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Existence and Regularity of Capillary Surfaces.
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Sunte. — 8¢ prova che il problema variazionale
) v
f(l + | Do|2)tda +ffH(x, t)dtde —|xvdH,_, - min
2 20 o9

in BV(2) ha una soluzione ue€ 0%1(Q) NL>(2) nell’ipotesi che H, x
e 082 verifichino opportune condizions.

0. — Introduction.
Let 2cR" n>2, be a bounded domain and let
4 =— D¥{a,(p)) ()
be the minimal surface operator, i.e.
a,(p) = p*(1 + p})*.

The classical problem of capillarity [9] consists in determining
a function ue C:(2) N C(2) such that

(1) Au+ou=0 in Q
and
(2) | Diu-y,=x(14 |DuP?)*  on 2Q,

where »; are the components of the outward normal vector at 09,
and ¢ and x are given constants such that

3) ¢>0 and [|x|<1.

(*) Here and in the following repeated indices will denote summation
over them from 1 to .
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If there exists a solution u € 02(2) N C*() of problem (1) and (2),
then this solution also minimizes the functional

) I(v):=f(1+ |Do|2)t dar + cf|v|1dm—vadJ€,._1
o 9 o

in the function class BV(R2) (see Appendix I for the definition of
BV(£2) and for some properties of its elements).

In a recent paper M. EMMER [4] has proved that the func-
tional I has a minimum in BV() which is locally bounded pro-
vided that |x|< (1 -+ L*)~%, where L is a constant which depends
on the boundary of 2. Moreover, by a result due to MASSARI [8]
he could show that « is real analytic in the interior of 2 for n<®6.

In this paper we shall consider a slightly more general varia-
tional problem in BV({2), namely, we want to minimize the func-
tional

6)  J):=[(1+ |Dop)ida+| J?H’(a:, 1) dtdo— %0k, ,
20 aQ

2

where x belongs to L (092), |«|sn<1, and H € C*(R" X R) satisfies
the conditions
oH

and
(7) { H(w, k) >1 + ¢, ,

H(zx,—ky)<— 1 +¢),

for some %,>0, where ¢, is a constant which appears in the fol-
lowing.
The main theorem which we shall prove is

THEOREM 1. — Suppose that 02 is of class O and that [x|;n<
<1—a, a>0. Then the variational problem

8) J(w)—>min  in BV(Q)
(
has a solution ue C*(Q) N HX(Q) N L>(2).

When writing the manuseript I heard from R. FiNN that
P. Concus and he have considered a similar problem. They have
shown that a solution « € C*(2) of the equation

Au+ H(z,u) =0 in 2
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is bounded in £ provided that 02 satisfies an internal sphere con-
dition, i.e. for any boundary point x, € 082, there is a ball B of
fixed radius such that Bc 2 and x,c 0B. The result of Concus
and Finn does not seem to apply in its present form to that step
in the existence proof. Moreover, our method is also applicable
in the case of Lipschitz domains, using Lemma 1.1 in [4], with
the natural restriction on |x|, instead of Lemma 1 below.

Applying the results of Concus and Finn one might show by
approximation that Theorem 1 remains valid under the natural
condition |x|s<1.

1. — A priori estimate for |u|.

Since Concus and FINN have shown in [1] that in general one
cannot expect a bounded solution of (8) if 02 has vertices, the
a priori estimate will depend on the. fact that we assumed 092
to be smooth. In this case we can prove the following lemma
(compare [4]; Lemma 1.1).

LemMmA 1. — Let ve BV(2) and suppose that 02 is of class C*
satisfying an internal sphere condition of radius R. Then we have

9) f|v|dJe,._1<f|Dv|dw+ o[ o] d
anQ 2 2
where
2n
(10) cl = "E .

PRoOOF. — In view of our assumption the distance function d,
d(z) = dist (z, 09Q) ,

belongs to H:%(£2,), where 2., is the boundary strip {z € Q:
d(x) < R[2}. Moreover, we have the relation (cf.[13]; Chap. 1.3)

_n—l &
(11) —dde)= 3 T a@)

where %, are the components of the normal curvature vector of that
point y € 002 having smallest distance to . From the interior sphere
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condition we derive k,<1/R. Hence, we have

y 0 if k<O,
(12) ——<i2 1
1—kd |2 <.
1 7 if 0<k,<R

Thus, we deduce the estimate

2(n—1)
R
In order to prove the inequality (9) we may restrict ourselves

to the case v>0. Assuming this, we get by partial integration
(cf. Appendix I, Lemma A3)

