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Abstract. We consider surfaces of prescribed mean curvature in a Lorentzian
manifold and show the existence of a foliation by surfaces of constant mean
curvature.

0. Introduction

Surfaces of prescribed mean curvature, that is what we mean by //-surfaces, are of
great physical importance both in the case of a proper Riemannian manifold as
well as in a Lorentzian manifold. While //-surfaces in proper Riemannian
manifolds, especially in the Euclidean space JR", have been studied extensively,
little is known in the Lorentzian case, except when the manifold is the Minkowski
space. Then, there are the papers of Calabi [CA] and Cheng and Yau [CY] on the
Bernstein theorem for entire maximal surfaces, the result of Treibergs [TA] on
entire surfaces of constant mean curvature, and the paper of Bartnik and Simon
[BS] on the Dirichlet problem for surfaces with bounded mean curvature.

For non-flat Lorentz manifolds only local existence results via perturbation
arguments, or results concerning the uniqueness are known, cf. [BF1, 2; CB;
CFM GO MT].

In this paper we consider a connected, oriented, and time-oriented, globally
hyperbolic Lorentz manifold M of dimension (n+1).

In the first part of this paper, Sects. 1-5, we consider the Dirichlet problem for
bounded //-surfaces. Assuming in this case that M is topologically a product,

M = N x I , (0.1)

where / is an interval and N an rc-dimensional complete Riemannian manifold,
such that the metric in M is given as

ds2 = ιp(- dt2 + g.jWdJdx*) (0.2)
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with some positive conformal factor ψ, we prove the existence of a smooth surface
^ of prescribed bounded mean curvature H and given boundary dέf, where the
boundary is assumed to be acausal and representable as a graph

(0.3)

where ΩcN is a relatively compact open set with C2-boundary, and φeC2(Ώ) is
space-like. The solution ̂  is then also given as the graph of a function u.

In the second part, Sects. 6 and 7, we drop the restriction (0.2) on the metric
and assume merely that M has a compact Cauchy surface. Imposing the
hypotheses of a big bang and a big crunch, i.e. assuming the existence of global
barriers, we prove the existence of smooth slices of prescribed bounded mean
curvature.

Supposing, furthermore, that M satisfies the time-like convergence condition,
we can show the existence of a foliation of M by slices of constant mean curvature.
If there are two different maximal slices, then we prove that they are totally
geodesic and strictly separated, and that there is a whole continuum of totally
geodesic slices in between. If ̂ 0 denotes this continuum, then ̂ 0 can be described
as consisting of level surfaces to the "first" totally geodesic slice ̂ 0

VQ = {yt:Q^t^ε0}, d(&θ9ty = t. (0.4)

The tubular neighbourhood of ̂ 0 contains ̂ 0, and the metric is static in #0

ds2=-dt2 + gίj(x)dxidxj (0.5)

for (x,
The paper is organized as follows :
In Sect. 1, we derive the Euler-Lagrange equation governing surfaces of

prescribed mean curvature.
In Sect. 2 we prove boundary estimates, while in Sect. 3 we deal with the so-

called segment condition, saying, that if the uniform limit of surfaces of uniformly
bounded mean curvatures contains a segment of a null geodesic, then this segment
has to extend to the boundary.

In Sect. 4 we prove global gradient estimates valid for general metrics. This
estimate enables us to show the existence of solutions to the Dirichlet problem in
Sect. 5, and of global slices in Sect. 6.

In Sect. 7 we treat the problem of the foliation of M by slices of constant mean
curvature.

1. The Euler Equations

In this section we consider a general time-oriented (n+ l)-dimensional Lorentzian
manifold M with metric

ds2 = 9ocβdx«dxβ, α,j8 = 0, l , . . . ,n, (1.1)

and signature (—, -f,..., -f). In local coordinates the coordinate x° = ί is time-like,
while the space-like coordinates xl are labelled with Roman letters ί, l^i^n.
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A hypersurface ^CM is said to have prescribed mean curvature - H, if it is

space-like, i.e. if ^vV=-l, " (1.2)

where v = (vα) is the future directed unit normal vector to £f, and if

-divv=-£>αvα = #, (1.3)

where H is a given function on M.
Let us look locally at such a hypersurface. Choose in the neighbourhood of a

point (x0, ί0)ey Gaussian coordinates, i.e. choose a space-like hypersurface N, e.g.
ί = ί0, and take as the new time coordinate the arc length of the time-like geodesies
perpendicular to N and as space-coordinates the base-point of the geodesies in N.
In a Gaussian coordinate system the metric has the form

ds2 =-dt2 + g..(x9 t)dxίdxj , (1.4)

where the gt. are positive definite, and any space-like hypersurface y is locally
given as the graph of a function u

(1.5)

the unit normal vector v is

v = (vQ9v19...9vn) = υ (-l9Du)9 (1.6)

where

v = (l-gij(x,u(x) Diu DjuΓ112, (1-7)

and where as usual we set

(gίj)=(gίJΓ
1 (1.8)

If we insert v in the mean curvature equation, we would get a second order partial
differential equation for u. Another more elegant way to derive this equation is to
obtain it as the Euler-Lagrange equation of a variational problem, namely,
maximize the functional

J(η)= $(ί-\Dη\2)1/2 g(X,η)1/2+$]H(X,t)g(x,t)ίl2 (1.9)
Ω ΩO

in an appropriate function class, e.g. in

φ}9 (1.10)

if we are considering a variational problem of Dirichlet type, where it is to be
understood that

\Dη\2 = gi\x9η) Diη Djη9 (1.11)

and
g = g(x,η) = det(gij{x9η)). (1.12)

The corresponding Euler-Lagrange equation for a solution u with

\Du\<ί (1.13)
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looks like

The first term is the divergence of the vector field

a^v gV DjU (1.15)

with respect to the metric

0i/x, "(*))• (1.16)

The other terms of the left-hand side are of the form a-v, where

a = a(x,u,Du); (1.17)

i.e. we can rewrite Eq. (1.14) as

=-Di(aί(Du)) + a v = H(x9u), (1.18)

where the symbol "D " denotes covariant differentiation with respect to the
implicity defined metric (1.16).

This is a quasilinear elliptic differential equation for u, where in contrast to the
usually given problems we know in advance that u is already Lipschitz continuous,
but where the equation only makes sense if \Du\ is strictly less than one.

Hence, if we want to solve a Dirichlet problem

Au + a v = H(x,u) in Ω,

u = φ on dΩ ,

we should first prove a priori estimates of the kind

(1.20)

and then use some Leray-Schauder-type argument to prove the existence of a
solution.

