (8) when the volume V is prescribed

V=\vdx = const.

Theorem 3. - Under the assumptions stated above the variational
problem
(67) J(v) ->min in BV(Q) n { (vdx = v\

Q

has a unique solution u* e C0-1^) n Eltl(Q) n L<D(Q).
Proof. - Let u be the solution of (8). Define u* by

( 6 8 ) u * : = u + A

where A is a real number such that the volume of u* equals to V.
Let v be 2b function in BV(Q) with volume V. Then

(69) J(u*) = J(u) + e/2J{2uX+ fc)dx— A- (xd3Zn-i<
Q d Q

<J(v- X) + c/2({2uX+ X*)dx- A-f^(?Xn_! = J(v)
d Q

as one easily checks from the definition of A. The uniqueness of
the solution follows from the Eemark 1.

Appendix I.

We present here the definition of BV(Q) and some properties
of its elements. We assume throughout the following that Q is
a bounded, open set in Rn with Lipschitz boundary dQ.

Def. - BV(Q):={veLl(Q): Dlv is a bounded Eadon measure
on Q, i = 1, ..., n).

1) Every v e BV(Q) has a trace t(v) on dQ, such that t{v) e
eL1(dQ). For brevity we shall write v instead of t(v).

If (A, w) is a local boundary neighbourhood of dQ, such that A
is an open set in Rn_1 and w: A -> R+ is a Lipschitz map with
inf w(A)> 0, and such that

Q': = {(x, y):xeA,0<y< w(x)} c Q
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and
8: = {(x, w(x)): x e A} c dQ ,

then we have the following Green's formula for veBV(Q)

(Al) fvDigiax+jgtD*vdx=fvgtviaXn._l \ fgieC\(A xR+),
Q ' Q ' a

where vt are the components of the outward normal vector at 8,
and where we have written [g^vdx instead of \gid(Div) (see
[ 1 0 ; T h e o r e m 1 ] ) . ° *

2) By a trace theorem due to Gagliardo [5] every veBV(Q)
can be extended to veBV(B), where B is a ball, QccB, such
that vldB = 0 and vldQ = v. Hence

( A 2 ) f | D t ? | < f o = 0 .
dQ

\Dv\ is the total variation of (Dxv, ..., Dnv). For any open set
i c R n

jlDvldx^m^^jvD'g.dxig.eGliA), \{gx,..., 0«)|<l} .
A A

(see [10; Theorem 2]).
3) For any veBV(Q) Blv, i = 1,..., n, is a measure on G°(Q).

Proof. - From [3; (13.9.17)] it foUows that

( A 3 ) \ f g D t v d x \ < l g ^ f \ D < v \ a x
Q Q

for any geG°(Q) nLco(Q). The conclusion is now evident in view
of (A2).

Lemma Al. - Let v e BV(Q) and ve be a mollification (6). Then

{Ala) f(l + \Dve\2Y'2dx->f(1 + \DvYY*dx ,
Q Q

( M b ) f | D t > , | d t o - * f | D ! > | < f o .
Q Q

(5) The mollification is possible in view of point 2).
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Proof. - We shall only prove (A4&). From the definition of the
total variation we immediately get

( A 5 ) ( \ D v e \ d x < f \ D v \ d x .
Q Q + e

The assertion now follows from the lower semicontinuity of the
total variation and from (A2).

Lemma A2. - Let veBV(Q) and ve be a mollification. Then

( A 6 ) v e - + v m L ^ d Q ) .

Proof. - From the proof of Lemma 1.1 in [4] we may con
clude that

(A7) j\ve- v\dX^<(l + &)*-f\D(v9- v)\dx +

+ y(d,dQ)j\ve-v\dw,
d Q Q d

where Q8 is a boundary strip of width d and L is a constant de
pending on dQ. Hence we obtain from (A5) and from known prop
erties of the mollification

(A8) limsup j\ve- v|^jen_1<(l + L^-2'j\Dv\dx .
d Q Q s

In view of (A2) the right side of (A8) converges to zero.