(13) —dd(z) < Vae Qs

(13a)  —[4d-v-(R2—ddw=—[vdo+
Dris Qgye
+[(Bj2— @) D*a-Divda+ Rj2[vdk, s
2R/ :10]
Hence,
aso)  [oa, i< [ojto + [ fmax — 44,0+ Z 0o
a9 ¥l Qpps

from which the assertion follows.
With the help of Lemma 1 we immediately get

LeMMA 2. — Let 02 be of class C* and |x|<1—a, a>0. Then
a solution we BV(Q) of the variational problem (8) is absolutely
bounded by some constant ¢,, which depends on a, ¢, 2, and the
structure of H.

PROOF. — Let k>0 be a real number and set A(k):= {xec Q:
u(x) > k}. Since v:= min (u, k) belongs to BV (£2) we obtain from
the minimum property of
(14) J(w)<J(v)
and hence

(15) fwmmmhwmnm+ffm%ﬁmM—

Q A(k) &

— j x max (u— k, 0)d¥e, < |A&)| ()
o

(see Lemma A4 in Appendix I for the verification of (15).)

(2) For any measurable set E C R", |E| denotes its Lebesgue measure
in R=.
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Setting w:=u — v =max (u— k, 0), we get from Lemma 1

<(1—a)(|Dw|dw+ l1—a)e,|wdx .
2 Q

(16) l f 2w @3,y
8
Combining the inequalities (15) and (16) we obtain

17) af|1)w|dx+f f{H(w, t)— e} dtdw < |A(K)|
2 AR) %

or finally

18) a f |Dw|da + inf {H (=, k) — ey} - f (u—k)dz<|A(k) .
2 =e0 4l

Since 012 is regular we have the following Sobolev imbedding result:

Any function ve BV(L2) belongs to L "1(Q), and
n—1)/n
(19) ( [wie2az)"™" <o, { [|Do]dw+ [ o] aa}
Q2 Q Q2

Taking v=w in (19) we get from (18)

(20)  ale, ( f [v["/"—ldm)‘""”'“ + inf {H(z, k) — ¢;—a} -
e
? -f(u—k)dx<|A(k)|

A(k)

From the assumption (7) and using the Hélder inequalities we
therefore obtain for k>¥%,

(21) f(u— kydo<o,: |[A(B)|*H, >0,
A(k)

and hence

(22) lh— k|- |A(R)| <o, |[A(R)[ "+  for B>k,

From a lemma due to STAMPACCHIA [14; Lemma 4.1] we now con-
clude that

u<ko+ ¢ IQII/n.Z(’H—l) .

In order to get a lower bound for u, we set »:= max (u, — k)
in (14). Then one could complete the proof of Lemma 2 by sim-
ilar conclusions, which  will be omitted.
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2. — Existence of a solution in BV(Q).

We shall show that under the assumptions of Theorem 1 the
variational problem (8) has a solution in BV(£).
Let v, be a minimizing sequence

(23) J(v,) = inf J(v)<J(0)=:¢;5.

VEBYV(Q)

From Lemma 1 we conclude that
(24) aflpv,|dm+f{ [B@va- cl|v,|} dw<es .
2 2 0
Hence, we eagily derive from the assumption (7)
(25) [1Dv,jd0 + o, dw<e,.
Q Q2

From [12; Theorem XVI], the Sobolev imbedding theorem, and
[11; Theorem 2.1.3] we then conclude that the sequence v, is pre-
compact in any L?(Q), 1<p<n/n—1. Since the functional J is
lower semicontinuous with respect to a minimizing sequence in
BV(Q) (see Appendix II), a subsequence of v, converges to some
element we BV(L), which is a solution of problem (8).

REMARK 1. — Since we assume H(z, -) to be strictly increasing
a.e., the variational problem (8) has a unique solution. Or more pre-
cisely, if x<x', and wu, w' are the respective solutions of (8) according
to the functionals J, J' then u<u'.

PRrROOF OF REMARK 1. — From the strict monotonicity of H(z, -)
we deduce

(26) J(u) < J(min (u, u')) or %= min(u,u')
and

27 J'(w') < J'(max (u, u')) or w' = max (u, »') .
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Combining these relations and using the fact that

(28) —fx(u — min (%, u')) d3,_, >fx’(u’— max (u, u')) d¥e,_,
aQ :17]

it follows from (26) or (27) that « = min (u, u').