In the case when M is equal to the Minkowski space this has recently been
achieved by Leon Simon and Robert Bartnik. For the Minkowski metric the
equation simplifies considerably :

-Di(v Dίu) = H, (1.21)

where the metric g. is now the Euclidean metric in IRΛ
In the general case, the presence of the v term causes some trouble, though on

the other hand, it has the advantage that the structure of the equation is invariant
under conformal transformations of the metric. Indeed, let

ds2 = ιpds2, ds2 = -dt2 + gtj(x9 ήdx^ (1.22)

be a conformal metric with some positive C°° -function ψ. Then the equation for a
surface of prescribed mean curvature is

Au + a v = H9 (1.23)
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where n d n
a = a--(\-\Du\2}-\vgy-- Dί\o%ιp Dίu, (1.24)

and there the operator A is defined with respect to the metric (0fJ (x, M)).
We shall often exploit this fact even without mentioning it explicitly. Especially

we shall always stick to the notation α(x, M, DM) instead of α(x, M, DM).
Finally, let us give some definitions.

Definition i.l. A hypersurface ̂  is said to be space-like if its normal vector is time-
like. If £f is represented as a graph of a function M, then we also say u is space-like.

A subset AcM is said to be acausal, if any time-like curve or null curve
intersects ,4 at most once.

A slice <9*CM is a space-like hypersurface which is also a closed and connected
submanifold of M.

We also remark that in the following sections we deal with bounded mean
curvature functions H, where we often have to consider compositions of the form
H(x, u) with continuous functions M. In order that these composite functions are
measurable in x, we therefore have to assume that H is a Borel function. Thus, H
bounded always means that we pick a Borel function in the equivalence class
defined by H.

2. Boundary Estimates

Suppose M = N x / with metric ds2 given by

ds2 = ψ(- dt2 + g^dtfdx*) , (2. 1)

and let M be a solution to the Dirichlet problem (1.19), (1.23).
For simplicity, we shall assume that / = 1R, and that ψ remains smooth and

positive on compact subsets of M. This has the advantage that a space-like surface
^ is a priori bounded, if d^ is compact. If we would allow / to be a general
interval, then we would have to impose further conditions to assume this. Our aim
is to prove a priori estimates for |Du| at the boundary.

Theorem 2.1. Let ΩcN be relatively compact with dΩeC2, and let φeC2(Ω) be
space-like with

\Dφ\^l-θ, #>0, (2.2)

uniformly in Ω, such that graph φ\dΩ is acausal. Let ueH2'p(Ω), p> n, be a solution of
the boundary value problem (1.19), (1.23) with bounded H. Then

\Du\^l-Θ0 (2.3)

on dΩ, where Θ0 depends on (9, dΩ, | | < p | | 2 , o o > II^IL' and on tne metric.

Proof. We first observe that according to the remarks at the end of Sect. 1 we may
assume that the quasi-linear differential operator A is defined with respect to the
metric (g^x)). The lower order terms then look different, but we do not change the
notation. We also note that in view of the assumptions M, DM and hence α(x, M, DM)
are uniformly bounded in Ω.
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Let x0εdΩ be an arbitrary but fixed boundary point. We shall show that there
is a neighbourhood U of x0 and two functions δ + , δ~eC2(ΩnU), such that

Aδ~ + a v(δ-)^H^Aδ + +a-v(δ+} (2.4)

in £2nL7, and ~
δ~^u^δ+ in δ(Ωn[7), (2.5)

δ-(x0) = w(x0) = δ + (x0), (2.6)

and

\Dδ~ , \Dδ + \^l-Θ0. (2.7)

Here, the factor a in (2.4) is evaluated at (x, w, Dt/). The maximum principle will
then yield that (2.5) holds throughout Ωr\U, and therefore we shall get

\Du(x0)\^l-Θ0. (2.8)

To define δ + , let ξeN be a point outside Ω but near x0, and label the coordinates
so that ξ = 0. Let |χ| be the geodesic distance, and choose ξ so that the ball BR(0) is
geodesically convex for some R>\x0\. We then define δ+ through

δ + (x) = φ(x0)+ J (l+y)- 1 / 2, (2.9)
l*ol

where λfy(ί) = α eλί (2.10)

with positive constants α, A to be determined later: λ is considered to be large
depending on |χ0| and H, and α is chosen to be small depending on φ, dΩ, and λ.

If α tends to zero, then δ+ represents the upper light cone with base point
(x0,φ(x0)). For positive α and x φ O we have

112, (2.11)

and

υ(δ+) = γ-ll2(ί+γ)112. (2.12)

Furthermore, (5 + eC2(5^(0)\{0}), and

^^(l-yΓ^ ΰiM, (2.13)

DiDjδ+^l + yΓ^DpjM-^l + yΓ^ λ y DiWDjW. (2.14)

Taking into account that |D|x|| = l, and

Aδ+ = -v(δ + )Aδ+-υ3(δ+) Dίδ
 + Djδ

+ DίDjδ+, (2.15)

we conclude

Aδ+=(l+γΓίl2 W2-Δ\x\) υ, (2.16)

where

-Δ\x\=-^+r, (2.17)
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and where r stands for bounded curvature terms: in Riemannian normal
coordinates with center in ξ — 0,

r=-g^Γ^Dk\x\. (2.18)

Thus, we derive

Aδ++a v(δ + )^H in ΩnBR(Q), (2.19)

if λ is chosen appropriately and α is small enough, α^α0(A); we note that this
estimate is uniform in α for such α.

Clearly (2.6) is valid for δ + , so that we merely have to check (2.5) for U = BR(ty.
In Lemma 2.3 below we shall show that in any neighbourhood of x0 we can find ξ
such that

φ(x)^δ + (x), VxeaΩnβ^O), (2.20)

if we choose α appropriately, always improving the estimates by choosing α small.
Taking (2.20) for granted for the moment, the final estimate

u^δ+ in d(ΩnBR(ty} (2.21)

with follow from

Lemma 2.2. Let ̂  = graph u be a surface of bounded mean curvature H, and let d^
be acausal Let (x, u(x))ε&>9 and let \x\ be the distance function with respect to the
metric (g^x)) and with base point x. Then, to any number R>Q, there exists
ε = ε(R,\\H\\009d&) such that

u(x) + £ ̂  u(x) 4- |x| , Vx e Ωn dBR(x) . (2.22)

Proof. Suppose that the lemma were not true. Then we would conclude that ίf
would contain a segment of a null geodesic. By the results of Sect. 3 below, we
would then deduce that this null geodesic segment is maximal, i.e. it would extend
to the boundary d£f, which is impossible since d£f is supposed to be acausal.

The fact that ε only depends on R and H H H ^ is due to the observation that the
results in Sect. 3 also apply to uniform limits of surfaces of uniformly bounded
mean curvature, i.e. to surfaces which are not necessarily space-like.

It remains to define the lower barrier δ~. We set

δ-(x) = φ(x0)- J ( l+yΓ 1 / 2 , (2.23)
l*ol

while choosing ξ, λ, and α as before, and it turns out that the estimates are identical
with the appropriate change in sign.