Lemma A3. - The following generalization of formula (Al) is
valid for veBV(Q)

(A9) jvD% dx +jgiBivdx =fvBi v{ d&n_x Vgt e G^(Q).
Q Q d Q

Proof. - Let ve be a mollification of v, then

(A10) Jtf.D'fc dx +jgiDivB dx =J««fc vt d^n_x V& e G^(Q) .
Q Q d Q

From point 3) we know that for each i, i = l, ...,n, Dlve is a
bounded sequence of measures on G°(Q). Hence, a subsequence
converges weakly to some Eadon measure /it on G°(Q) (compare
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[3; (13.4.2)]), so that in view of Lemma A2

(All) jvB'g, dx +jg, d/it =jvg, vt d3Zn_x.
dQ

Let us show that ^ = B{v. If we choose gt as in (Al) then the
combination of (Al) and (All) gives

( A 1 2 ) j g i B * v d x = j g i d p i i .
n q

Moreover, an easy calculation shows that the D'Vs agree with the
measures fit on G\(Q). Thus

( A 1 3 ) j g i B ' v d x ^ j g i d f r

for all &'s which appear in formula (Al) (see [3; (13.9.19)]). From
(A12) and (A13) we finally obtain

( A 1 4 ) J f t ^ = 0 ,
dQ

hence

( A 1 5 ) J | ^ | = 0

which implies /*, = BH in view of (A13).

Lemma A4. - Let u eBV(Q) and k a real number. Then min (u, k)
belongs to BV(Q) and the following relations are valid

(Al5a) [\Bm%iL(u-k, 0)|dto- \A(k)\<

<J(1 + \Du\2yi2dx-U± + \B min (u, k)\2)^dx
Q Q

and

(A15&) u— min (u, k) = max (u— k, 0) in Lx(dQ) .

Proof. - Let ue be a mollification of u. Then it follows from
Lemma Al and from the lower semicontinuity of the total va-
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riation

(Al5c) J(l + \Bu\*yi*dx-j(l + \B min (u, k)\2)^dx>
Q Q

>liminf ( J(l+ \Bue\2)^dx-((l + \Bmm(ue, k)\2)^dx\>
Q Q

>liminf{ J {1+ \Bue\*yi*dx- \{uB>k}\}>
u8>k

>liminf| f|Dmax(we— k, 0)\dx— \{ue>k}\\>
Q

>f|Dmax(w- k, 0)\dx— \A(k)\
Q

by which the first relation is proved.
To prove the second one, we use the triangle inequality

(Al5d) ||max (u — k, 0) — (u — min (u, k)) \\LHdQ) <

< ||max (ue- k, 0) - (ue- min (ue, k)) \\LHdQ) +

K~ u\\lwo> + Hmixx (ue, k)- min (u, k)\\Li{da) +

||max (ue— k, 0) - max (u — k, 0) \\LHdQ).

The first term on the right side of this inequality is identically
zero, while the other ones converge to zero. This is a consequence
of (A6), the proof of Lemma A2, and of the estimates

l\Bmiji(ue, fc)|<fa?< f|Dwe|da?
Q d Q d

and

\\BmsbX(ue— k, 0)\dx< [\Bue\dx ,
Q d Q d

Eemark Al. - By the same method of proof one can show that

(Al5e) u — min (u, v) = max (u — v, 0) in L1(dQ)

for any functions u, v e BV(Q).



1 8 C L A U S G E R H A R D T

Appendix II.

Here we want to prove that the functional J in (5) is lower
semicontinuous with respect to a minimizing sequence in BV(Q).

Let ve be a minimizing sequence and suppose for simplicity
that ve-+v in L1(Q) (compare the considerations at the beginning
of Section 2). Assume by contradiction that J(v) is strictly greater
than liminf J(v8). Then there exist a positive constant y and a
number e0 such that

( A 1 6 ) J ( v e ) < J ( v ) - y V £ < £ 0 .

In view of (40) we have the relation

(A17) j\v- ve\imn_1<j\B(v- ve)\dx+ c(6, Q)- j\v- ve\dx,
d Q Q d Q

where Q8 is a boundary strip of width <5, and d is sufficiently small.
Hence

(A18) f (1+ \Bve\2y/2dx+jJH(x,t)dtdx<j(l+ \Bv\*yi*dx
Q - Q d Q o Q

v

+ f [H(x,t)dtdx+(\Bv\dx+c(d, Q)-[\v-vB\dx—y .
Q o Q d Q

If e tends to zero, then we obtain in view of the lower semiconti-
nuity of the integrals on the left side of (A18)

(A19) f (1+ \Bv\2Y2dx<>[(!+ \Bv\*yt*dx+(\Bv\dx-y .
Q - Q d Q Q d

To complete the proof, we let d converge to zero which gives
the contradiction.

Eemark A2. - By the same method one could show that the func
tional

V

(A20) f(l+ \Bv\2yi2dx + nH(x,t)dtdx + (\v-f\d^n_1,
Q Q 0 d Q

i eL^dQ) ,
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is lower semicontinuous with respect to a minimizing sequence in
BV(Q) the elements of which are bounded in the norm

( A 2 1 ) ( \ B v \ d x + ( \ v \ d x ,
Q Q

provided that dQ satisfies an internal sphere condition.
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