3. — Regularity of solutions in BV(£).

The regularity of « will follow from a general theorem con-
cerning the regularity of solutions w e BV(f2) of the variational
problem

(29) L(v):= f (1+ | Do) 2 do + f f Hz, t)dtds + j) ,
2 20

where j(v) denotes a boundary term continuous in L!(9f2), e.g.

(30) jo) = f b—f|d¥,._., feI'(39Q)
on
or
(31) j(v) = f w0 d3e,_, .
an

THEOREM 2. — Let w be a bounded (3) solution in BV (L) of the
variational problem (29). Suppose that H € C*'(R"XR) is strictly
inereasing in t. Then w is locally Lipschitz in Q.

ProOF. — We shall use the results of SERRIN [13] concerning
the existence of surfaces of prescribed mean curvature together
with the a priori estimates of LADYZHENSKAYA and URALTSEVA [7].

Without loss of generality we may assume H to be bounded
in £ (4. Then for R sufficiently small, R < R,, we can solve the
Dirichlet problem in any Ball Bcc 2 of radius R

(32) { Av,+ H(z,v,) =0 in B,

Velop = Weyam 9

(3) If H= H(x) or H(x,t) = c-t, ¢> 0, then it suffices to assume w to
be locally bounded.

(4) Choose e.g. H; := min(H, k)+ max(H,—k)— H. Then H(z,u)=
= H,(x, w) if %k is large enough.
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where w, is a mollification of w. From the results of Serrin we
conclude that (32) has a solution v, € C-(B) such that

(33) 9] < 6: = €(|w]s, B, |H]) .

From the a priori estimates of Ladyzhenskaya and Uraltseva we
then deduce

(34) | Dv| < s = es(¢;, |DH|, 2') for Q'ccB.

Moreover, we know that », minimizes the functional

(35) IL(v):=[(1+ [Dv| j2+ f fH(w, t)dtdo + f v — w,| d%e,_,
B B 9 a0

in BV(B).
Hence we have the inequality

(36) f(1+ |Dv,,|‘)1"dm+f ﬁ{(m, t)dtdw <
B 2

<f(1-+ IDwelz)llzdw—i-f TH(m, tydtdx .

Setting
(37) . Vg in B,
RES .
w, in Q—B,
we derive in view of (36)
(38) L(3,) < L(w,) .

From Appendix I, Lemma Al and Lemma A2, and from Lebesgue’s
theorem of dominated convergence we conclude, that the right side
of (38) tends to L(w), if ¢ goes to zero. From the estimates (33),
(34), and from the definition (37) we conclude, that the v,’s converge
in BV(Q) to some element v, which is locally Lipschitz in B and
agrees with w in Q— B. Moreover, we immediately derive on
account of Lemma A2 in Appendix I that

(39) L(v,) < lim inf L(v,) < L(w) .

Hence, v, equals to w, since vy, = W and the variational prob-
lem (29) has no distinct solutions withe qual boundary values.
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As we mentioned in the Introduction P. CoNcus and R. FINN
proved a priori estimates for the modulus of solutions to the equa-
tion

Au+ H(zx,u) =0 in £

provided that 0 satisfies an internal sphere condition.

In order to prove Lemma 1, which is the key lemma in the
existence proof, we made the more restrictive assumption that 00Q
should be of class C:. However, we shall show that a conclusion
similar to that of Lemma 1 is valid in the more general case.

REMARK 2. — Let Q2 be a bounded domain in R* with Lipschitz
boundary 0 which satisfies an internal sphere condition of radius R.
Then

(40) [wlawe, < [IDoldo+ - [lojde Ve BV(@)
aQ

2zr/s Q
where ¢, depends on n, R, and 0£2.

PrROOF OF REMARK 2. — Let I'" be an relatively open subset of
082 which is representable as the graph of a Lipschitz function ¢
defined on some open subset V, of R*?, V,={a'eR: |[o'| <1},
such that 0 < p<a, and for > o« let

(41) Up={@",a"): @' € V,, p@') <a" <} C 2, .

Furthermore, choose two positive numbers 7,, 7, With r,<r, <7,
and let ¢° be a mollification of ¢ with a mollifier . Then ¢° is
well defined in V, if ¢ is sufficiently small and

(42) UL, , = {@,a): 0 €V, @) <a"<f}C D

for some f’, < f’'< f, independent of e.