To complete the proof of Theorem 2.1 we claim

Lemma 2.3. Let xGεdΩ. Then in any neighbourhood of x0 we can find ξ not
belonging to Ω, such that

δ~^φ^δ+ in dΩ^BR(ξ), (2.24)

if α is chosen sufficiently small.
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Proof. We only prove the estimate for δ + . The proof is similar to the proof of [BS;
Proposition 3.1]. Let x0edΩ, and choose a Riemannian normal coordinate system
in N around x0 such that the tangent plane at δΩ in x0 =0 is given by xn = 0, that
the inward unit normal vector of dΩ in x0 is equal to (v.) = (0, . . ., 0, 1), and that the
tangential derivative of φ in x0 is given by

, (2.25)

where

O^r^l-Θ. (2.26)

We now want to find a sequence ξεφΩ9 converging to x0 = 0, such that, if we
define δ+ with base point in ξε,

1, (2.27)

holds.
From the definition of δ+ we deduce that

(2.28)

where

£>|g=_A (2.29)

and hence (2.27) says

(2.30)

where \ξε\ is the usual Euclidean norm since the coordinate system is normal.
In view of (2.25) the following definition for ξε seems appropriate :

ξe = ε(6,0,...,0,-l), (2.31)

where b is such that

e l Γ 1 / 2 - f c (H-fe2)"1/2 = r. (2.32)

The set of the possible b's is uniformly bounded if we choose α so small that

(2.33)

The (ξε) will therefore converge to x0 = 0 and will lie outside Ω if ε is tending to
zero.

Consider now some fixed ξ = ξε and choose Riemannian normal coordinates in
ξ. Then

ίj l j

(*J, (2.34)
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where clj is a bounded tensor if α is small, and hence

531

for any vector field (ηl).
Let

Then it follows from the assumption dΩeC2 that

2

(2.35)

(2.36)

(137)

(2-38)

(2.39)

For small ε this quadratic form is therefore larger as the corresponding quadratic
form derived from φ, hence

|x-x0|^ε /?. (2.40)

for all xedΩ with

if ε is small. For such x, we deduce from (2.35)

For x — x0 |>ε /? we argue as follows: for small α we obtain

) , (2.41)

in view of the definition of/?, where we assume ,R to be small enough so that φ has
an extension into BR(ξ) satisfying the same conditions. The last inequality in (2.41)
is then justified.

3. The Segment Condition

Let ̂  = graph ut over a domain Ω be a sequence of surfaces of uniformly bounded
mean curvatures Hε converging locally to a surface £f = graph M, i.e.

(3.1)

on compact subsets, then we have

Theorem 3.1. // ίf contains a segment of a null geodesic, then this segment has to be
maximal, i.e. it extends to the boundary of £f.
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Proof. The proof is a modification of the arguments given in [BS; Theorem 3.2].
Let ί$^= {(x, u(x) : xεΩ} and suppose the statement were false. Then, we could find
x0e£2, R>0, and xίεBR(x0) such that BR(x0) would be geodesically convex,
BR(x0)cΩ, (3.1) would hold in BR(x0), and if we would introduce a Riemannian
normal coordinate system in x0 and set

(3.2)

then we could arrange that

ttfoHuixoHHxo-xJ, -i^f^l (3.3)

and
(3.4)

where | | denotes the geodesic distance function, and where we point out that
because of (3.1)

Let χ be defined through

Then χeC2(BR(x0)\{x0}) and

χ(x)<u(x) for \χ-x0\ = \Xo-Xl\. (3.7)

Indeed, if equality would hold in (3.7) for some x, then

M(X) = M(X O )- |X-X O | = M(X I )- |X I -X O | - |X-X O | (3.8)

in view of (3.3), and hence

i.e. x0, x and x^ would lie on a common geodesic, in other words

X = x19 or x = x _ 1 9 (3.10)

but both cases are excluded by (3.3) and (3.4).
Let B0 be the geodesic ball with center in x0 and radius |x0 —xj. Since dB0 is

compact, we conclude from (3.1) and (3.7)

χ(x)<M ε(x),

if 8 is small, and hence that

(Γ(x)<wε(x),
where

|x-xo| Q
ίl2-Q, (3.12)

0 0

provided the constant α involved with y is small enough here, we have set

ρ = ίlχ0-*ιl (3 13)
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Moreover, the estimate (3.12) holds trivially on dBρ(x0), since uε is space-like, so
δ~ is a good candidate for a lower barrier in G = B0\Bρ(x0). Indeed, from the
results in Sect. 2 we deduce that

)^uε(x), V x e G , (3.14)

if α and λ are chosen appropriately, independent of ε hence

<Γ(x)^w(x), V x e G . (3.15)

Specifying χ = χ _ 1 / 2 J we deduce from (3.3)

] ( ί + yΓll2-Q^]\l+yΓll2-2ρ9 (3.16)
o o

a contradiction.

4. Global Estimates

In this section we consider a surface ̂  of prescribed mean curvature H given as a
graph of a function w defined in an open, relatively compact set ΩcN, where
M — N x /, and the metric ds2 is given in the general form

ds2 = ψ(-dt2 + 0./X, t)dxldxj) . (4.1)

We assume that M is bounded

(4.2)

that the metric (gtj) is uniformly elliptic and of class C2 in Ω x [ — m1 ? m2], that tp is
of class C2, and that H is uniformly bounded.

Let v be defined as in Sect. 1 through

u = (l-|0wlT1 / 2 (4.3)

We are going to prove that v is uniformly bounded in Ω with a fixed α pπoπ
estimate, provided υ\dΩ is bounded, including the case dΩ = &.

Theorem 4.1. Lef ube a solution of Eq. (1.23) vviί/z bounded H, and suppose that v is
bounded on dΩ by a constant fe0. Then, under the assumptions stated above, we have

lψ,(gij)), (4.4)

where
(4.5)

Proof. We prove a priori estimates, so we assume that VELCO(Ω) and that u is thus a
solution of a uniformly elliptic equation. In view of our assumptions of the metric
and of H we conclude

, (4.6)

i.e. υ is of class H1>P(Ω) for any finite p.
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To obtain a differential equation satisfied by v, we differentiate Eq. (1.23)
covariantly with respect to the differential operator

υDku Dk (4.7)

to conclude

+ υ - aijDjDku - DtDku + υ2 - R , --k-

+ v2~'\Du\2 + v2~DiDku Dku = vDku DkH, (4.8)
du dp1 l k k

where

j^v-gV + v^-tfuiyu. (4.9)

The Ricci tensor and the covariant differentiations are calculated with respect to
the implicitly defined metric (g^x.u)), and the right-hand side of (4.8) is to be
understood as a weak derivative of H = H(x, u\

We note for the subsequent considerations the estimates

(4.10)

aίjDjDku DiDku ̂  v - DlDku - DtDku = v - \D2u\2 , (4. 1 1)

and

\RtjD
lu Dju\ ^ c(l + \D2u\) , (4. 12)

where c depends on the C2-norm of the metric (g^x, £))•
Estimating all non-positive terms on the left-hand side of (4.8) in the coarsest

way, and using (4,11) and (4.12), we deduce

- D.(v~2aiJDjV) + |<Dtt, Dv}\2 + \v2 - \D2u\ ^c v2 + vDkuDkH , (4. 13)

where c depends on the first derivatives of a and on the second derivatives of

(<M*,0).
Moreover, looking at the differentiated form of (1.23)

-v-Au-(Du,Dvy + a-v = H, (4.14)

and using

\D2u\2^-\Au\2, (4.15)
n

we finally obtain from (4.13) the crucial inequality

-Di(v-2aίjDjv} + (l + 2ε) \(Du,Dvy\2 + ε v2\D2u\2^C'V2 + H2 + υDku DkH

for some positive constant ε.
Our first observation is that this relation immediately yields an estimate for the

L°°-norm of v in terms of fe0 and a smaller ZΛnorm oft;, e.g. we may use the Moser
iteration technique or Stampacchia's method.
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Using Stampacchia's truncation method we multiply (4.16) with

(4.17)

and integrate by parts to conclude after some further steps

(4.18)

where c depends on n, \Ω\, the ellipticity constants of (gtj(x9 u)\ and on \\H\\ ̂  cf. the
appendix for details.

Thus we have to prove a priori estimates for finite ZΛnorms of υ. Let p ̂  2 be
an arbitrary but fixed number, and let A be a large positive constant to be
determined later. Then, we multiply (4.16) with

vp

ke
λu, fc^/c0, (4.19)

where vk = max(v — k, 0) and k is fixed. We could have chosen k = k0; it is only for
notational convenience that we prefer to use the subscript k.

We note that the function in (4.19) is of class H^q(Q} for any finite q, so we can
integrate by parts to obtain

p JV 2 aίSDjV Dtvvp

k ~ V + i JV 2aijDjυDίu - υp

ke
λu

Ω Ω

+ (1 + 2ε) j t$<Dw, Dυy\2eλu + ε f v2\D2u\2vp

ke
λu

Ω

g c - j v2vpeλu + φ + 1) f υ - vζ-^ζDu, Dv^\eλu + cλ J υvp\D2u\eλu , (4.20)
Ω Ω Ω

where we have simplified the expressions occurring on the right-hand side already
a little bit; c depends also on H/ίH^, and we should point out that integration is

taking place with respect to the volume element ]/~g dx.
We have in mind to compare the terms

M , (4.21)
Ω

and
$v2vpeλ\ (4.22)
Ω

carefully keeping track of the constants in front of these integrals. Lower order
terms involving only powers of v up to the order (p + 1) are negligible and we shall
use the common abbreviation B for them.

Now, using the relation

(4.23)

we deduce from (4.20)

(p + 1+ ε) J vp

k\{Du, Dvy\2eλu ̂  λ J v*\(Du, Dv^\ - veλu + c J v2vpeλu + B . (4.24)
Ω Ω Ω

Dividing by (p 4- 1 + ε) and using the inequality

(4.25)
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we conclude

o 2 -*)

" - - - 2 " - - — 2 A t t

" ̂
- - -j - - —" + - - — j t;2ι;£eAtt + £ . (4.26)

In order to obtain an opposite inequality matching the leading terms, we
multiply the Euler-Lagrange-equation (1.23) with

vvpeλu, (4.27)

and conclude

(4.28)
Ω Ω Ω

where we used the fact that p ̂  2. Choosing λ larger than c and having in mind that

v~2 = l-\Du\2, (4.29)

we conclude

J v2υpeλu ̂  r ί υk\<D^ Dvy\2eλu + £ . (4.30)
Ω (λ — c) Ω

Combining (4.26) and (4.30), we deduce that for large λ, depending on p and
known quantities, we have the estimate

(4.31)
Ω

which in turn yields

$v2vpeλu^B, (4.32)
Ω

i.e. an estimate for \\v\\p + 2. Theorem 4.1 is thus proved.

Remark 4.2. The same estimate with the same proof is also valid if we consider
solutions u of variational inequalities of the form

where K is defined through

K= {ηEH1'°°(Ω}: ψ1 ̂ η^ψ2,
 rl\βΩ = (P} > (4-34)

and where the obstacles φ., ι=l,2, are of class H2'°°(Ω) and space-like, i.e.

(4.35)

Here, we suppose u to satisfy the same assumptions as before, namely, to be of
class H2'P(Ω) for any finite p, and to be space-like with v\dΩ^k0. If we now choose
in (4.19) and (4.27)

/c>max{/c0,supt;(v;1), supv(ψ2)}, (4.36)

then these functions have support in

E = {xεΩ:ιp1<u<ιp2}, (4.37)
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so that we can exploit the fact that u is a solution to the equation

= Hm E. (4.38)

The considerations yielding an estimate for supi; are therefore still applicable, see
[GE1 Appendix], where a similar situation has been treated.

5. Existence of a Solution

Let us first consider solutions of the Dirichlet problem (1.19), (1.23), where we
suppose the assumptions of Theorem 2.1 to be satisfied; this means especially that
the differential equation looks as in (1.23), though by abuse of notation we still
write a(x, u, Du) instead of ά(x, u, Du).

Theorem 5.1. Under the assumptions of Theorem 2. ϊ the Dirichlet problem (1.19),
(1.23) has a solution ueH2'p(Ω), for any l^

Proof. Consider in C1)α(Ώ), 0<α<l, the closed and convex set

(5.1)

where m1 9 w2, and (9* are the constants that can be deduced from the a priori
estimates in Theorems 2.1 and 4.1, i.e. any solution u of the Dirichlet problem
satisfies

(5.2)

and where ε is so small that

and [ml -ε,m 2+ε]C/. (5.3)

The interior of ̂  is certainly not empty since Oe^, where, to be absolutely precise,
we assume that OeJ and mί is to be chosen nonpositive.

For we^, consider the differential operator

-aijDίDju + av = H (5.4)

with coefficients

H = H(x,w), (5.5)

and let

T\^-^^Λ(Ω\ u=T\v (5.6)

be defined through the requirement that u is a solution of (5.4) subject to the
boundary condition u = φ on dΩ.

Since the coefficients (aij) are Holder continuous and uniformly elliptic and the
lower order terms bounded, this Dirichlet problem has a unique solution

uεH2>p(Ω) for any l g p < o o , (5.7)



538 C. Gerhardt

with a priori bounds for the H2'p-norm depending only on p, | |w| | 1 > α, and fixed
quantities. Hence, the operator T is continuous and compact.

In order to find a fixed point of T, which would necessarily be a solution of the
Dirichlet problem (1.19), (1.23), we apply the following sufficient criterion: any
quasi fixed point u of T, i.e. any u satisfying

Tu = λu, λ > l , (5.8)

has to lie in the interior of ,̂ cf. [LL; Theorem 4.4.3].
Thus, let u be a quasi fixed point, then u is a solution to the Dirichlet problem

Au + λ~ίav = λ~1H in Ω,

u = λ~1φ on dΩ .