We shall show that the principal curvatures k; of I, = graph ¢,
(with respect to the internal normal vector) are bounded from above
by some constant ¢, which depends on R and the Lipschitz con-
stant of .

Let x, € V, be given and let L be the Lipschitz constant of ¢.
In view of the interior sphere condition there exists a ball B with
radius R such that Bc Q and 2, = (2, p(z,)) € 9B. Since ¢ is
Lipschitz, a part of the sphere containing x, might be represented
as the graph of a C: function f defined in a suitable neighbour-
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hood V of z,. Thus, we obtain
(43) o@) =f(x,) and o@@)<f@) Va'eV.

Let £€R*' be an arbitrary unit vector and let ¢> 0 be sufficiently
small. Then, we deduce from (43)

(44) f(aq + t€) — f(ag) > p(a, + t6) — @(a)>—t- L,
hence
(45) Df(xy)-£>— L

which implies
(46) |Df(wy)| < L
since & was arbitrary.
Therefore, we conclude that the second derivatives of f are
bounded by a constant depending on R and L, independent of a,.

Now, let hs= 0 be any vector in R*! of pufficiently small norm
and set for any function v

(47) (@) = o {v(@' + h) —20(z’) + v(z'—h)} .

1
L

In view of (43) and (46) we deduce that there are some positive
number h, and a constant ¢, such that for any '€ V, we have

(48) o) <f@')<es  Vh#0, |h|<hy,

where only f depends on #' but not ¢,.
Thus, for sufficiently small ¢, we derive

(49) #@) = [ nOm@ +e)de<e,  Va'eT,
lzI<1

Moreover, let £ R"*! be any unit vector and set

(60) h=t-§ with 0 <t<h,.
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Inserting % into (49) and letting ¢ go to zero this yields
(81) Dz (2') &2 <o Va'eV,, .

Throughout the rest of the proof of Remark 2 let us observe
that the indices which will appear run from 1 to n— 1. To com-
pute the principel curvature k} of I, at = (2', ¢*(2')), We set
(52) x;, = Diw = (6,, Dig*(x")) ,
where 0, = (0“),.,, n-,, and
(63) Gir = @@, = 0% Digf - D*¢® .

Furthermore, let n = (a,, ..., ;) be the internal normal vector
at z and define L, by

(54) L, = n-D*x, = a, D D¥¢®

where we observe that «,>a*> 0, since I® is a Lipschitz graph.
Then, the principal curvatures k; of I® at x are the extrema

of the quadratic form

(55) &=L &8

subject to the constraints

(56) ga-&'&=1.

Therefore, since

(87) g b1 & = [E|* + |Dg® &l > €]
and

we derive in view of (51) and (54)
(59) ki<e, Va'eV, .

To complete the proof of the remark, we observe that in view
of (59) and [13; Chapter 1.3] there is some positive number y,
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a<y<p', where y is independent of &, such that the distance
function d («) = dist (2, I,) is of clags C? in

(60) Us, =@ a"): @' €V, ¢*la)) <on <y}

1y

for sufficiently small values of ¢ and that
(61) — Add,<c = e¢ln, ¢y y)

taking the relation (13) into account.
Now, let UcR" be open such that U N Qc U, ) for some

fixed y', «<y'<y, and let v>>0 be a smooth function whose sup-
port is contained in U. Then, using integration by parts we obtain

=1
&
Ly U"1.y

(62) f——Adg-vdm=fiD‘d,-D‘vdw + |vd¥k,—,
”8

Tg
for small values of ¢. Hence, we conclude from (61)

(63) fvdJe,,_1< f]Dv[dw—l—c- fvdw.

I, 3
€ v"l.'y ”'1.7

Taking the limit on both sides this yields

(64) fud:fe,,_1= vd:fe,._1<f|pv|dm+ c-gfodm.

0] r Qg2

Finally, we let U,, k=1,..., m be a finite covering of 02 by
open sets of the kind we described above, and we let ¢,, k=1, ..., m,
be a subordinate partition of unity by smooth functions ¢, such that

m

(65) Soe)=1 VzeoR.

k=1

Let v>0 be an arbitrary smooth function. Then, applying the
estimate (64) to ¢,-v and summing over & we obtain

(66) fvdH,,_1<f|Dv|dm n {isup Dy + c} -fudm .
Y] Qps kel Q

The estimate (40) now follows by approximation in view of the
Lemmata Al and A2 in Appendix I.
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REMARK 3. — If we take H(x,t) =c¢-t, ¢> 0, then we may also
solve the variational problem (8) when the volume V is prescribed