Due to the fact that λ is larger than one, the a priori estimates, applied to the
present situation, then yield

m 1^ι^m 2, |Dw|^l-Θ*, (5.10)

i.e. uε$.
Finally, let us show the existence of a solution to the variational inequality

(4.33), in the case when Ω is a compact, connected π-dimensional manifold,
M = Ω x /, where the metric in M is given by

ds2 = ψ( - dt2 + g . .(x, t) dxldxj) . (5.11)

Theorem 5.2. Let ψ, (gtj(x, t)) be of class C2 in M, and assume that the matrix (g^) is
uniformly elliptic on compact subsets of M. Then the variational inequality (4.33) has
a solution ueH2>p(Ω), l^p<oo, for any bounded H. Here, dΩ is assumed to be
empty.

Proof. First, we assume the obstacles are constant

γ>,. = m ;, f = l , 2 . (5.12)

Then, we define %> and T similarly as before, where we note that now in the
definitions (5.4), (5.5) of the linearized operator the metric is evaluated at the points
(x, w), and where the covariant derivatives are also taken with respect to this
metric. Of course, u=Tw is now defined through

H.η-uy^O, MηεK. (5.13)

It is very easy to see that this variational inequality has a unique solution

ueH2>p(Ω] for any l^p<oo, (5.14)

e.g. by using the penalization method, cf. [KS] or the subsequent considerations in
the case of general obstacles.

Hence, T is continuous and compact, and exactly the same conclusions as
before yield the existence of a fixed point, since the obstacles are constants. This
assumption is used when the a priori estimates are applied to a quasi fixed point u
of the form (5.8); u is then a solution to a variational inequality with obstacles

;.-Vi, ' = U, (5.15)
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instead of ψi9 and in general it does not hold that the gradient of the new obstacles
can be bounded uniformly strict from one, because of the time-dependence of the
metric coefficients.

In the general case, we choose constants m , z=l,2, such that

2, (5.16)

and penalization functions βί ε defined through

ί-1, t^-ε

j81>ε(ί)=| linear, -ε^ί gO (5.17)

10,
and

linear, O^ί^ε (5.18)

1, ί^ε

for positive values of ε, and consider the variational inequality

(5.19)

where K is defined by the obstacles m1 5 m2 and where μ is a large positive constant.
According to the first part of the proof, there is a solution to this variational

inequality, since the penalization functions are Lipschitz continuous. Moreover, if
ε is small such that

m1+ε^ψ1^ιp2^m2 — ε, (5.20)
and μ large such that

|α(;c,w,0)-H|^, (5.21)
then

(5.22)

so that u is actually a solution of

(u-ψ2) = 0. (5.23)

For a verification of (5.22), see the proof of Theorem 6.1 below, where a more
general situation is treated we note that in the places where u touches an obstacle
the sum of the penalization functions is equal to — 1 or +1.

Moreover, for large μ, depending on the C2-norm of the obstacles, we have

ψί-ε^u^ψ2 + ε. (5.24)

Indeed, suppose e.g. that the second inequality is violated, and denote the graph of
φ2 + ε with ̂  and the graph of u with ^2 and their respective mean curvatures
with H^ and H2. As in the proof of Lemma 7.2 below we would then find a time-
like future directed geodesic y = (ya) from ίf^ to ^2 maximizing the distance
between the two surfaces. Furthermore, we would derive the inequality

H1(ξί)-H2(ξ2)+ J/V/^0, (5.25)
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where ζ^^ are the endpoints of y, dQ is the distance, and (Raβ) is the Ricci tensor
of M, cf. formula (7.15) below.

We remark that ̂  and <9̂ 2 are staying in a compact subset of M in view of
(5.22) for all values of μ and ε, and so do the corresponding geodesies y, cf. [HE
the corollary after Proposition 6.6.1]. Hence, the integral in (5.25) is uniformly
bounded, cf. Lemma 5.3 below.

The endpoints ξi can be expressed as

ξ1 =(x l 9 ψ2(x) + ε) , ξ2 = (x2, u(x2)) , (5.26)

where

) + c, (5.27)

otherwise we could find a future directed time-like path intersecting 5̂  twice,
which is impossible since ̂  is a Cauchy surface, cf. [BU].

Thus, we finally deduce from (5.25)

H^-H + μ+^R^ff^, (5.28)
o

since

H 2 ( ξ 2 ) = H-μ, (5.29)

in view of (5.27).
We conclude that the estimate (5.24) holds for large μ, independent of ε. In the

limit, when ε goes to zero, we then obtain a solution of the variational inequality
(4.33).

It remains to prove that the integral in (5.25) is uniformly bounded. In view of
the boundedness of the components of the Ricci tensor, this is tantamount to
prove the boundedness of the components of the tangent vectors (yα). Since the
geodesies emanate from compact space-like surfaces, the result will follow from

Lemma 5.3. Let y = (yα) be a time-like geodesic contained in a compact subset K of a
globally hyperbolic manifold M, the metric of which can be expressed in the form
(4.1). Let £0=(y°(0), ..., y"(0)) be an endpoint of the geodesic and assume that the
time-like curve

σ(τ) = (y°(τ),/(0),...,y"(0)) (5.30)

also stays in K. Then, if y is parametrized by arclength τ, 0 ̂  τ ̂  d0, the estimate

|γ0(τ)|^c.|y°(0)|, V0^τ^0 (5.31)

holds with a constant c depending only on K and the metric.

Proof. We first note that the space-like components of γ can be estimated by y°
since

-l=ψ(-\y°\2 + gijγ
ίγj). (5.32)

The estimate (5.31) now follows from the geodesic equation

= 0, (5.33)
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and the fact that the length of the time-like path σ is bounded by a constant
depending only on K, i.e.

jVl^c. (5.34)
o

Multiplying now (5.33) with y° we obtain

~|yT^c.|r0 | |y°l2 (5.35)

in view of the boundedness of the Christoffel symbols. The desired estimate then
follows from (5.34).

6. Slices of Prescribed Mean Curvature

In this section we suppose M to be globally hyperbolic and connected, having a
compact Cauchy surface. This implies especially that there exists a global time-
function /

/:M-»IR, D/ΦO everywhere, (6.1)

such that Df is a time-like gradient field.
The level surfaces

&> = {/ = const} (6.2)

are all Cauchy surfaces and hence compact and connected, since Cauchy surfaces
are all homeomorphic, see [GR], [HE; p. 212], and [GRH; p. 252]. The / is
usually supposed to be of class C°°, which we shall assume, too, though C3 would
be sufficient for our purposes.

Let ds2 be the original metric in M and let

dσ2 = ιp-ίds\ψ= -\\Df\\2. (6.3)

In this metric Df is a unit gradient field and its integral curves are therefore
geodesies.

Let = = - o o , (6.4)

and assume for simplicity that Oe/, then M is homeomorphic to Ω x /, where

Ω = /-1(0),3Ω = 0 (6.5)

is a compact Cauchy surface and the metric (6.3) can be represented in Gaussian
normal coordinates relative to Ω

dσ2 = -dt2 + g.J(χ9 t)dxldxj , (6.6)

because the time-like geodesies orthogonal to Ω are integral curves of Df, and

t = f ( x , t ) . (6.7)

Thus, the original metric can be recovered in the familiar and convenient form

ds2 = ψ(- at1 + g.J(x9 t)dxldxj) . (6.8)
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We want to find compact slices of prescribed mean curvature H in M, which
are necessarily representable as graphs over Ω. In view of the a priori estimates in
Sect. 4 the only difficulty in this achievement stems from preventing the slices to
run into the singularities T0, T19 i.e. we must be able to obtain a priori estimates for
the height of the graphs. For this reason we postulate the big bang and the big
crunch hypotheses : l there exist sequences (φk), (ψk) of C2-functions over Ω the
graphs of which have mean curvatures H(ψk\ H(ψk) respectively, such that

(V> k )\ , supγ?k->T0, H(ψk)-^H_, (6.9)
and

(6.10)

where we furthermore assume from the start

Ψk<Ψk (6.H)

Here, H_ and H+ are extended real numbers, satisfying

-oo^H_<H+^oo. (6.12)

We also ought to explain the notation H(u) to represent the mean curvature of a
graph evaluated at (x, w(x)).

We further remark that not all the assumptions stated in (6.9) and (6.10) are
really necessary to prove the existence of a slice with mean curvature H. The proof
of Theorem 6.1 below indicates what is really essential; the full hypotheses are
only needed when we want to prove the existence of a foliation of M by surfaces of
constant mean curvature.

Theorem 6.1. Let H be a bounded function on M satisfying

H_ <MH^supH<H+ . (6.13)

Then, there exists a space-like function u<=H2'p(Ω\ 1 ̂ p< GO, such that

Au + av = H in Ω, (6.14)

i.e. graph u has mean curvature H.

Proof. Choose two barriers ψ, ψ such that

H(ιp)<mϊH^supH<H(ψ), ψ<ίp, (6.15)

and let u be a solution to the variational inequality

e
(6.16)

which exists and is of class H2'P(Ω\ 1 ̂ p< oo, according to Theorem 5.2.
We shall now show that u cannot touch the obstacles, i.e.

ψ<u<ψ, (6.17)
and hence that u is a solution of (6.14).

1 Similar hypotheses have been used in D. Eardley and L. Smarr: Time functions in numerical
relativity. Phys. Rev. D19, 2239 (1979), as the author learnt from the referee
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Let us only prove the first inequality in (6.17). Assume that there is x0eΩ such
that

H(XO) = V>(X O )> (6 18)
then

Du(x0) = Dψ(x0) , gtj(x0, w) = gfj/Xo, I/;) , (6. 19)

and in a neighbourhood BR(XQ)CΩ there holds

Au + av^H, (6.20)
since ψ<ip.

On the other hand, φ satisfies in BR(x0) the equation

(6.21)

where, of course, the differential operator is now defined with respect to the metric
(gtj(x, I/?)). But due to (6.15), (6.19) and the fact that ψ is of class C2, we can choose jR
so small that ψ and u satisfy the differential inequality

- aijD f D/M - 1/0 > 0 , a.e. in 5^(x0) , (6.22)

where (aij) is a Holder continuous, symmetric uniformly elliptic matrix, and where
the second derivatives are ordinary derivatives.

But from the well-known strong maximum principle for # 2'p-solutions (see e.g.
[TR; Theorem 2]) we deduce that (6.18) and (6.22) exclude each other, hence the
result.

We actually proved a little bit more than the mere claim of the theorem, let us
state this extra information as a lemma.

Lemma 6.2. Let tp1? ψ2εC2(Ω) be given, the graphs of which have mean curvatures
H1(x,ιp1) and H2(x,ψ2), respectively, and assume

Ψ1<ψ2 and H1(x,ψί)<H2(x,ιp2). (6.23)

Then, for any continuous function H = H(x, t) satisfying

H,(x,t}<H(x,t)<H2(x,t), (6.24)

we can find a function u£H2'p(Ω), l^p<co,the graph of which has mean curvature
H, and such that

ψί<u<ιp2. (6.25)

Of special physical interest are slices of constant mean curvature. With the help
of Lemma 6.2 we obtain

Theorem 6.3. There exists a family (£ty of slices with constant mean curvature τ, H_
<τ<H+, which can be represented as graphs of functions uτ defined over Ω, such
that

uτ<uτf, for τ<τ ' . (6.26)

Moreover, there holds

lim supw τ -Γ 0 , (6.27)
τ-+H- Ω τ Ό ^ '



544 C. Gerhardt

and
lim inftt = T< . (6.28)

τ^H + Ω τ l

Proof. Let us first construct countably many slices (wτfc)keZ, such that

τk<τk+ι> V^eZ, (6.29)

lim τ f r = H _ , l imτ f c = #+, (6.30)
fc->-oo fc-> oo

and the relations (6.26), (6.27), and (6.28) are valid for this family.
Choose a sequence of barriers (ψk), keTL, such that

and

1), (6.31)

Jim inf ιpk = T, , Hm H(ψk) = H+ , (6.32)

lim supt/;k = Γ0, lim H(ψk) = H_. (6.33)
fc-* — oo Ω fc— > — oo

Let (τfc), fce2£, be defined through

H(vg<τ fc<H(φk+1), (6.34)

and let (wτfc) be slices with mean curvature τk satisfying

V > f c < M τ k < V f c + ι > (6 35)

according to Lemma 6.2.
Next, let

Jk = [ τ k> τ k+ι]» (6 36)

and consider for fixed fc the family J^ of sets F defined through the requirement :

Fc{ηeC2>«(Ω):uτk^η^uτk+ι}, (6.37)

graph η has constant mean curvature H(η) such that

τk^H(η)£τk+ί (6.38)

and, for ηί9 η2

E^ there holds

η^η2, if H(ηι)^H(η2). (6.39)

In view of the a priori estimates in Sect. 4 the C2'α-norms of the functions η are
uniformly bounded and the graphs are uniformly space-like. Therefore, Zorn's
lemma is applicable to conclude that 3F contains a maximal subset Fk, maximal
with respect to inclusion. From Lemma 6.2 we then deduce that

Ik = {H(η):ηEFk}, (6.40)

for let τelk be such that there is no ηeFk with H(η) = τ, and consider the non-
empty subsets F_, F+ defined through

F_={ηeFk:H(η)<τ], (6.41)

F+={ηeFk:H(η)>τ}. (6.42)
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The functions

u_ = sup{η :ηeF_} (6.43)

and

u+=M{η:ηeF+} (6.44)

then have constant mean curvatures

) (6.45)

and are members of Fk because of its maximality. Moreover, H(u_) orH(u + ) have
to coincide with τ, because otherwise Lemma 6.2 would yield the existence of a
function u with H(u) = τ and

u_<u<u+, (6.46)

in contrast to the maximality of Fk.
To complete the proof of the theorem, we take the union of all Ffc's to obtain

the desired family of slices.