V =|vdx = const .
2

THEOREM 3. — Under the assumptions stated above the variational
problem

67) Jw)—>min  in BV(Q)mUudm: V}
Q2

has a unique solution u* e C*1(Q)N H(Q)N L>(2).
ProOF. — Let u be the solution of (8). Define u* by

(68) W=+ A

where A is a real number such that the volume of u* equals to V.
Let v be a function in BV(Q) with volume V. Then

69)  J(u*)=J(u)+ c/2f(2u}.—|— Aydo— A [xdde, <
Q2 an
<J(w— 1)+ c/zf(zuH ydo— A [xd¥, . = J()
(2}

o]

as one easily checks from the definition of A. The uniqueness of
the solution follows from the Remark 1.

Appendix 1.

We present here the definition of BV({2) and some properties
of its elements. We assume throughout the following that £ is
a bounded, open set in R* with Lipschitz boundary 0£2.

DEF. - BV(Q):= {ve LY(2): Div is a bounded Radon measure
on Q,i=1,..,n}
1) Every v e BV(£) has a trace {(v) on 02, such that #(v) e
€ L(02). For brevity we shall write v instead of #(v).
If (4, w) is a local boundary neighbourhood of 92, such that A
is an open set in R"! and w: A — Ry is a Lipschitz map with
inf w(A)> 0, and such that

Q:={x,y):wvcd, 0<y<wx)}ch
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and

8= {(w, w(x)): ze A} c 09,
then we have the jollowing Green’s formula for v € BV ()

(A1) f vDig, dw + f 9. Divdw =[vg,v,d®, .  Vg.eC:(AxRy),
Q' Q' 8

where »; are the components of the outward normal vector at 8,
and where we have written fg,-D‘vdw instead of !’[g,-d(D"v) (see
[10; Theorem 1]). ? '

2) By a trace theorem due to GAGLIARDO [5] every v€ BV (Q)
can be extended to % e BV(B), where B is a ball, 2 cc B, such
that 95, =0 and %, =v. Hence

(A2) f]Dv|dw= 0.
a9

|Dv| is the total variation of (D'v,...,D"v). For any open set
AcR®

[1Do]do:= sup{fmg,.dm: g.€ C(4), l(ga, -.., g,,)|<1}.

4 4
(see [10; Theorem 2]).
3) For any ve BV(Q) Div, i =1, ..., n, is a measure on C°(32).
PrOOF. — From [3; (13.9.17)] it follows that
(43) | [sDrvda|<|gl.: [IDv]do

Q 2

for any ge C°(2) N L*(2). The conclusion is now evident in view
of (A2).

LEMMA Al. — Let ve BV(Q) and v, be a mollification (°). Then

(Ada) f(1+ | Do, |2) /2 dac __>f(1+ |Dv2)r das
2 Q
(A4b) |Dv,| do — | | Do|dz .
jireites]

(%) The mollification is possible in view of point 2).
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PROOF. — We shall only prove (A4b). From the definition of the
total variation we immediately get

(A5) ,,f |Dv, | dor < f |Dv|da .

Q+e

The assertion now follows from the lower semicontinuity of the
total variation and from (A2).

LEMMA A2. — Let ve BV(2) and v, be a mollification. Then
(AS) Vy—>V in L'(09Q).

PrOOF. — From the proof of Lemma 1.1 in [4] we may con-
clude that

A7 [lo— o], 1< (@ + Loy [|D(o,— v)|dw +
o] Q8
+ (8, 32)[Io,— 0l dw,
Q
where £; is a boundary strip of width  and .L is a constant de-

pending on 0£2. Hence we obtain from (A5) and from known prop-
erties of the mollification

(A8) lim sup f vy— v| d36,_y < (1 + L2)2-2- f |Do|dw .
an

Qs
In view of (A2) the right side of (A8) converges to zero.