7. Foliation of Space-Time by Surfaces of Constant Mean Curvature

The obvious question, if the family of slices given in Theorem 6.3 is a foliation of
M, can be affirmatively answered if we assume furthermore that the manifold
satisfies the time-like convergence condition, i.e.

Raβff^O (7.1)

for any time-like vector field (ία). If the Einstein equations hold in M with zero
cosmological constant, then (7.1) is equivalent to the strong energy condition, cf.
[HE; p. 95].

One consequence of this assumption is that slices with a given mean curvature
are unique if the mean curvature does not vanish identically, and if there are two
different maximal slices, then both have to be totally geodesic. This is well-known
in the literature, and has already been used to prove uniqueness and local foliation
results, cf. [BF1, CB, CFM, GO, MT]. We use these ideas to give a rigorous and
comprehensive proof of the existence of a foliation by surfaces of constant mean
curvature, where we are also able to overcome the difficulties arising from the
presence of different maximal slices.

Let us first state

Lemma 7.1. Let M satisfy the assumptions stated above and let ̂  be a compact slice
'with constant mean curvature τ which is not totally geodesic. Then, in any
neighbourhood of £f there are slices with strictly larger and smaller mean curvatures.

A proof of the lemma can be found in [MT; Lemma 4].
In the following we shall use definitions and terminology from [HE Chap. 6],

for the definition of the Lorentz distance function d see especially [HE p. 215]. In
a globally hyperbolic manifold d is continuous in M x M.
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Lemma 7.2. Let £f ^ & \ be compact slices with mean curvatures H^ respectively,
H2, and assume

d(^,^2)>0. (7.2)

Let ζi^^i be points satisfying

tXξ^ξ^d^,^). (7.3)

Then there holds

ξ 2 ) . (7.4)

Proof. This lemma is also well-known, see e.g. [BF1; p. 161] and [MT; p. 119].
First, we observe that the points £fe^, i= 1, 2, exist since d is continuous and the
slices are compact. Moreover, the points are joined by a time-like, future directed
geodesic y = (yα) orthogonal to both ̂  and ̂ 2, having maximal length among all
non-space-like curves connecting ̂  and 9*2. The second variation of its curve
length is therefore non-negative. Choosing the variation appropriately it turns out
that do

H1(ξ1)-H2(ξ2)+ J^f/^0, (7.5)
o

where d0=d(ξί,ξ2) and y is parametrized by arc length, cf. [MT; p. 119], [GKM;
p. 126], and [HE; Lemma 4.5.7]. We point out that we use the opposite sign
convention in the definition of the mean curvature. The time-like convergence
condition then yields the result. Combining the lemmata we can deduce

Theorem 7.3. Let 5̂ ., ι=l,2, be compact slices with constant mean curvatures τ .
Assume τ1 rgτ2, then there holds:

(i) if the τ are not identically zero, then

dCS^HO, (7.6)
and

(ii) if τί = τ2 = Q and if ̂  φ^2, then both surfaces are totally geodesic.

Proof. We only prove (i), since the proof of (ii) will be identical. For definiteness,
suppose that τ1 φO. This means, that ̂  is not totally geodesic, since

-τ^ω2 (7.7)
n

Hence, in any neighbourhood of <9 ,̂ there are slices with smaller or larger mean
curvatures. Let

(7.8)

Then, because of the continuity of d, there exists a compact slice 6^*9 such that

(7.9)
and

H(y*)<τίt (7.10)

in contradiction with the result of Lemma 7.2. Theorem 7.3 is therefore proved.



//-Surfaces 547

Let us now analyze the situation described in the second part of the theorem
more closely. Suppose there are two different compact maximal slices £f_ and ̂ +

which are then necessarily totally geodesic. Since both slices are Cauchy surfaces,
cf. [BU], we either have

J(^_,^+)>0 or d(^+,^_)>0. (7.11)

Assume the first inequality to be valid, and consider a Gaussian normal
coordinate system relative to ̂  which is defined in a neighbourhood of ̂ _, so
that

ds2=-dt2 + gij(x,t)dxίdxj. (7.12)

The time-like convergence condition then says that in this coordinate system

ROO^O (7.13)

On the other hand, we know (cf. [El; p. 21] and observe that we use the opposite
sign in the definition of the Ricci tensor)

The second term on the right-hand side is non-positive, it is exactly " — ω2" of the
surface t = const, thus

^21™ λΓn

(7.15)
dt

in a neighbourhood of ίf_ .
Now, look at the surfaces

^:={(x,ί):ί = ε} (7.16)

for ε^O. Their mean curvatures H(^ε) are equal to

(7.17)

evaluated for t = s. From

V (7.18)

and from (7.15), we thus deduce

H(^ε)^0 for ε^O. (7.19)

But for small ε, we certainly have

(7.20)

hence, the level surfaces 6^ε are all totally geodesic for small positive ε.
This information will enable us to prove, that the tubular neighbourhood of

y_ in which the Gaussian coordinate system is defined contains the set

Se+)} (7.21)
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and
9y+). (7.22)

Indeed, let the neighbourhood contain the surfaces

(7.23)

and let ε0 be maximal subject to the condition ε0^J(,9ί?_,5^+). As we have just
proved, those surfaces are all compact maximal slices and are therefore represent-
able as graphs of functions u£ over Ω, satisfying the differential equation

Auε + av = Q in Ω. (7.24)

The a priori estimates in Sect. 4 will yield uniform estimates for v = vε and the
C2'α-norms of uε, provided the surfaces £ft remain in a compact set of M, or
equivalently, provided the ranges of uε are compactly contained in /.

Various conditions can be imposed to force the uniform compactness. We shall
consider the one appropriate for our purposes, namely, we shall assume that there
exists a compact slice £f in M with H(έ?) > 0. Then, if £f = graph M, we conclude

u-^uε^u, V0^ε<ε 0 , (7.25)

due to the time-like convergence condition, cf. Lemma 7.2. Thus, the uniform
compactness is proved. Let us remark that a similar consideration would be
possible if we had assumed the existence of a compact slice & with strictly negative
mean curvature; instead of looking to the future of ^_, we then would look to
the past of ̂ +.

The surfaces ̂  are therefore uniformly smooth, and going to the limit we
obtain a smooth totally geodesic

^βo = graphWeo = {ίeM:£/(«^_,ξ) = ε0}. (7.26)

We shall show that the tubular neighbourhood of ^_ contains 5 ô, by proving
that the geodesies orthogonal to tf_ cannot intersect in a sufficiently small
neighbourhood of ̂ εo.

Consider a point ξ in a tubular neighbourhood Uεo of ^εo, where we may
restrict our attention to points ξ lying in ̂ o or in its future, and let γ be a time-like
geodesic from ^_ to ξ, orthogonal to &*_. Our first observation is that γ has to be
maximal, i.e.

length γ = d(5Ί,ξ). (7.27)

Indeed, let f 0eyn^ 0, (7.28)

where ξ0 = ξ if ξ belongs to ̂ o, and let γ0 be the corresponding segment of y. Then
70 is a maximal geodesic from ξ0 to ^_, and also a maximal geodesic from ^εo to
&_ since ̂ εo is a level surface. Thus, γ is orthogonal both to ^_ and ̂ εo, and hence
maximal, since ξ is contained in a tubular neighbourhood of ̂ εo.

Assume now that there were two geodesies y, y; orthogonal to £f_ and
containing ξ. Both had to be maximal, and therefore their segments from ξ to ̂ εo

had to coincide, which would yield an immediate contradiction if ξ lies in the
future of ̂ εo. If ξ belongs to ^εo, then y, γ' would be orthogonal to ^εo, yielding a
contradiction, too.
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Summarizing we conclude that the tubular neighbourhood of £f_ contains the
set

}. (7.29)

Hence, ε0 has to be equal to d(^_,^+) because of its maximality.
It remains to prove that ^εo is equal to ̂ + . Their intersection is certainly not

empty in fact the surfaces touch each other where they intersect.
Let ξ0e^εon<$f+ and choose Gaussian normal coordinates relative to &*+. Let

ξ0 be given as (x0,0). Then, in a neighbourhood BR(x0), ^εo is represented as a
graph of a function u such that

O) = O, (7.30)

and

Au + av = Q in BR(x0). (7.31)

The last equation can be written in a more convenient form as

-Di(aijDju) + b = Q in BR(x0) (7.32)

with ordinary derivatives. The lower order term b = b(x,u,Du) is smooth, and
because ^+ is maximal we have

fe(x,0,0) = 0 in BR(x0)9 (7.33)

compare the formula (1.14). Thus,
1 d

b(x, u, Du) = J — b(x, τu9 τDu) = b0-u + blDtu . (7.34)
o ^τ

We can therefore apply the Harmack inequality for linear operators, cf. [GT
Theorem 8.20], to conclude

u = Q in BR(x0). (7.35)

Thus, we have proved that the subset

&+)} (7.36)

is relatively open in ̂ + since it is also closed, because of the continuity of d, ana
since £f+ is connected we obtain :

Theorem 7.4. Let £f_ and £f+ be compact maximal slices which do not coincide, then
they are both totally geodesic. Assume, furthermore, that there exists a compact slice
£f whose mean curvature H(£f) is either strictly negative or strictly positive. Then by
changing the labels if necessary, we have

0<d(^_,^+), yγc/ + (^_), (7.37)

and the slices
ξ) = ε} (7.38)

are all totally geodesic for 0^ε^d(^_,^+). Especially ^+ is the level surface with
distance d(^_,^+). All slices are contained in a tubular neighbourhood of £f_. The
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metric coefficients (gtj) in the representation

ds2 = -dt2 + g.j(x9 t)dxldxj (7.39)

are such that

9tj{x, 0) = 9iJ{x9 ί) , VO g t g d(5^_ , ̂ + ) . (7.40)

Only the last statement needs some further moment of consideration : from
(7.14) and the reasoning thereafter we conclude

^0, (7.41)

which simply means that the surfaces ί — const are totally geodesic. But from
[GE2; formula (3.6)] we then deduce

Physically, it is not realistic that a space-time would be static for a positive
period of time, cf. the corresponding considerations in [CB, MT], but there are of
course numerous examples of globally hyperbolic Lorentz manifolds satisfying the
time-like convergence condition, and being endowed with a metric ds2 of the form
(7.39), (7.40).

Combining now the results of the Theorems 6.3, 7.3, and 7.4 we can prove the
existence of a foliation consisting of slices of constant mean curvature.

First, we deduce from Theorems 6.3 and 7.3 that there are uniquely determined
slices <9*τ = graph uτ with mean curvature H(^τ) = τ for any non-zero τe(H_,H + )
satisfying (6.26), (6.27), and (6.28). Moreover, if

Oe(#_,H + ), (7.43)

then define

u_=sup{uτ:τ<0}, (7.44)

and

u + = i n f { w τ : τ > 0 } . (7.45)

Both functions are smooth and their graphs are compact maximal slices. If they
are different, then the results of Theorem 7.4 apply, and we obtain in any case a
family ^0 of disjoint maximal slices

&'+)}, (7.46)

where ^_ = graph w _ , ^+ = graph u+, and

= ε}. (7.47)

If ̂ 0 contains more than one element, than all maximal slices are totally geodesic,
and

#'+). (7.48)
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Furthermore, we can prove

Theorem 7.5. The disjoint family of slices

(^τ)τφ0u^0, (7.49)

where ^0 can be empty, is a foliation of M.

Proof. We have only to prove that this family is a covering of M. Thus, let £0eM,
ξ0 = (x0,t0) with x0εΩ and £0e(T0, TJ. In view of (6.27) and (6.28) the families

, (7.50)

and

Λ2 = {uτ:uτ(x0)^t0}, (7.51)

are non-empty and for arbitrary members t/1e/l1, u2eΛ2, we have

u^u2. (7.52)

Here, τ is a general label for the members of the family. Let u1 be the largest
element in Λ19 and u2 be the smallest element in A2. Both w 1 ? w2 exist in view of the
a priori estimates. Then, we have

If the inequalities would hold strictly, then we could conclude that either

H(M1)<H(u2), (7.54)

or that

uvu2€VQ. (7.55)

In both cases, we then would find uτ such that e.g.

U1(x0)<uτ(x0)<t0, (7.56)

contradicting the definition of w x .

Appendix

For the convenience of the reader we indicate the details of Stampacchia's method
to derive an upper bound for subsolutions of an elliptic equation. Our starting
point is the inequality (4.16) which we multiply with the function given in (4.17)
and integrate by parts. Using the notation

vk = max(v-k,0), A(k) = {xeΩ:vk>0} , (A 1)

and

\A(k)\= j ]/0, (A2)
.1 1 . AWwe then obtain

\\Dυk\
2^c ί υ3 (A3)

Ω A(k)
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with some constant c, where we used the fact that from the main part of the left-
hand side of (4.16) we also got a dominating term of the form

J v2\<Du,Dv)\2 (A4)
A(k)

in view of (4.9).
Next, we apply the Sobolev inequality

fίl^r-1) " £c.lS\Dvk\+S\υk\\, (A5)
\β / [Ω Ω I

valid for any compact manifold with or without boundary, to deduce from (A3)

V*Y12. (A6)

) /

Estimating the integral on the right-hand side with Holder's inequality we obtain

Moreover, for h > k we have

n-l

(A8)
A(k)

and hence

(h-k}\A(h}\^c^\v\\^n

2^A(k}\^^\ (A9)

valid for all
From [ST; Lemma 4.1] we then conclude the estimate (4.18).
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