LeMMA A3. — The following generalization of formula (Al) is
valid for ve BV (Q)

(A9) f'vD"gi dx —{—fg,D‘vda: =|vg;v;d8,_, Vg, e 0*1(D) .
2 2 o0

ProoF. — Let v, be a mollification of v, then
(A10) (v, Dig.dw+ f ;. Div, do = f 0,9, 0%, Vg,€C1(2).
Q2 Q2 a9
From point 3) we know that for each ¢, i=1,...,n, Div, is a

bounded sequence of measures on C°({2). Hence, a subsequence
converges weakly to some Radon measure y, on C°(2) (compare
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[3; (13.4.2)]), so that in view of Lemma A2

(A11) [eDig,d+ [g.du, = [vg., a3 s
2 2

;L]

Let us show that u;, = Div. If we choose g, as in (Al) then the
combination of (Al) and (A11) gives

(A12) [o.Dvas =g, au,
Q2 a

Moreover, an easy calculation shows that the Div’s agree with the
measures y; on 0;(2). Thus

(A13) [o.Dvao = [g.au.
Q2 2

for all g;’s which appear in formula (A1) (see [3; (13.9.19)]). From
(A12) and (A13) we finally obtain

(A14) [ocau =0,
a9
hence
(A15) f |du| =0
an

which implies y, = Div in view of (A13).

LEMMA A4, — Let we BV(2) and k a real number. Then min (u, k)
belongs to BV (RQ) and the following relations are valid

(Al15a) f |D max (u— k, 0)|de— |A(k)|<

< f (1 + |Dulp) dos — f (14 |D min (u, k)}2)"2 dz
and ’ ’
(A15b)  w—min (u, k) =max (u—Fk,0)  in L{(3Q).

PROOF. — Let u, be a mollification of ». Then it follows from
Lemma Al and from the lower semicontinuity of the total va-
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riation

(A150) f (1+ |Dul)*do—[(1 4 |D min (u, F))rdo>
Q Q

> lim inf { [+ Du s —[(1+ |D min (u,, k)]’)””dw} >
Q2 Q

>1imini{ [ (1-1-|Du,|=)1/sdm—|{u,>k}|}>

ug>k

>1iminf{f|D max (u,— k, 0)|de — |{u, > k}|}>
2

> [|D max (u—k, 0)] do— |A (k)|
2

by which the first relation is proved.
To prove the second one, we use the triangle inequality

(A15d) [max (w— &, 0)— (»— min (%, &) | a0 <
<[max (u,— k, 0) — (%,— min (u,, k)) | ;200 +
s — | 200 + [ min (v, &) — min (u, k)| 200 +

|max (u,— k, 0) — max (u— k, 0) | ;1aq) -

The first term on the right side of this inequality is identically
zero, while the other ones converge to zero. This is a consequence
of (A6), the proof of Lemma A2, and of the estimates

f|D min (u,, k)|dw<f|Du,|dw
Q6 [e7]
and
f]p max (u,— k, 0)|dw<f|Du8]dm.
Q6 Q8
REMARK Al. — By the same method of proof ome can show that
(Albe) % — min (%, v) = max (4 — v, 0) in LY(0Q)

for any functions u, ve BV(Q).
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Appendix II.

Here we want to prove that the functional J in (5) is lower
gemicontinuous with respect to a minimizing sequence in BV(R).

Let v, be a minimizing sequence and suppose for simplicity
that v, - in L'(2) (compare the considerations at the beginning
of Section 2). Assume by contradiction that J(v) is strictly greater
than lim inf J(v,). Then there exist a positive constant y and a
number g, such that

(A16) ‘ J(w)<I(v)—y Ve<e,.
In view of (40) we have the relation

(A17) f[v-—— v,|d3e,,_1<f|1)(v— v,)|do + o(6, Q)-f[v— v,|de,
an 28 2

where 2; is a boundary strip of width d, and & is sufficiently small.
Hence

(A18) f 1+ |Dv,|z)1/2dw+f fH(a;, ) dtdw<f(1+ | Do) 2 de
Q 20 Q

Q-5

—|—ffH(w, t)dtdw+f]Dv[dw+ e(d, Q)'flﬂ*”eldx—ﬁ’ -
20 2 e

If ¢ tends to zero, then we obtain in view of the lower semiconti-
nuity of the integrals on the left side of (A18)

(419) [ (14 Do) ds< [+ |Dop)¥sdo+ [|Do|da—y .
-9 Q 25

To complete the proof, we let d converge to zero which gives
the contradiction.

REMARK A2. — By the same method one could show that the func-
tional

(A20) f (14 |Dol2)¥s da + f f Hi(x, t)dt dw -+ f [v— f|d3a_s,
Q2 20 a2
e LY (2Q),
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i8 lower semicontinuous with respect to a minimizing sequence in
BV(Q) the elements of which are bounded in the norm

(A21) |Dv|dz 4+ | |v] de
Jiees]

provided that 082 satisfies an internal sphere condition.
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